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The portable and scalable kinetic plasma
simulation code for hybrid supercomputers*

E.A. Genrikh, A.V. Snytnikov

Abstract. Today the method for the development of portable numerical simula-
tion programs is very important because of the two main reasons. The first reason
is the diversity of supercomputer architectures in Top500 and the second one is a
demand for using the most powerful computers to simulate, for example, plasma.
The method presented is based on minimizing the number of code fragments that
depend on the architecture and, also, on the use of function variables. The use
of the method is shown on the example of the program for plasma simulation by
the Particle-In-Cell method. The program was ported from the GPU to Intel Xeon
Phi. The porting was done just by re-compilation because of the method described
in the paper.

Keywords: portability, hybrid supercomputers, GPU, function variables, compu-
tational plasma physics.

1. A kinetic plasma model

The objective of this section is to display the equations that are solved in
all plasma physics problems. They are the equations that the template
implementation of the PIC method must be suitable for.

The mathematical model employed for the solution of the problem of
beam relaxation in plasma consists of the Vlasov equations for ion and
electron components of plasma and of Maxwell’s equation system. These
equations in the usual notation have the following form:
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In the present paper this equation system is solved by the method described
in [2]. All the equations will further be given in the dimensionless form.

*Supported by the Russian Science Foundation Project 16-11-10028. Development of
the code was supported by the RFBR under Grants 14-07-00241,16-01-00209,16-07-00434,
and 14-01-31088). Simulations are performed at the Siberian Supercomputer Center SB
RAS.



18 E.A. Genrikh, A.V. Snytnikov

The following basic quantities are used for the transition to the dimensionless
form:

e characteristic velocity is the velocity of light o = ¢ = 3-10'° cm/s;

e characteristic plasma density 7 = 104 cm™3;

e characteristic time 7 is the plasma period (a value inverse to the elec-
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tron plasma frequency) t = w, ! = <M> =53-10""%s.
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The Vlasov equations are solved by the PIC method. This method im-
plies the solution of the equation of motion for model particles:
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The quantities with subscripts ¢ and e are related to ions and electrons,
respectively.
The leapfrog scheme is employed to solve these equations:
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where 7 is the timestep.

The scheme proposed by Langdon and Lasinski is used to obtain the val-
ues of electric and magnetic fields. The scheme employs the finite-difference
form of the Faradey and Ampere laws. A detailed description of the scheme
can be found in [2]. The scheme gives the second order of approximation
with respect to space and time.

2. Scalability
2.1. Parallel implementation

The program was parallelized by the domain decomposition method. The
computational domain is divided into parts along the direction orthogonal
to the direction of the beam (along the axis Y, the beam moving along
the axis X). The computational grid in the whole domain is divided into
equal parts (subdomains) along the axis Y. Each subdomain is assigned to
a group of processors (in the case of a multicore system a single core is called
a processor, since no hybrid parallelization like MPI+OpenMP is employed,
just a mere MPI). Furthermore, the superparticles of each subdomain are
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Figure 1. The scheme of domain decomposition. The computational
domain is divided into 4 subdomains. The superparticles of each sub-
domain are distributed among four processors uniformly with no regard
to their position. Different symbols (a circle, a square, a diamond, a
star) denote superparticles belonging to different processors in the same
subdomain

uniformly distributed among processors of the group with no regard to their
position, as is shown in Figure 1.

Every processor in the group solves the Maxwell’s equations in the whole
subdomain, and exchanges boundary values of the fields with processors as-
signed to the adjacent subdomains. Then the the equations of motion for the
superparticles are solved, and the 3D matrix of the current density and the
charge density are evaluated by each processor. However, since the proces-
sor has only a part of the superparticles located inside the subdomain, it is
necessary to sum the matrices through all the processors of the group to ob-
tain the whole current density matrix in the subdomain. The interprocessor
data exchange is performed by the MPI subroutines.

