Bull. Nov. Comp. Center, Num. Anal., 12 (2003), 1-12 /
© 2003 NCC Publisher

Two solvers for nonsymmetric SLAEs*

M.Yu. Andreeva, V.P. I'in, E.A. Itskovich

The implementation of the biconjugate and the squared conjugate gradient
(BiCG and CGS) preconditioned iterative methods are described for solving non-
symmetric systems of linear algebraic equations (SLAEs) which arise when approxi-
mating multi-dimensional boundary value problems (BVPs) for diffusion-convection
partial differential equations {(PDEs), by finite eifference, finite element and finite
volume methods (FDM, FEM and FVM). The results of numerical experiments are
discussed.

1. Introduction

The numerical solution to nonsymmetric SLAEs is the subject of great prac-
tical importance and numerous publications, see, for example, [1] and ref-
erences cited there. In recent decades, various versions of generalized con-
jugate gradient methods were proposed, such as GMRES, BiCGStab, and
some others. Significance of this problem is explained, in particular, by
the necessity of solving very large algebraic systems with sparse matrices
occurring in FDM, FEM and/or FVM approximations of multidimensional
BVPs for diffusion-convection PDEs (2, 3]. Such mathematical statements
describe heat- and mass- transfer processes as well as hydro- and gasdynamic
flows. In nonlinear and/or nonstationary systems of differential equations
such SLAE have been multiply solved at every time step and at different
stages of multilevel iterative processes.

Here we consider two iterative solvers and their applications for solution
of three types of finite difference approximations (with central difference
and one-side difference discretizations of first order derivatives as well as an
exponential type scheme) for the two-dimensional and the three-dimensional
(2D and 3D) diffusion-convection equations:

#u  u,; 8%u ou du ou
'3"52"*' a_yz,(‘l'—a?z‘)”"pa +q8_y(+r£)_’f($’d’z)’ (E,y,Z) € Q! (1)
ur = g(z,y,2).

Here the coefficients p, g, and r have the physical sense of velocity and are
for simplicity considered to be constants in the computational domain 2.

*Supported by the Russian Foundation for Basic Research under Grants 02-01-01176,
01-07-90367 and NWO-RFBR under Grant 047-008-007.



2 M.Yu. Andreeva, V.P. Il'in, E.A. Itskovich

Bothlpresented algorithms are based on the preconditioning by multi-
parameter explicit incomplete factorization in the efficient Eusenstat mod-
ification [4] and acceleration by the BiCG and the CGS algorithms with
multivariant restarts.

This paper is constructed as follows. In Section 2 we describe the systems
of equations to be solved, and their algebraic properties. Section 3 presents
implementation of the preconditioning procedure as well as biconjugate and
conjugate squared algorithms. The last section-is devoted to discussions of
the results of numerous computational experiments.

2. Description of the algebraic systems

We consider three types of finite difference approximations of equation (1)
in the unit cube (or the square in 2D) computational domain, under the
Dirichlet boundary conditions u|r = g{(z,y, z) on the uniform grid
mi+1=3i+hzm 1=0,1,...,I, z =0, Try1 =1,
Yyiri=yi+hy, i=01,...,J, %=0, yr=1,
zxp1 =2z +h;, k=0,1,...,K, 2=0, zgx4y =1

Two first approximations are based on the standard three-point dis-
cretizations of second order derivatives and on the presentations of first
order derivatives by the central or one-side differences:

Ou Uiyl — Uiy Uit — Ui
Bzleme —  2h, +O(hZ) = ~h : +O(hy). (2)

The finite difference seven-point equations are written down in the following
form:

(Au)ijk = 695kt 5k — 05 kWi 1k — Gojkthii—1k — Ogj kUit1jk —

@5 5 kWi g 41k — O8 KU k—1 — 08 g kUi gk+1 = Fijks (3)
a%,j,k = ﬂ?,u: = a?,j,k = a:'l,.!+1,k = 0?4,1 = “’?,j,K =0,
i=1,2,...,I, j=12...,J, k=12,... K.

