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Numerical solution of one-dimensional
Focker—Plank-Kolmogorov equation*

S.S. Artemiev, M.A. Marchenko

The paper considers the algorithm of numerical solution of the Focker-Plank-
Kolmogorov equation for the probability density of a solution of a stochastic differ-
ential equation. Its solution is approximated by cubic splines on the time-dependent
moving grid.

For a numerical analysis of solutions of nonlinear stochastic differential
equations (SDE) the method of statistic simulation of trajectories is usually
successfully used [1]. But even in the case of one dimension there are ex-
amples of SDE for which numerical estimations made by this method are
wrong. It arises, as a rule, from a small probability of big deviations of the
SDE solution when it is necessary to simulate a huge number of trajectories
to get a sufficient accuracy of an estimation. One of the ways out in this
situation is a numerical solution of the Focker-Plank-Kolmogorov equation
for the probability density of the SDE solution. It is a parabolic partial
differential equation.

To solve one-dimensional parabolic partial differential equations, effec-
tive package of programs has been developed [2]. However, in the algorithms
used in [2] a vital defect is that ends of a space grid are constant while time
changing and cannot take an infinite value. But a probability density of a
stochastic process can have an unlimited support on space, and its support
can move significantly on space while time changing.

In article [3] the algorithm of solution of the one-dimensional Focker-
Plank-Kolmogorov equation in the case of a constant noise intensity was
given. In this paper we supply the algorithm in the general case.

Consider the one-dimensional autonomous SDE in the sense of Ito:

dy(t) = f(y(t)) dt +o(y(t)) dw(t), 0<t<tea, y(O0)=yo, (1)

where w(t) is a standard Wiener process, yo is a random variable with the

probability density po(y); f(y), o(y) are sufficiently smooth functions and,
besides, we assume that

Dom f N Domo = [yz, yr), —00 <yL <yr < o0,
o(y) #0 for yr <y < yg.
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" Here Dom is a domain of a function. We also assume the functions f (),
o(y) be chosen such that the solution of (1) exists and is unique [4].

It is known (see, for example, [4]) that the probability density p(t,y) of
the stochastic process y(t) satisfies the following-initial-boundary problem:

B ORI + 3 o),
0<t<tend, YL <Y <YR,
p(0,¥)=po(y), YL <y<yr, (3)
p(t,yr) = p(t,yr) =0, 0 <t < tena. (4)
Besides,

p(t,y) 20 for 0 <t < tend, yo <y < YR, (5)
:R p(t,y)dy=1 for0 <t < teng. ' - (6)

L

Equation (2) is called the Focker~Plank-Kolmogorov equation.
Let us make the substition in (2)-(4)

u(t,y) =Inp(t,y), (7)

and let b(y) = 0.50(y)®. After the substitution we obtain the following
problem: ' '

2 92 N2
?ﬁ__(@_f_}. Bu) d%b b du 0*u b(gg), ®)

= — — 2 — 3 h——
-\t o) Tar 2y ot to G,
0<t<tends yr <Yy < Yr,
u(0,y) =Inpo(y), yL<y<yr, (9)
u(t,yr) = u(t,yr) = —00, 0<t < teng. (10)

Substition (7) allows to keep no care about the positivity of p(t,y) =
exp u(t,y) while numerical solving (8).

" We define a mesh on the interval [0,epd] : 0=12p < t; < ... < tg = tend.
Let us define a time-dependent uniform moving grid on y with a constant
number of points N

y1(t) = max{e(t,) — C\/v(ts), yL},

yn (t) = min{e(t,) + Cy/v(ts), yr},

CH) =n®)+ (-1, i=2,...,N-1,
te[tmta+l)v §=0,...,K-1,
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where C' > 0 is a positive constant, e(t), v(t) are the mean and, respectively,
the variancy of y(t) is the following:
YR \ YR )
et)= | yexpu(t,y)dy, w(t)= f (v — e(t))” expu(t, y) dy
YL vL

Let S(t,y) be a cubic spline on y of the C?(—oo0, +00) class with the
grid points y;(¢), ¢ = 1,..., N that approximates u(t,y) for every t. We
introduce the notations:

2
w(t) = SEu), mil) = @), M) = 5og w0

i=1,...,N.

