Joint NCC' & 11§ Bull., Comp. Science, 4 (1996), 17-26
© 1996 NCC Publisher

On parallelization of new algorithm
for solving systems of linear equations*

M. Balandin, O. Chernyshev, E. Shurina, A. Vazhenin

Solving of large-scale systems of linear algebraic equations, ill-conditioned and
non-square systems requires special algorithms which should be suitable for effec-
tive implementation in modern multi-processor systems. One of such methods was
proposed by A.A. Abramov. This approach is based on consequential projecting of
solution to a system of ortogonal vectors that are chosen by such mean that projec-
tions can be easily found. In this paper we discuss the main features and possible
modifications of the Abramov method from the viewpoint of effective parallel im-
plementation. The parallel Abramov algorithm and some results of its testing are
also presented.

1. Introduction

Solving of large-scale systems of linear algebraic equations (SLAE), ill-
conditioned and non-square SLAEs requires special algorithms which should
be implemented in modern multi-processor computers. One of such methods
is the one proposed by A.A. Abramov in [1, 2]. Thus, we shall name it the
Abramov method (AM). This approach is based on consequential pro jecting
of solution to some system of orthogonal vectors which are chosen by such
"“mean that projections can be easily found. Note also, that this approach
belongs to a class of conjugative directions methods [3]. Such methods pro-
vide an ability to obtain solution with a number of iterations less or equal
than the size of SLAE having the square matrix. The AM also allows this
ability giving fixed precision of solution. .

The AM-algorithm can be defined by choosing coefficients for construct-
ing linear combination from SLAE equations. For example, when we choose.
these coefficients as components of the right part vector, then an iterative
method will be obtained. On the other hand, if we use a set of unit vectors,
then we will have a direct algorithm.

In this paper we discuss the main features and possible modifications
of the Abramov method from the viewpoint of effective parallel implemen-
tation. The parallel AM-algorithm and some results of its testing are also
presented.

*Supported in part by the Russian Foundation for Basic Research under Grants
95-01-0135 and 96-01-01557.

18 M. Balandin, Q. Chernyshev, E. Shurina, A. Vazhenin

2. General notes
We consider the system of linear equations
Az = b, (1)

where A is n x m matrix, b and & are n x 1 and m X 1 vectors respectively.
We shall denote rows of A as a1, az,...,a,. Evidently, each vector a; has
dimension 1 x m.

Let us search solution z in subspace S defined by vectors ay, ag,...,a,
as their linear shell of 2 € S = L(ay,...,a,). If A is a square matrix of full
rank, then S will equal to R™.

From n equations of initial system (1) we can construct a linear combi-
nation in which the i-th equation is included with the coefficient of b;. It is
similar to multiplication of the initial system (1) to vector b by

d'z = s (2)

where
dT =bT4, ¢ =bTb. (3)

The solution of z must satisfy to (2). This allows to find a projection of
z to one-dimensional subspace defined by vector d. Let z = z4 + z);, where
4 is projection to be found, and a component of z’; is ortogonal to z4. It
is evidently that z4 = vd and d”z’, = 0. Then we have

dTz = @ = dT(wd +2)) = dlzy = ~dTd.

Therefore,
®

m

Projection has been found. Now we decompose S as § = L(d)&® S’ and
in the next steps we shall take directions for projecting from S’.

To reduce S to S’ (dim S’ = dim S — 1), we shall orthogonalize each of
@1, ..,an vectors to the vector d and obtain vectors ay, ..., a, forming the
matrix of A. To save the solution of system (1), it is necessary to i.nplement
similar transformations of the right part vector b.to vector b.

v= p=dTd. (4)

Therefore, for i = 1,2,...,n we shall execute the following transforma-
tions:

a; = a; — a;dT, (5)

5,‘ = bi - Q. (6)

Coefficients «; can be defined from condition a;d = 0 by a,d = 0 =
(a; — dT)d = a;d ~ o;dTd. Therefore,

On parallelization of new algorithm for solving systems 19

o = i‘f o

Implementing the similar calculations for the matrix A, right part b and
subspace S’, we can obtain new direction d and projection of solution to
d, reduce S’ to S”, etc. The subspace S has a dimension not greater than
n. Therefore, we can select only < n ortogonal vectors of d, and the total
number of similar iterations is < n. Moreover, we can found a number of
iterations by r = rang(S). The sum of projections found is the solution z
of (1).