For approximation of first order derivatives by the central difference scheme
(CD), nonzero coefficients are described by the formulas

241 _ 2+ phs s+1 _ 2Eqhy 55405 2%Th,

Wpk T gp2 0 TRk T gp2 0 TREk T gp2 o
0 2 2 2 (4)
a""i’kz-ilz-'-}%-!-@- :

For the one-(right-)side finite difference discretization (OS), we have



Two solvers for nonsymmetric SLAEs 3

1 1+ ph l1+g¢
1
%k = B2 a}jk = B2’ @k = h2 5, Al = hzhy’
5 1 ¢ _ l+rh, o _ 2+ph; 2+gqh, 2+rh,
G",j,k - Ez-’ aiaj’k - hg ? a‘.'njak - hi + h% + h% -

The third scheme is of the exponential type (ET) whose coefficients are
presented as follows:

1 1 1
1 —phe /2 2 —ghy /2 3 he /2
a‘l",j,k = —p P / s ai,j,k = ﬁe q U/ , ai,j,k .}_‘_,i_ep / ,
iz z
1 1 1
4 hy /2 5 —rh./2 6 rhy /2
afjn = 3ze™,  aljn= nze 2, alh = g™, (6)
z
0 1

- 1 - —
ik = _‘h_z_(ephaﬂ +e ph.4-/2) + E2_(61,]"%,,/2 +e qh,/2) + -ﬁf(e h:/2 +e rh,/2).
T Y Z
A short overview of peculiarities of these three finite difference systems of
equations is the following:

e The CD and the ET schemes (4) and (6) have the second order accu-
racy O(h?) on the uniform grid, OS approximation has the first order
accuracy O(h), only;

e The CD scheme is of the positive type (by the Brambles definition this
means positiveness of all a; 'ij’k in (3), the row diagonal dominance and
monotonicity of A, i.e.,, A™" > 0) under the conditions

h h h
<2, ld <, Irl< ™
e The OS scheme is of the unconditionally positive type for the non-
negative velocities p, ¢, r, but in general it has diagona] dominance
and monotonicity, if the following inequalities are fulfilled:

Ip| S hz: |Q| S h!li |2| S hz; (8)

o The ET scheme has the positive coefficients aﬁ,j,k, diagonal dominance
and monotonicity properties for any value of the velocities p, g, r and
the mesh steps h, hy, h;

e The matrix A for the CD scheme has positive definite symmetric part,
ie.,
1
(4°0,0) = 5 (4 + AT)o,0) > 0 (9)
for any vector v, even for the variable velocities p, g, r; the OS and

the EP schemes have the same properties for constant velocities, but
in general this is not valid.



4 M.Yu. Andreeva, V.P. Il'in, E.A. Itskovich

3. The preconditioned BiCG and the CGS
restarted methods

At first we consider the Eisenstat modification of the preconditioned form
of the algebraic system

Au=f, A=D-L-T, (10)

where D, L, and U are diagonal, low and upper triangular parts of the
matrix A.

We use the explicit incomplete factorization, for which the usual form of
a preconditioner is the following:

B=(G-L)GG-U), G=—-D-65,

l-w i (11)

Se = (—D + LG_IU)e.
w

Here w, 8 are the relaxation and the compensation parameters respectively,
e is the vector with unit entries, G and S are diagonal matrices defined from
the row sum criteria Ae = Be. If A = {aj;m, [,m =1,..., N} and the vector
n={m = (Ue)i = Lm>i@,m} is introduced, then G = {g;} is defined by
the recurrent relations

-1
1-— —
wﬂl,l, 9= - wat,r -0 Z M, [=2,...,N. (12)

m=5 gm

qn= o

The Eisenstat modification of incomplete factorization consists in solving
the preconditioned system

Aa=f=(I-L)'¢™ %, (13)
where the new vectors and matrices are defined as
A=(I-L0)'+(-0)'-I-L) Y er-D)I1-0)1,
L=G"2LGg™'?, U=G'UuGc? D=G"*DG'?, (14)
@ = (I -U)G"u.

The matrix A is obtained by similarity transformation from the matrix
product B! A:

A=Lz'AU;z' = Ug(B 1 A)U;,
B=LgUs, Lp=(G-L)G™ % Ug=G'Y}G-U),

and has, presumably, the better condition number, as compared to the orig-
inal matrix A. An advantage of formulation (13), (10) is due to the law
computational costs needed for the matrix-vector multiplication



Two solvers for nonsymmetric SLAEs 5

Av=(I-L)yYw—-(@I-Dw)+w, w=(I-0)1, (15)

which is realized by a cheap solution of two auxiliary systems with the low
and the upper triangular matrices.

