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Simulation performance versus stochasticity in
large-scale cellular automata models

Olga Bandman

Abstract. Due to a growing interest in chemical and biological phenomena, sim-
ulation of reaction-diffusion processes on micro-level becomes urgently wanted.
Asynchronous cellular automata are promising mathematical models to be used
as a base for creating computer simulation systems, which gives reason for the
investigation of their capability. In particular, since the micro-level simulation
requires a very large size of cellular automata, the performance of simulation is
important, especially, because parallel implementation is inevitable. In this con-
nection, the dependence of simulation performance on the CA stochasticity (the
degree of randomness) is studied in this paper. Much attention is being given to
the contradiction between the stochasticity and the parallelization efficiency. It is
shown how the proper choice of the CA stochasticity may help to achieve the ac-
ceptable performance. The results of a 3D process of diffusion limited aggregation
are presented to assert the dependencies obtained.

1. Introduction

Due to availability of huge computational power, the simulation becomes
an essential part both in scientific investigations and in the new technolo-
gies design. Meanwhile, conventional mathematical models, based on the
differential calculus, are sometimes not capable of simulating nonlinear, dis-
sipative processes on micro- or nano-level of resolution, which is requested in
many chemical, biological and microelectronic investigations. A large class
of such tasks deals with “reaction–diffusion” processes and, accordingly, they
are represented by “reaction–diffusion” (RD) models. In continuous math-
ematics such models are given by parabolic partial differential equations,
usually having nonlinear reaction terms. Numerical solution of such a kind
of equations requires some transformations to be done for obtaining a lin-

Figure 1. Comparison of approximations in PDE numerical solutions process and
in cellular automata evolution computation
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Figure 2. Contradictions between conventional mathematics and
supercomputer architecture properties

ear approximation, and overcoming difficulties when carrying out parallel
implementation (Figure 1).

Problems arise from the incompatibility between continuous mathemat-
ical models intended for a sequential solution, on the one hand, and discrete
data and parallel operations on modern computers, on the other hand (Fig-
ure 2). These contradictions stimulate the development of new approaches
to spatial dynamics modeling [1], which are based on the following principles:

• time, space, and variables should be integers (including Boolean), real
numbers allowed only for computing auxiliary values (probabilities,
conditions);

• all time-independent operations should be explicitly expressed in the
model;

• a computer-simulated algorithm should allow for visualization of the
resulting spatial function in real time.

Among the existing computer simulation methodologies of reaction–dif-
fusion phenomena completely or partly based on the above statements, the
following methods are most known: kinetic Monte Carlo methods in chem-
istry [2, 3] and in microelectronics [4], probabilistic cellular automata in
material science [5–7], self-organizing CA in biology [8, 9]. Actually, all of
them may be considered as asynchronous cellular automata [10] simulating
phenomena which are composed of movements and transformations [11] of a
certain kind of micro-entities, such as molecules or nano particles either real
or abstract. Accordingly, a model should consist of a number of simple local
operators being applied to randomly chosen sites of discrete space. Organi-
zation of particles interactions in space and time (the operation model) is not
necessarily completely asynchronous. Particularly, it may be characterized
by a balance between deterministic and random parts of computation [12].
Since the simulation is usually aimed at studying an unknown mechanism
of substance behavior, it may be supposed that the introduction of a certain
determinism may be admissible, because it reduces the computation time
both in sequential and in parallel implementation. This paper is aimed at
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clarifying how the ratio of deterministic to stochastic operations influence
the performance of the reaction-diffusion computer simulation, especially, in
the case of parallel implementation.

This paper is organized as follows. The next section deals with formal
definitions and formal problem statements. In the third section, the notion
of stochasticity is introduced, and the impact of CA stochasticity on com-
putation time is studied. The fourth section concerns to the dependence of
parallel implementation efficiency on the CA stochasticity. The simulation
results of parallel implementation of 3D diffusion limited aggregation are
presented to give an impression of real efficiency values.