Process must be stopped when ||d|| < e. Because ||d|| is defined by vector
b, i.e.,

lld]| = [1b1a1 + b2a2 + . .. + bnanl < [ba] [lasl| + - .- + [bn] [|an]l,

condition ||b]| < & (recommended in [1]) can be also used.
According to (2)—(7), we can describe the AM-algorithm as follows:

A=A, =0,

= (AT, o= OO, pe= @Td, S =P)
k

g _ afd okt = oF(diT k+1 k k . T

ai:'—;b?'i a; (d) ’ bi =bi“ai¢k1 1=1

Stop when (b?)T6? < 8, p < n. The result is z = z! + z2 + ... + z?.
This method can be decsribed in terms of vectors and matrix opera-
tions. We denote as & vector composed orthogonalizing coeﬂi(:lents o=

[@1, @2, ..., a,]T. Then (5), (6) equal to:
A= A-ad, (9)
b=b-—ap. (10)

Taking into account (2}, (4) and (7) we can define o; = ﬁ‘:—Arj};- There-
fore,

1 7
& = g AATH.)
When substitute (8) and (2) we get:
A — TppT T, T
A=a- bTAATbAA b7 A= (I, - bTAATbAA 57) A,
Foop L ATy 1 Ty T
b= b s AATOVb = (I — e AATENT)0,

20 M. Balandin, O. Chernyshev, E. Shurina, A. Vazhenin

Denoting
7 _ 1 T, T
D=1, —bTAATbAA bb-, (12)
we can write:
A = DA, (13)
b = Db. (14)

Analogously, substituting (2) and (4) in z4 = vd, we find
bTh

— T
T4 = bTAATbA b. (15)
Then in terms of vectors and matrices the AM-algorithm is as follows:
A=A, =0,
kYT pk
kb1 _ _ (0%)7b kT pk
= (A%)" 0%k,
bRVT Ak (AR\T pk
W7 AL -
k ki ARNT pk(pk\T
=1, - b)",
D (bk)TAk(Ak)TbkA (A) b ()

Ak+1 — DkAk, bk+l — Dkbk,

Stop when (5P)Th? < &, p < n, The result is = 2! + 22 + ...+ aP.

3. Merits and deficiencies

Most evident merit of the AM is universality that allows to solve any SLAEs
(with only condition that they have solution). Except this, method does not
require initial value for z. The main deficiency is necessity to recalculate
extended matrix of system at each iteration. This property firstly required
additional time and secondly does not allow to operate with matrices stored
in sparse formats (or makes such work very difficult). Time-expenses can
be compensated by using computing systems, but work with sparse ma-
trices seems very problematic (because it requires transferring of memory
fragments and/or special searching algorithms).

We want to pay attention to one property of the AM that can be im-
portant when implementing this method. Direct using of formulas of (8) on
initial iterations can results in growth of |¢|. For example, for very simple
system

2.’61 + 10.’1.‘2 1 Ty = 13,

100z; + Tzz = 107, (17
4z + 32 + 921 16,

Il

On parallelization of new algorithm for solving systems 21

having solution z; = 23 = z3 = 1 formulas of (8) on first iteration, give
d' = (1079,178,906)7 and ¢ = 117276620, i.e., ¥ has 8-th order although
maximal element of matrix — only 2-nd. Since 1 is used as divisor, its big
order can result in lost of accuracy.

This disadvantage can be avoided using other coefficients (see Section 4)
or scaling (i.e., dividing every row on appropriately chosen number).

Each component of d* is formed as sum of a,'-‘jbf by i. Number %* is sum

of squares of components of d*. So that scaling can be used for rows which
satisfy to the following criteria

max_(a5bF)? > M (o, = b),

j=1,m+1 Wt
or
max _|af;b5| > VM. (18)
j=1,m+1

Here M is a constant defined by maximal absolute real value in computa-
tional system.

Scaling coefficient must be chosen so that it does not result in lost of
order for least numbers in row. This value can be chosen as

1 . k
5(max |af|+ min |a5]) (akny, =05).
1=1,m+1 1=1,m+1

After scaling system (11) will be changed to system

22, 4+ 1022 + 3 = 13,
1.862z, + 0.1308z3 = 2, (19)
4z, + 3292+ 923 = 16.

For (11) d" = (83.7384; 178; 157.26616) and ¥, = 63427.3305.

4. Parallel implementation of Abramov’s
method

Properties of method do not allow to calculate z*'s independently because
after each iteration recalculation of matrix is required.” So that we can
parallelize only calculation of every z*. In the next section we shall consider
possibilities of parallelization of other modifications of method.