So, implementation of the preconditioned biconjugate gradient method
for solving the original system (10) can be done by “usual” BiCG formulas
for the new (preconditioned) system (13):

P=f-Aa% #F=p"=p"=+"

n

Op = (A—pn!ﬁﬂ)) Pn = (1‘ :Fn):-

Pn ~n+ —
o, =—, @ l—g"+ onp”,
+ - ot 16
Pl = anAp", Topn an}itﬁ", (16)

pn+1 — rn-i-l +ﬁnpn’ I—,-n-{-l — 1,-,n+1 +ﬁn-n’
(rn+1,,‘:n+l)

Bn = I n=0,12,... .

In principle, the initial vectors #° = $° can be defined in an arbitrary way.

Here 7% and 70 are “real” and “virtual” residual vectors, p" and §* are
the respective correction vectors. Multiplication by the transposed matrix
At is made by similar to (15) formulas:

Ay=(I-0"po+ QI -Dw+w, w=I~-L) . (17)

In iterative process (16), under the conditions a,, > 0, n =0,1,..., the
calculated vectors satisfy the orthogonality properties

(r™,7%) = (Ap",5%) = (A", 7*) =0 for k#n. (18)
These vectors can be defined by the ?Jatrix polynomials
= yn(A)r’, Pt =en(Ar, 7 =8N, 5 = a(ADF, (19)
which satisfy the normalization conditions '
¥n(0) =%0(€) =wo(§) =1, ¢n(0)=n+1. (20)

From the polynomials ¢, (£), ¥,(£), the following squared polynomials
can be defined:

$.(8) =v2(€), Tall) = 02(€), Xn(€) = ¥n(&)pn-1(f), (21)

which satisfy the recurrent relations



6 M.Yu. Andreeva, V.P. Il'in, E.A. Itskovich

Yn = (I’n + ﬁnXm 'I’n = Yn + ﬂn(Xn + ﬂnwn—l):

22)
Xn+1 = En - anf‘I’n, §n+1 = Qn - QHE(Y", + Xﬂ+1)' (

From definitions (19)-(21), we have the following properties of the inner
products: _
pn = (7", 7") = (Bu(A)r°,7°), on = (Ap",5") = (AT, (A)°,70). (23)
We can now define the vectors
™ =3, (A)°, p" =T, (A)y’, v = X,(A)". (24)

For their calculation from relations (21)—(23), the following preconditioned
conjugate gradient squared (CGS) algorithm is obtained:

PO Fo A, pPP=w=r,

On = (roy-&pn)s Pn = (rﬂ’rn), an = z_":
n
t,n+l = " — anjpn, ﬁn-!-l ="+ aﬂ(wn +vn+1), (25)

‘l"n+1 - an}i(wn + Un+1), ﬁn-i-l —_ (ro,rﬂ+1)/(ro,r"):
Wl =" g™, M = 0™ 4 B (V7 Brgap®).

This algorithm is transpose free, i.e., instead of multiplication by A*
in the BiCG, the second multiplication by A is presented in (27). The
computational costs of both methods in terms of implementation of one
iteration, for the considered SLAE are approximately the same.

Estimation of the iterative convergence rate for solution to nonsymmetric
indefinite SLAEs by the BiCG and the CGS is open to questions. But if the
BiCG is convergent, i.e.,

lYn(®)| <1-8, & <1, ("r")Y2<(1-5)(°r0Y2,

then, at least, for symmetric positive definite (s.p.d.) matrices, the CGS has
the twice better convergence rate, in the sense,

|Bn ()] = [WE(E)| <1 =83, d2m281, (r",r™)'/2 < (1= &) 0) /2.

A well-known drawback of the two considered methods is numerical in-
stability which is the reason for development of various stabilized versions
of algorithms, the BiCGStab, for example.