2. Cellular automata formal representation

2.1. The main definitions. A classical CA [13] is usually defined by a
triple

ℵ = 〈A,X, θ(x)〉, (1)

where A = {0, 1} is a Boolean state alphabet, X = {xi : i = 0, 1, . . .}
is a set of cell names, a cell being a pair (a,x), a ∈ A, x ∈ X, and a
set of cells Ω = {(ai,xi) : i = 0, 1, . . . , |X|} being called a cellular array ;
θ(x) is a transition rule, usually given as a Boolean function of the state
neighborhood of a cell named x ∈ X. A transition rule θ(x) is represented
in the form of the substitution

θ(x) : S(x)
cond−−−→ S′(x), (2)

where S(x) = (u0, . . . , un) and S′(x) = (v0, . . . , vm), u, v ∈ A, m ≤ n, are
local configurations expressed as vectors of cell states in the vicinity of x
defined by its underlying template T (x), ”cond” is an external condition of
the substitution applicability,

T (x) = {x,x+ d1, . . . ,x+ dn−1}, (3)

where dj is a shift distance in the naming space, such that the cell (x+ dj)
has the state uj . A maximum value of all dj , j = 1, . . . , n− 1, is referred to
as template radius R(T ). The underlying templates T (x) and T ′(x) of the
local configurations S(x) and S′(x), respectively, are in the following ratio:

T ′(x) ⊆ T (x). (4)

Substitution (2) is applicable to a cell x if the following condition is satisfied:

(S(x) ⊂ Ω(t)) & (cond = true). (5)

Application of θ(x) to x ∈ X yields in substituting the first m com-
ponents (u0, . . . , um−1) of S(x) in (2) for the corresponding state values
(u′0, . . . , u

′
m−1) of S′(x), m = |T ′(x)|, u′j being values of the transition func-

tions
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u′j = fj(u0, . . . , un). (6)

Transition functions may be of any type: constant, arithmetic, or threshold.
The only requirement is that the value should remain in A.

Given an initial cellular array Ω(0) = {(ai,xi) : ai ∈ A, xi ∈ X}, the
CA starts to evolute. The evolution

Σ = Ω(0), . . . ,Ω(t),Ω(t+ 1), . . .

is an iterative process, where each iteration is a transition from Ω(t) to
Ω(t+ 1) resulting from application θ(x) to all xi ∈ X, which is defined as a
global operator θ(X).

For providing functioning correctness, θ(X) should satisfy the following
condition: no pair of substitution application should aim at adjusting the
same cell at the same time, i.e.,

T ′(x) ∩ T ′(y) = ∅ ∀x,y ∈ X, x 6= y, (7)

where T ′(x) and T ′(y) are underlying templates for the right-hand sides of
(2) in θ(x) and θ(y).

2.2. Modes of operation. The process of global operator execution trans-
ferring Ω(t) into Ω(t + 1) may be organized in different ways called modes
of operation and labeled further by the index ρ. The following modes are
mainly used in the CA simulation.

Synchronous mode σ prescribes the following actions to be done to ex-
ecute θ(X):

1. The next states u′ of all x ∈ X are computed in any order according
to (6) and saved in an additional array Ω′(t);

2. All cells at once are adjusted by replacing Ω′(t) by Ω(t+ 1).

Classical CA are synchronous. The reason is that synchronous computa-
tions are well organized and fit the synchronous way of computer operation.
In synchronous CA, the correctness condition (7) is satisfied, when each
substitution application adjusts a single cell, i.e.

|T ′j(x)| ≤ 1, (8)

where T ′j is the underlying template of S′(x) of θ(x) in (2). This yields a
strong constraint in the CA synthesis process, but simplifies parallel imple-
mentation of a large-scale CA on a cluster.
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Asynchronous mode α is used when a natural phenomenon on micro or
nano level is under simulation, the α-mode offers the following algorithm of
a global operator application:

1. A cell x ∈ X is chosen with probability p = 1/N , N = |X|;
2. If the condition of its applicability (5) is satisfied, θi(x) is applied to x,

adjusting the cell states from T ′i (x) immediately;

3. The global operator is considered to be executed, when Steps 1 and 2
are applied |X| times, completing the tth iteration.