On each iteration of the AM main computational work is to recalculate
extended matrix of system. In this procedure each row is recalculated in-
dependently but orthogonalizing vector is common for all rows. It suggests

22 M. Balandin, O. Chernyshev, E. Shurina, A. Vazhenin

that method can be parallelized by decomposition of matrix A to Np subma-
trices each containing N; rows (Ny+ Ny +.. .+ Npnp = n) and vector b to Np
subvectors with dimensions N;. To provide good load-balancing it is suitable
to chose IV; as close as possible to n/Np. Each subsystem Az = b(;) can be
worked out on one processor. Since vector z does not directly participates
in computations, it can be stored only at one computational node. On the
same node vector d* composed by components dt.) = (A’("l-)}Tbﬁ) must be
collected and then sent to all other nodes (d is need to recalculate all Agy’s
and b(;’s). For computations organized by such mean the most suitable
topology of processors network is "star”. For this topology, the central node
is connected to each other, but every peripheral node is connected only to
central one.

Assuming that data was distributed as described above, in accordance
to formulas of 8 we can write parallel algorithm as follows (MASTER means
central node, SLAVE means peripheral one).

MASTER
1. Initialization k = 1; Af,) = Ag); bf;) = bgy)-
2. [Scaling Af;and by)-
: ko — (pk\Thk
3. Find ¢, = (b(i)) b(i).

Np
4. Collect cpﬁ.) from all SLAVEs and find sum ¢* = ¥ gof‘-).
=1

5. Send ¢* to all SLAVES.
-1 i
6. If o* < § STOP. Resultis z = Y .

=1

k
. k Lk
7. Find d(,‘) = ng b(i)ia(")j'

Np
8. Collect dﬁ-) from all SLAVEs and find sum ¢* = ¥ d‘ﬁ-).
1=1
9. Send d* to all SLAVEs.
10. Find y* = (d¥)Tq*.
11. Find o* = £d*.

12. For j =1, N; do:
1
ko _ k gk, _k+1 _ k k kT, pk+1 _ pk k k
@@y = gre0sd ;= ams ()5 BT = by — o

13. k:=k+ 1. Go to step 2.

On parallelization of new algorithm for solving systems 23

SLAVE
Initialization k = 1; Aﬁ-) = Agy; bﬁ} = b(,-)'.
[Scaling Ai“-)and bfi)].
Find ;) = (bf;))70f;)-
Send ‘P?i) to MASTER.
Recieve ¢* from MASTER.

Al o A

k=1
6. If o*¥ < 6 STOP. Result is z = ¥ z7.
=1

N;
. E_ k ak
7. Flﬂd d(,) - ng b(l}Ja(‘)J

8. Send df;) to MASTER.

9. Recieve d* from MASTER.
10. Find ¢* = (d*)Td*.

11. For j =1, N; do:

1
ko _ k k., _k+1 _ _k k kT, pk+l _ 1k k k
@i = gEA@i4 0@, = %~ @i)T b = s — e

12. k:=k + 1. Go to step 2.

In this algorithm square brackets [] mean optional step.
. One can see that all nodes perform similar calculation except central
which also collects ¥, d¥ and calculates projections of solution to d*’s.
It is easy to estimate the volume of communications for presented al-
gorithm. At each iteration MASTER and SLAVE exchange by two real
numbers ((,of'-) and ¢¥). Then SLAVE sends n real numbers (vector dfi]) and

receives also n (vector d*). Let v be a size of real number (in bytes), then
at one iteration communication volume for each connection is equal to

(2+ 2n)v bytes.

Multiplying this number to (Np — 1) connections, we find that total
volume at one iteration is

2(Np—1)(n + 1)v bytes. _ (20)

Knowing communication speed for connection and using (14), we can
estimate required time.

24 M. Balandin, O. Chernyshev, E. Shurina, A. Vazhenin

5. Possible modifications

In described variant of the AM current direction for projecting is chosen
as linear combination of matrix rows with multiplier equal to coefficients of
right part. It is evidently that in general case we can choose these multipliers
arbitrary:

de =¥ (21)

where
d" = fT4, o= fT. (22)

Of course, vector f with dimensions n x 1 must provides condition
lld|| # 0, when dim S > 0.

The most simple case is consequential using of vectors from set
{e1,€2,...,e,}, where ¢; = (01,09,...,0,_1,1; 0;41,...,0,)T. Choosing
f = e; we can see that dTz = ¢ is equal to J-th equation of system 1,
Le., ajz = b;.