Let us use the multifold restarted form of iterative processes, by the
following approach. If an algorithm fails due to a certain circumstance, then
the recurrent computation of the vectors r”,p™ and others are interrupted,
and iterations follow from the recalculation of a current residual from the
equation directly, r* = f — A@™, as %" being the initial value. Such restart
conditions are



Two solvers for nonsymmetric SLAEs 7

On < Ominy Pn < Pmin, (26)

where omin = pmin = 0 for example, and oy, p, are defined in (16), (25).
The other two restarts are motivated by the observation that convergence

rate of the conjugate gradient method decreases (at least, locally) under
under the conditions

U < Omin €1, B > Pmax > 1. (27)

So, implementation of the BiCG or the CGS iterative process, with four
types of restarts, can be described by the following pseudocode:

n=20

der = 1

restart:

rP=_..,p"=..

if n = 0 then res = (r?,r%)1/2

while (der > eps & n < fimay)
n=n+1

Beginning of iteration

1f On < Omin gOto restart
1f 0n < Omin gOoto restart
1f ap < amin gOoto restart
1f Bn > Pmaz goto restart
End of iteration

der = (r",r")1/2 / res
end while '

Here eps = € < 1 is the iterative tolerance (stopping criteria, (r",r")/
(79, 7%) < €2), Nmax > 1 is the admissible number of iterations. The recom-
mended values of six user parameters are the following:

€=10"% fnmar =1000, Omin = Pmin =0, OQmin = 0.05, Bumax = 0.99.

However, for specific classes of the SLAE, these values can be optimized
from the numerical experiments in terms of minimizing the number of iter-
ations.



8 M.Yu. Andreeva, V.P. IU'in, E.A. Itskovich

4. Description of the code

The presented algorithms are implemented into the two subroutines BiCG
and CGS. The programming language is FORTAN. All arithmetic operations
are implemented with double precision only. These subroutines use a special
row sparse format for saving non-zero entries D, U, and L, where U is the
upper triangular part of the matrix A and L is the low triangular part of
the matrix A = {a;j}, because the matrix A is nonsymmetric. So, for each
i-th row of the entries of the matrix U, the number NE(i) of the non-zero
entries a;; for j > 4, their corresponding column numbers j and the real
eigenvalues a; j are given in the arrays NEIB(NU) and AU(NU), where the NU
is the total number of non-zero entries in the matrix U; for each i-th row
of the entries of the matrix L, the number NL(7) of the non-zero entries a; ;
for j < i, their corresponding column numbers j and the real eigenvalues
a; j, are given in the arrays NEIL(NL) and AL(NL), where the NL is the total
number of non-zero entries in the matrix L. The iterations proceed until
the convergence criteria (r”,r")/(r% r%) < €? for a given tolerance or the
condition n=nmax holds, where nmax is the given number. The call of the
subroutines is identical for both cases, except its name, and has the form

call CGS(D, U, F, NE, N, NEIB, AU, NU, NEL, NEIL, AL, NL, EPS,
NMAX, THETA, OM, amin, bmax)

Here the arguments are:

N — the order of the system Au = f;

NU — the number of non-zero entries of U ~ the upper triangular part of
the matrix A;

NL — the number of non-zero entries of L — the low triangular part of
the matrix A;

EPS - accuracy of an iterative solution (tolerance);

NMAX - a maximum number of iterations (input) and the resulting number
of iterations (output);

U(N) - an initial value of solution (input) and the resulting solution (out-
put);

F(N) - the right-hand side (input) and the preconditioned residual (out-
put);

D(N) - an array of diagonal entries of the matrix A (input), the entries of

the matrix (output); 7
NE(N) — the number of non-zero entries into the rows of the matrix U;

NEL(N) — the number of non-zero entries into the rows of the matrix L;



Two solvers for nonsymmetric SLAEs 9

NEIB(NU) — contains a column of non-zero entries of U — the upper trian-
gular part of the matrix A,

NEIL(NU) - contains a column of non-zero entries of L — the low triangular
part of the matrix A;

AU(NU) - the values of non-zero entries of U (input), the corresponding
entries of the matrix U (output);

AL(NU) - the values of non-zero entries of L (input), the corresponding
entries of the matrix L(output);