Further we shall omit the argument ¢ in some notations. Let us put

M
S(t,y)=uHrﬂ”u(.t.f—.m)+~-2-1(3,f—y1)2 for y < y1; (12)

2 fory > yn. (13)

S(t,y) = un + mn(y - yn) + %(ﬂ - YN)
We can write for y € [yi,i+1], 1 =1,..., N — 1 according to [5]:
S(t,y) = ui(l = A)(1+24)) + w1 A3 - 24,) +

hmiAi(1 = A)? — hmi A2 - A)),

where A; = ™! - (y — yi).
In conditions of a continuity of the spline first derivative [5]

(14)

Uy —u; h
2 =3 - =
my + my h 2M1,
mi—1+4mi+ miyyy = 3’t£§+1 ;ug-l, i=2,...,N-1,
—un_ h
my-1+2my = 3=y huN Ly EMNa

my — MmN~
y My = ———

linear algebraic equa.tions for every t:

We demand S(t y satisfy equation (8) on every 1nterval [tsytssr),
s=0,...,K-1, a.t the grid points y;(t), i = 1,. . Then

ma — My

we put M; = . Then we obtain the system of
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M= L (du.- of ab 8% ) —me

m dt + B_y(y") + flyi)mi — 23.;(.‘!:‘)"“:‘ - é*y'i(y;) m;°.

If we substitute M; into conditions of a continuity of the spline sec-
ond derivative [5], then, after simple transformations, we obtain the sys-
tem of ordinary differential equations on each of the intervals [t,,,41),
§=0,..., -1

du 3 3
o = oBCu+Du+ 2B a+26+7-4, (16)
where B = DA™Y, D = diag(b(y1), b(y2), . . ., b(yn)),
1 0.5 -1 1
0.5 2 0.5 : 1 -2 1
A= el e, T ’ C= e, e, .. )
0.5 2 0.5 1 -2 1
05 1 1 -1
du du
_ T ot 1
‘u—[u]_,...,UN] ) dt [ ]
ab ab T
a= [f(yl)ml? .. -af(yN)mN]T'l ﬂ = [ay (yl)ml, .- 3 (yN)mN] )
% _of of T
[ay (yl)i :a 2 yN)] 6= ay (yl)‘l By (yN)] 1
8 = [-my,0,...,0,my]T, w=[m,..., m&".

The numerical solution of (8)-(10) will be performed by the following
scheme.

0. Let s = 0. Calculate the mean e(0) and the variance v(0) of the
random variable yo. By formulae (11) find the values of the grid points
¥i = ¥i(0),i=1,..., N. Calculate the initial values of the spline and
its derivative:

(lnpo)( %),

=lInpo(y:), mi=

1. By using the initial values u; and m;, i = 1,..., N calculate the solu-
tion of (16) at the point ¢ = t,4; by any numerical method [1].

2. Check the execution of normalization (6), calculate

YR h N-1
I'= | "expS(r,y)dy~ 3 3 exp(u;) +exp(uiy1).
=1

vL
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In the case of a considerable violation of normalization (6) (e, I #1)
we need to increase the number of grid points N or to decrease the
stepsize from ¢, to ¢,41. If the normalization is sufficient, then we can
find p(t3+1 ’ y) = eXp S(ts-i—ls y)'

3. Calculate the mean e(t,4,) and the variance v(t,4;):

p V-1
e(tst1) =~ ) D viexp(ui) + Yig1 exp(uit),

i=1

N-1
V(tepr) ~ 52’— > (i~ e(to1))” exp(us) + (Wig1 — e(tor1))” exp(uig).

i=1

By formulae (11) find the values of the new grid points y;, i = 1,..., N
att = t3+1.

4. Calculate the values of the spline on the new grid by using the formulae
(12), (13) and (14). Find the values of the spline derivative on the new
grid by solving (15). Increase s by 1. Switch to the calculation of the
density at the next time point by using the received values u;, m;,
¢=1,..., N as the initial ones (i.e., switch to item 1).

Now we suggest the results of numerical calculations of a solution of
the Focker-Plank-Kolmogorov equation for two SDE in the sense of Ito [1].
In tests the number of grid points N = 20 and C = 3 in formulae (11).
A numerical solution of ODE system (16) was made by the explicit Euler
method with the stepsize 103,

1) dy=-(y-1)dt+2ydu(t), te[o,1], (17)

where yo is the normal random variable with the mean 2 and the variance
0.25. For this equation y; = 0, ygr = +00. A solution of SDE (17) has an
exponential stationary distribution with the density ply) =e¥, y>0.

Figure 1 shows a dynamics of a transformation on the whole time interval
of the calculated density p(t,y) from the normal density at the begining to
the exponential one at the end.

2) dy=—(y—0.5)dt+/y(1 — y)dw(t), telo, 1], (18)

where yo is the normal random variable with the mean 0.5 and the variance
0.0225. For this equation y;, = 0, yg = 1. A solution of SDE (18) has a
uniform stationary distribution with the density ply)=1,0<y< 1.

Figure 2 shows a dynamics of a transformation on the whole time interval
of the calculated density p(t, y) from the normal density at the begining to
the uniform one at the end.
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Figure 1. Solution of Focker-Plank-Kolmogorov equation for SDE (17)
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Figure 2. Solution of Focker-Plank-Kolmogorov equation for SDE (18)
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