Hence, in this case calculation of d and ¢ is not required. Moreover,
orthogonalization of j-th row to itself leads to zero result, so that at next
iterations we can except it from system. By this mean, number of rows
to be recalculated at next iteration is reduced by 1. The iterative method
becomes direct one and a number of row recalculations equals to

1
n-[-(n—1)+(n—2)+...+2:§(n+2)(n—1), (23)
instead of n%. But we have to check each equation for condition [1d]1* + ©? >
€, or, the same

aja; +b2 >e. (24)

Parallel implementation of such variant with using described above al-
gorithm is available but leads to many superfluous communications (when
all rows of A have been zeroised it becomes unnecessary). We can present
the following scheme for “pipeline” topology.

Data distribution among nodes is the same as was described in previous
section. We start calculation from the left side of pipeline. Leftmost proces-
sor takes first row of its submatrix, sends it (with according coefficient of b)
to the right and starts to ortogonalize other rows. Then it finds projection of
solution and adds to x vector (that is initially equal to zero). Each node on
the right from the current one receives the direction vector and sends it to
the right neighbor then recalculates its own submatrix. Leftmost processor
works out 2nd 3rd etc rows of its submatrix analogously. When all rows
exhausted, leftmost processor sends to the right collected z = 21 4+...4+ 2™
and release itself. Second from left processor works by the same mean and
so on. When calculations on rightmost node will be finished, its vector z is
a result.

On parallelization of new algorithm for solving systems 25

6. Conclusions

To practically investigate Abramov’s method (in variant described in [1]),
the program was developed for the Power X’plorer computer of PARSYTEC.
This system consists of the Sun-5 computer as a host and 8 processor
nodes. Each node contains transputer of T820 (for communication) and
the PowerPC-601 processor. As the tests we used a set of matrices: non-
square — both not fully defined and over-defined, and square — both badly
conditioned and of deficient rank (see [4]).

Results we got show that the AM gives general solution with high pre- .
cision for r = rang(S) or less iterations. The hypothesis about growth of
1 was confirmed but we found that it does not influence on solution. Also
we found that using of condition ||d*|| < & as criteria of completion is not
enough. There is a big possibility of situation when @) = ||b¥]| > 0, but
||d¥|| =~ 0. In some tasks it led to overflows and abnormal terminations. Be-
sides, there were cases when application of AM for solving two systems with
the same matrix and right parts which were different (but not significantly)
gave correct solution for one system and overflow for other. Using additional
criteria ||d¥|| < ¢ allowed to avoid such situations and, when program was
modified, we got right results.

As case of ill-conditioned systems we used the Gilbert matrices with co-
efficients defined as a;; = ; _'_; T of size in range 10x10 to 50x50. Con-
sequentially 1, 2 and 4 processors had been used. Exact solution was
z = (1,1,...,1)T. The results achieved are the following. Speed of solution
for all numbers of processors was very fast. Therefore, the execution time
could not be measured exactly by usual means (we obtained values less than
one, one, and two seconds). For matrix 50x50 with € = § = 10715 we got
the solution after 8 iterations with precision 103, and with ¢ = § = 10730
- after 12 iterations with precision 10~°. To measure speedup exactly very
large systems must be used that will be the next step of our work.

In the nearest future we suppose to investigate variants of AM with
arbitrary-chosen coefficients of f and select most suitable scaling procedure.
Also we are going to create version of program implementing the AM which

uses SPARTH library (see [5]) supporting the parallel computations with an
arbitrary precision.

References

[1] A.A. Abramov, On one method for solving ill-conditioned systems of linear
algebraic equations, Journal of Computational Mathematics and Mathematical
Physics, 30, No. 4, 1991, 483-491 (in Russian).

26 M. Balandin, O. Chernyshev, E. Shurina, A. Vazhenin

(2] A.A. Abramov, On features of Kreyg’s method for solving linear ill-conditioned
problems, Journal of Computational Mathematics and Mathematical Physics,
35, No. 1, 1995, 144-150 (in Russian).

[3] James M. Ortega, Introduction to Parallel and Vector Solution of Linear Sys-
tems, Plenum Press, New York, 1988.

[4] V.N. Faddeeva, L.J. Kolotilina, Computational Methods of Linear Algebra. Set
of matrices for testing, Materials on Software, Leningrad, 1982 (in Russian).

[5] A. Vazhenin, Efficient high-accuracy computations in massively parallel sys-
tems, Proc. ”Workshop on Parallel Scientific Computing PARA94-L”, 1994,
Lyngby, Denmark. Springer-Verlag, 1994, Lecture Notes in Computer Science,
879, 505-519.