THETA

the compensation parameter;

oM — the relaxation parameter;
EPS - the accuracy of an iterative solution;
NMAX - a maximum number of iterations (input) and the resulting number

of iterations (output);
amin - a minimum value of a,, for restarting;
bmax - a maximum value of 3, for restarting.
The subroutine uses, in addition, auxiliary real arrays ui(n), ap(n),

g(n), p(n). The general structure and building the blocks of subroutines
can be described by the following scheme:

1. Computing the matrix G by formulas (12) (call the auxiliary subrou-
tine PRENS);
2. Implementation of the Eisenstat matrix-vector transformations (14);

3. Calculation of the initial residual by means of (15) and (for the BiCG) -
the vector r;

4. Realization of the iterative process by formulas (16),(25);

5. Reconstruction of solution by formula (14).

The computational resources of the considered subroutines are defined
by the number Q of multiplication at each iteration and the volume of the
necessary operative memory P:

e for CGS: P = 19N and Q = 21N, !

o for BiCG: P = 17N and Q = 21N.

The robustness of subroutines is provided by the full control of a possible
division by zero and positive definiteness of the matrix.



10 M.Yu. Andreeva, V.P. l’in, E.A. Itskovich

5. Results of numerical experiments

In this section, we present and discuss the results of numerical experiments
on the solution of SLAE (3), and the corresponding 5-point systems for a
2D case, by preconditioned restarted BiCG and CGS algorithms for the
three considered types of approximation of diffusion-convection equation
(1) with different constant coefficients p = ¢ = r = ¢. In all the cases, the
Dirichlet model BVP in the unit cube (and the unit square in the 2D case)
with exact solution u = 1 is chosen. An initial value is defined as function
u¥(z,y,2) = 2% + y? + 22 and the tolerance is ¢ = 10~5. The iterative
parameters in preconditioner (11) are w = 6 = 1 and the restart parameters
are amin = 0.05, Bmax = 0.9. The number of iterations n (¢ = 10~%) are
presented for different cubic grids with the numbers of mesh steps N =
I+1=J+1=K + 1. All computations are made with double precision.

In Table 1, the results of the BiCG method for CD scheme (4), OS scheme
(5), and ET scheme (6) are presented for the 3D BVPs. The number of
restarts are given in the parentheses. The symbol G' < 0 implies that in this
case the preconditioning matrix has negative diagonal entries and algorithm
fails. It is a natural phenomenon for one-side difference scheme with a “bad”
convective coefficient. Similar data on the solution of two-dimensional BVPs
by the restarted BiCG method for three types of difference approximations
are presented in Table 2.

The rest tables consist of the same results for the preconditioned and
the restarted CGS methods. In Table 3 and Table 4, the data for 3D BVP
and 2D BVP are respectively presented.

Table 1. BiCG method, 3D BVP

Nc —1024 —256 —64 16 -4 |0 4 16 64 256 1024

. Central difference scheme
8 463 (262) 176 (108) [22(21)| 7(5) | 6(3)| 9| 6(2)| 7(6)|19(15)|51 (47) 115 (102)
16 | 95(89) | 36(34) [18(13)] 1(1) 13(4){14]11(3)] 1(1) 15(10) {35 (27)| 97(86)
32| 71(59) | 24(23) | 9(7) |12(6) |18(7)[20(16(4)| 8(5)| 8(7) |22(19)| 60 (49)
64| 45(44) | 15(14) | 1(1) [16(11)|25(9)|20(22(4)[16(9)| 1(1) |11(11)| 34(34)

Right side difference scheme
81 G<0 | G<O [G<0|G<0]| 9(2)] 9] 8(2)] 6(2)| 5(3) 3(2) 3(2)
161 G<0 | G<O0 [G<0| 1(1) (13(2)[14[12(2)| 9(4)| 6(4) 4(3) 3(2)
32| G<O0 | G<O0 |G<0|12(6) [20(4)(20|19(3)[14(5)| 8(5) | 5 (4) 3(2)
64| G<0 | G<O | 1(1) [18(10)|27(4)|29|26(3)|20(7)|11(6) 5(2) 3(2)