2.2. Parallelization efficiency

The parallel program was primarily developed for the simulation of the beam
interaction with plasma on large computational grids and with large numbers
of superparticles. That is why the parallelization efficiency was computed
in the following way:
Ty Ni Sy

k‘—TI-N2-Sl-1OO%. (1)
Here T} is the computation time with N1 processors, T5 is the computation
time with Ny processors, S is the characteristic size of the problem in each
case. Here the characteristic size is the grid size along the axis X. In this
section, the characteristic size S is proportional to the number of proces-
sors N. This means that the workload of a single processor is constant.
The purpose of such a definition of efficiency is to find out what the com-
munication overhead is when the number of processors is increased with a
constant workload for each processor. In the ideal case, the computation
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Figure 2. Parallelization efficiency measured with MVS-100K cluster (left) and
the “Lomonosov” supercomputer at the Moscow State University (right). The grid
size along the axes Y and Z is 64 nodes, the grid size along the axis X is equal to
the number of processors, 150 superparticles per cell are used in all the cases

time must remain the same (the ideal £ = 100 %). In the computations
dealing with the efficiency evaluation only the grid size of the axis X was
increased, all the other parameters remaining unchanged. The results are
shown in Figure 2.

3. The GPU implementation

The implementation of the above PIC algorithm for the GPUs is quite stan-
dard. The field evaluation method is ported to the GPU almost without any
change. The computation speed is high enough even without optimization.
The field arrays are stored in the GPU global memory.

The bottleneck of the PIC codes is the particle push. With the CPUs it
takes up to 90 % of runtime. So, first the particles are distributed among
cells. This step only reduces the push time half as much as the CPUs. With
the GPUs it is even more important since this enables the use of texture
memory (the texture memory is limited and the whole particle array will
never fit). The second step is keeping the field values related to a cell
(and, also, to the adjacent cells) in a cell itself. This is important since
each particle needs 6 field values and writes 12 current values into the grid
nodes, and now this all is done within a small amount of memory (a cell)
without addressing the global field or the current arrays that contain the
whole domain. Then the evaluated currents from all cells are added to the
global current array.

This gives the speedup of about 40 for Kepler K40 as compared to 4
Xeon cores.

4. Portability
4.1. Statement of the problem

It is necessary to design a tool for porting the code among the most common
types of supercomputers:

1. Clusters based on the Nvidia Kepler computation accelerators.
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2. Clusters based on Intel Xeon Phi computation accelerators.

3. Clusters based on Intel Xeon processors as well as AMD Opteron,
Fujitsu SPARC64, etc.

In the present paper we consider porting the code from the GPU to Intel
Xeon Phi (not in the opposite direction!). Also, the optimization for both
architectures is not considered.

The main difficulties of the code porting from CUDA [9, 10, 11] to the
MIC architecture are the following;:

1. Compilation of the CUDA kernels and, particularly, the CUDA kernel
calls without Nvidia compiler.

2. Skipping the function calls used to copy the data among different mem-
ory types in the CUDA.

3. Definition of data types and keywords used in the CUDA extension of
C/C++ language.

In order to provide the portability of the CUDA-specific code spots
(CUDA kernels, CUDA API calls), such code spots should be:

e reduced to a minimum,
e wrapped into functions,

e brought out into a standalone external library.

The CUDA-specific code spots are reduced to a minimum in the following
way within the simulation code under consideration (Particle-In-Cell plasma
simulation [14, 15]). The code has from 15 to 20 small functions used to
process grid nodes, model particles, and boundaries of the computational
domain.

All these functions are implemented as the CUDA kernels. This means
that these functions cannot be compiled with a compiler provided by Intel,
etc. The main idea of the method proposed — there must be only one such
a non-portable spot in the code.

To conclude of the problem statement it should be explained why the
multi-architecture tools like OpenCL are not used to develop portable pro-
grams. There are two reasons: first, the OpenCL support for MIC was
declared but has not been implemented yet, and second, CUDA provides
better performance as compared to OpenCL or OpenACC.

4.2. Description of the method

The universal launcher. In order to implement the above-mentioned
main idea of the method (to provide one non-portable spot in the code), the
universal launcher function is proposed:
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int Kernel_Launcher(
Cell<Particle> **cells, KernelParams *params,
unsigned int grid_size_x, unsigned int grid_size_y,
unsigned int grid_size_z,
unsigned int block_size_x, unsigned int block_size_y,
unsigned int block_size_z,
int shmem_size, SingleNodeFunctionType h_snf)

struct timeval tvl,tv2;

#ifdef __CUDACC__
dim3 blocks(grid_size_x, grid_size_y, grid_size_z),
threads(block_size_x, block_size_y, block_size_z);

gettimeofday(&tvl, NULL);
GPU_Universal_Kernel<<<blocks, threads, shmem_size>>>
(cells, params, h_snf);

DeviceSynchronize() ;

gettimeofday (&tv2, NULL);
#else

char hostname[1000] ;

gethostname (hostname, 1000);

gettimeofday(&tvl, NULL);
omp_set_num_threads (OMP_NUM_THREADS) ;

#pragma omp parallel for
for(int i = 0; i < grid_size_x; i++)
{
/...
h_snf(cells, params, i, j, k, i1, ji, k1);
/...

The computational functions are given as the input parameter of the
universal launcher function. If the code is compiled by the CUDA C/C++
compiler and is being executed by a GPU-equipped computer with the GPU,
then the function parameter is passed to GPU_Universal_Kernel and is
launched by a GPU inside a kernel. On the other hand, if the code is
being compiled by a non-CUDA compiler (GNU C/C++ compiler, Intel C
compiler etc.) and is being executed by the Intel Xeon Phi in the native
mode (or, simply, by a multicore processor with openMP multithreading),
then the function passed as parameter is just called inside a loop. The loop
is a 6-times nested loop corresponding to the dimensionality of the CUDA
grid of the thread blocks (three-dimension as for the grid and three more
for the block of threads).
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It is necessary to use function variables (function parameters) since the
support of the object-oriented tools of the C++ is limited with CUDA. Due
to this reason it is not possible to make computational functions be virtual
class members and call a proper function depending on the architecture.

The unified data type for computational functions. All the compu-
tational functions that where previously launched as Cuda kernels must be
wrapped into functions with unified return value type and unified parame-
ters:

typedef void (*SingleNodeFunctionType) (GPUCell<Particle> *x*cells,
KernelParams *params,
unsigned int bk_nx, unsigned int bk_ny, unsigned int bk_nz,
unsigned int nx, unsigned int ny, unsigned int nz);

Furthermore, it is necessary to deal with the CUDA C extensions, e.g.
special data types like int3, double3, dim3, etc. They could be either
redefined, or if possible, they can be defined by the direct inclusion of the
cuda.h header. The special keywords like __global device etc.
could be masked with a preprocessor.

The only difficulty left is the CUDA API functions— copying from one
memory type to another, error handling, etc. These functions must not be
called directly from CUDA API, but through the wrapper functions from a
standalone header.

The use of the unified data type is shown with an example of the function
used to evaluate the electric field from the GPUPlasma class. The listing
below shows the original CUDA kernel GPU_eme used to evaluate the field
for a single node of the computational mesh. One should notice that the real
computation is done by the emeElement function. The kernel just defines
the node by means of the CUDA inner indices, passes the parameters (mesh
steps, time steps, electric current values according to the numerical scheme
described in [15]) and calls emeElement:

—_) == -

template <template <class Particle> class Cell>
__global__ void GPU_eme(Cell<Particle> **cells,
int i_s, int 1l_s, int k_s,
double *E, double *H1, double *H2, double *J,
double cl1l, double c2, double tau,
int dx1, int dyl, int dzi,
int dx2 ,int dy2, int dz2)

unsigned int nx = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int ny = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int nz = blockIdx.z * blockDim.z + threadIdx.z;
Cell<Particle> *cO = cells[0];
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emeElement (cO, i_s+nx, 1l_s+ny, k_s+nz, E, H1, H2,
J, c1l, c2, tau, dx1, dyl, dzl, dx2, dy2, dz2);
}

Passing parameters of computational functions. The emeElement
function has parameters. Moreover, it is clear that all the computational
functions may have different parameter sets. In order to call all these func-
tions in the same way, and to pass all the functions through a parame-
ter of SingleNodeFunctionType type, the special KernelParams data type
structure was introduced. It includes all the possible parameter sets for all
the computational functions. The resulting structure is not so big because
within the implemented computational algorithm many functions have over-
lapping parameter sets.