Exponential type scheme
8| 1(1) 1(0) 2(0) | 5(2) | 8(0)| 9] 8(2)| 6(3)] 2(2) | 1(2) 1(1)
16| 1(1) 1(0) 3(1) | 8(3) [14(2)|14[13(3)| 8(5)| 3(2) | 1(1) 1(1)
32| 1Q1) 2(0) 5(4) [15(8) [18(2)|20{20(2)|14(6)| 5(4) | 2(2) 1(1)
64| 1(0) | 3(2) | 8(5) [23(11)|27(4)|2926(3)[20(8)| 8(4) | 3(2) | 1(1)




Two solvers for nonsymmetric SLAEs 11

Table 2. BiCG method, 2D BVP

N —1024 | —256 —64 16 —4 0 4 16 64 256 1024

Central difference scheme
8 |33(31)29(29)(20(18)| 7(5)| 7(2)| 7(0)| 6(3)] 6(5)|18(15)|29(26) |34 (28)
16 |52(51)|33(31)|14(10)| 1(1)|10(4)|11(0)[10(3){ 1(1)|11(9) |30(24) |48 (48)
32 |59 (53)|24(20)| 8(6) | 7(3)[17(6)[15(0)|16(4)| 7(3)| 7(6) |18(16)|53 (47)
64 |36(35) |13(10)| 1(0) [12(7) [20(5)|22(0)[32(4)|14(6)| 1(1) [10(9) |29(28)

Right side difference scheme

8|G<0|G<0|G<O|G<O| 7(2)] 7(0)| 7(0)| 6(3)] 5(1) | 4(2) | 3(2)
16 ([G<0|G<0{G<O| 1(1){12(2)|11(0)|13(3)| 9(3)| 5(3) | 4(3) | 3(2)
32|G<0|G<0{G<0|11(5)16(2)|15(0)(16(2)(14(5)| 7(3) | 4(3) | 3(2)
64 |G<O0[G<0| 1(1) |23(9)|25(5)|22(0)|27(4)|16(6){11(4) | 5(2) | 3(1)

Exponential type scheme
8| 1(1) [ 1(0) | 2(0) | 5(3)| 7(0)| 7(0)| 6(0)| 5(1)| 2(1) | 1(0) | 1(1)
16 [ 1(1) | 1(0) | 3(2) | 9(4)|13(2)[11(0)|10(2)| 9(3)| 3(2) | 1(T) | 1(1)
32| 1(0) | 2(0) | 6(3) |12(5)|17(2)|15(0)|19(3)|13(5)| 4(3) | 2(1) | 1(0)
64 | 1(0) | 3(2) | 7(4) |23(9)|26(5)|22(0)|28(4){18(7)| 7(3) | 2(1) | 1(1)

Table 3. CGS method, 3D BVP

N -1024 | —256 —64 16 -4 0 4 16 64 256 1024

Central difference scheme
8 |101(65) |42 (31)|13(12)] 4(2) | 4(2)| 5(0)| 3(1)| 4(4) |9(9)|35(27) |92 (61)
16 | 47(43)|18(17)| 7(6) | 1(1) | 5(3)| 9(0)| 6(2)| 1(1) [6(6)|15(15) |43 (42)
32 | 32(30)|13(12)| 5(3) | 5(3) |10(4)[14(0)| 8(3)| 4(2) |4(3)|10(10) |26 (26)
64 | 24(23)] 8(7) | 1(1) | 7(5) |13(5)|22(0)|12(3)| 7(5) |1(1)| 6(6) |18(18)

Right side difference scheme
8| G<0|G<0|G@<0|G<0| 5(2)] 5(0) 5(2)] 3(1)[3(2)| 2(2) | 2(2)
16| G<0 |G<O0{G<0| 1(1)| 7(2)| 9(0)| 8(3)| 5(2)|3(1)| 2(1) | 2(1)
32| G<0 [G<O0|G<0| 5(3)|12(4)|14(0)110(3)| 7(3)|4(2)| 3(2) | 2(1)
64| G<0 |G<0| 1(1) {14(8)|16(7)[{22(0)|14(3)[11(5)|6(4)| 3(1) | 2(1)