An example of the adjustment of GPU_eme function to the unified function
data type is shown below. The most important difference from the original
function is that the coordinates of the node nx, ny, nz being processed
are obtained from the function parameters, but not from the CUDA inner
variables blockIdx, blockDim, threadIdx:

template <template <class Particle> class Cell>

__device__ void GPU_eme_SingleNode(Cell<Particle> #*xcells,
KernelParams *params,
unsigned int bk_nx, unsigned int bk_ny, unsigned int bk_nz,
unsigned int tnx, unsigned int tny, unsigned int tnz)

{
unsigned int nx = bk_nx * params->blockDim_x + tnx;
unsigned int ny = bk_ny * params->blockDim_y + tny;
unsigned int nz = bk_nz * params->blockDim_z + tnz;
Cell<Particle> *cO = cells[0];
emeElement (cO, params->i_s+nx, params->1_s+ny, params->k_s+nz,
params->E, params->H1, params->H2, params->J,
params->cl, params->c2, params->tau,
params->dx1, params->dyl, params->dzl,
params->dx2, params->dy2, params->dz2) ;
}

Therefore, before each computational function call (that was previously
the CUDa kernel launch), the necessary fields of the KernelParams structure
are filled in, and the structure is copied to the device memory.

The universal kernel launcher is then called and takes the array of all
the cells, KernelParams structure, the dimensions of the grid and block, and
the computational function itself.

Finally, it is important to answer on the questions: what is a difference

between the CUDA and the MIC, and what is the difference between the
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corresponding optimization strategies? The main issue in both cases is the
data locality. For plasma simulation this means that all the model particles
in each cell must be placed closely in the memory of a computational device,
either it is a general purpose processor or an accelerator of any type. It must
be noted that for the Particle-in-Cell method the data locality affects the
performance much more that architecture dependent optimizations.

Further, one of the most important tools to improve the performance for
the Intel Xeon Phi is vectorization. Preparing the source code for vectoriza-
tion may also increase the GPU performance.

In addition, the substitution of the CUDA kernel calls by means of the
loops with OpenMP pragmas requires complementary tuning (meaning the
number of OpenMP threads, the number of loops involved in the OpenMP
section, etc.) for attaining a higher performance. This tuning is a priori
not clear, but it can be introduced into the code without loss in the CUDA
performance.

In brief, optimization is still problematic, but the CUDA and the MIC
optimization do not contradict each other.

4.3. The main principles of the portability method

How to write the code to make it easily portable?

1. Make all the code fragments processing mesh nodes, particles, basis
elements eigenfunctions, etc. as small functions with a unified return
value type and a unified parameter set.

2. Call these not from the CUDA kernel or from the OpenMP-parallelized
loops, but from the universal launcher function.

3. The API function that depends on the architecture, like memory copy-
ing or error handling, should be called through the substitution library
(we use archAPLh).

5. The plasma simulation results

In order to simulate the interaction of an electron beam with plasma, the
following values of the main physical parameters were set:

electron temperature of 1 KeV,

the mass of ion 1836 electron masses (hydrogene ions),

plasma density of 1017 cm ™3,

the ratio of the beam density to the plasma density of 1073,

e beam energy of 1 MeV,
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e the size of the domain Lx = 0.065 cm and Ly = Lz = 0.008 cm,
e the grid size of 512 x 64 x 64 nodes, 150 superparticles per cell.

Density modulation was observed in the computational experiments.
The amplitude of the modulation is 220 % of the initial value of density.
The modulation in this case means the occurrence of regions with a very
high or a very low density in the previously uniform-density plasma as is
shown in Figure 3a. It is seen that the density becomes non-uniform not
only along the direction of the beam (the axis X), but also along the axis Y.
Thus, the density is modulated not along X, that seems quite natural, but
also along Y and Z. This corresponds the physics of the process well, be-
cause it is known that the waves propagating in plasma due to the beam
relaxation have all the three components of the wave vector as nonzeros.

Moreover, it was found out that the movement of beam electrons becomes
eddy as a result of the beam interaction with plasma. At the initial moment
of time all the beam electrons have the same velocity strictly along the
axis X. This results in the eddy structure of the electron heat flux

Q(xa y) = ’Te(xv Y, LZ/Q)U_é(x7 Y, LZ/Q)’

The electron heat flux also gains modulations along X and Y. Moreover,
there are regions with a very low value of the electron heat flux as is shown
in Figure 3b (less than 1 % of the initial electron heat flux). This means that
only in small and isolated regions the value of electron heat flux is close to
the initial value, but, generally, in the computational domain the electron
heat flux is very low. Thus, the domain as a whole has a very low heat
conductivity after the beam relaxation has occurred.

Figure 3. Electron density (a) and heat flux (b) contours in the plane
XY, z = Lz/2, the time instance is ¢ = 91.7 in terms of the plasma
period. The density and heat flux values are given in terms of their
initial values
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