Exponential type scheme
8( 1(0) 1(1) | 1(0) | 3(1)| 5(0)| 5(0)] 5(2)] 3(2)11(1)]| 1(1) | 1(1)
16 | 1(0) 1(0) | 2(0) | 4(3)| 9(4)| 9(0)| 8(3)| 4(2)|2(1)] 1(1) | 1(1)
32 1(1) 1(0) | 3(2) | 6(4)(12(4)[14(0)|10(3)] 6(3)[3(2)] 1(1) | 1(1)
64 | 1(0) 2(1) | 4(3) |12(7)|15(6)|22(0)|15(3)|12(6)|5(3)| 2(1) | 1(1)

From the above-considered results of numerical experiments we can make
the following conclusions:

¢ For all reasonable values of convective coefficients and all grids (except
the cases when G < 0}, the preconditioned restarted BiCG and CGS
methods have a sufficient good iterative convergence rate;



12 M.Yu. Andreeva, V.P. Il’in, E.A. Itskovich

Table 4. CGS method, 2D BYP

N ~1024 | —256 —64 16 —4 0 4 16 64 256 1024

Central difference scheme
8 118(17) [17(17) [11(10)| 4(3)| 4(2)| 4(0){ 4(2)| 3(3)|8(8)|16(15)|21(20)
16 {26 (26) |16 (15)| 7(5) 1(1)| 5(3)] 6(0)| 6(2)| 1(1)|6(5)[14(14)|26(26)
32 |29(28)|11(9) | 4(3) | 4(3)| 7(3)[10(0)| 7(2)| 4(1)[4(3)]| 9(9) [24(24)
64 [19(18)| 7(4) | 1(1) 9(5)|10(3)|16(0)[10(3)| 6(2)|1(1)| 6(5) |15(15)

Right side difference scheme

8|G<0|G<0|G<0|G<0] 5(2)] 4(0)| 4(0)| 4(2)|3(1)| 3(1) | 2(0)
16 [G<0|{G<0|G<0| 1(0)] 6(2)] 6(0)| 7(2)| 4(1)|3(1)| 2(1) | 2(1)
32|G<0|G<0{G<0| 6(4)|10(3)(10(0)(10(2){ 6(2){4(1)| 2(1) | 2(1)
64 |G<0|G<0] 1(0) | 9(5)|12(3)[16(0)|14(3)j10(4)|5(1)| 3(1) | 2(1)

Exponential type scheme
8l 1(0) | 1(x) | 1(0) | 3(1)| 4(0)] 4(0)| 4(0){ 3(1)|2(x)| 2Q2) | 1(Q1)
16| 1(0) | 1(0) | 2(1) | 5(3)| 72| 6(0)| 7(2)] 4(2)|2(1)| 1(1) | 1 (1)
32| 1(1) | 1(0) | 3(2) | 7(4)|14(5)|10(0)|12(3)] 6(3)|2(1)| 1(1) | 1(1)
64 1(0) | 2(1) | 4(3) |10(4)|12(3)|16(0)|14(3)|10(4)|{4(1)| 1(1) | 1(1)

e The exponential type scheme has a significant advantage, as compared
to the rest schemes, for the large convective coefficients of both signs,
in terms of the number of iterations;

e The number of iterations for 2D and 3D BVPs are of the same order
for different grids and algorithms;

e The CGS algorithm has some advantage as compared to the BiCG
method, in terms of the number of iterations.

In conclusion, we can say that both considered algorithms provide a fast
iterative solution of the diffusion-convection difference algebraic systems of
equations.

References

[1] Saad Y. Iterative Methods for Sparse Linear Systems. — New-York: PWS Pub-
lishing Co., 1996.

[2] Samarski A.A., Vabishchevich P.N. Numerical Methods for Solution of Convec-
tion-Diffusion Problems. ~ Moscow: Editorial UPSS Publ., 1999 (in Russian).

[3] 'in V.P. Finite Difference and Finite Volume Methods for Elliptic Equations. ~
Novosibirsk: IM SB RAS Publ., 2000 (in Russian).

[4] Iin V.P. Iterative Incomplete Factorization Methods. — Singapore: World Sci.
Publ. Co., 1992. .

[5] I'in V.P., Itskovich E.A. Two explicit incomplete factorization methods // NCC
Bulletin. Series Num. Anal. — Novosibirsk: NCC Publisher, 2002. — Issue 11. ~
P. 51-60.