In reality, the asynchronous computation process is not divided into itera-
tions, the notion of iteration is accepted conditionally for making the com-
parison with synchronous case more conceptual. Since asynchronous com-
putation is by definition sequential, it is always correct when implemented
on a single computer. The problem arises when it is allocated on a parallel
computer system. In this case the block-synchronous mode should be used.

Block-synchronous mode β combines synchronous and asynchronous
modes as a single algorithm of the global operator execution by representing
the iteration as a number of sequential synchronous stages, with a random
choice of a state to be executed. The β-mode was introduced in [14] to make
the asynchronous CA parallelization efficiency be more acceptable relying
on the fact that the synchronous CA parallelization is efficient, which is in
contrast to the asynchronous case.

The block-synchronous mode is based on constructing a partition Π =
{Π1, . . . ,Πm} of X, as follows:

1. A block B(x) containing m adjacent cells is chosen, such that

|B(x)| = m, B(x) ⊇ T ′(x); (9)

2. A partition Γ = {B(x1), . . . , B(xM )} is constructed having M = N/m
congruent blocks B(xi), such that for all i, j ∈ {1, . . . ,M}

∀(i 6= j) : B(xi) ∩B(xj) = ∅,
M⋃
i=1

B(xi) = X; (10)

3. A partition Π = {Π1, . . . ,Πm} orthogonal to Γ is determined, con-
taining the subsets, that being processed synchronously in any order,
execute the computation of θ(X) correctly.

The correctness of β-mode results from the following property of the orthog-
onal partitions Γ and Π:
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|Πk(x) ∩Bj(x)| = 1, k = 1, . . . ,m, j = 1, . . . ,M, (11)

which provides that any pair of cells (xi,xj) belonging to one and the same
Π is separated by the distance dij > R(T ), hence, can be updated simulta-
neously, i.e. synchronously, without violating (7).

Investigation of computational properties of block-synchronous CA [15,
16] has shown that block-synchronous CA are significantly less time con-
suming than asynchronous CA, enhancing their use in sequential cases as
well. The gain in time is due to the difference in random generator calls
numbers, which are in α-case and in β-case as follows:

ERG,α = N, ERG,β = m. (12)

Taking into account the fact that the time of a RG call may be two or
three orders more than that needed for a substitution application, savings
in computer time with β-mode may be significant.

3. Complex cellular automata models

3.1. A composed global operator of a complex CA. A classical con-
ception of CA is unconvincing to be used for simulating complex phenomena,
particularly, reaction–diffusion processes because of the following reasons:

In complex processes, several species are involved. Hence, the CA al-
phabet (usually a symbolic one) should be expanded, and the global opera-
tor Θ(X) should be composed of several substitutions, being referred to as
θ-composition. Accordingly, a CA with a complex Θ(X) is called the com-
plex CA, otherwise it is called the simple CA. Reaction–diffusion CA are
always complex ones, containing at least two substitutions: θreac and θdiff .

The behavior of natural phenomena is usually completely or partly
stochastic both with respect to time and space. In fact, it is not known
exactly how the process of particles interactions proceeds in a natural phe-
nomenon. Hence, when designing a CA-model, the researcher should have
the opportunity to use different types of θ-composition and chose the most
plausible one.

A formal representation of a complex CA is similar to the classical one,
differing in interpretation of two concepts of (1). Namely, an alphabet is
allowed to contain several integers and symbols, and the algorithm of com-
puting the transition to a next iteration, referred to as global mode of op-
eration is defined not only with ρ ∈ {α, β, σ} determining the way of cell
choosing to be updated, but also by θ-composition indexed by µ ∈ {δ, γ},
which indicates to the way of choosing θ ∈ Θ that may be deterministic (δ)
or random (γ),
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Θ(X) = Φρ,µ(θ1(x), . . . , θn(x)). (13)

The following types of the global mode of operation are mainly used.

Stochastic global mode Φα,γ is in wide use, being the idealization of
a maximally randomized representation of the particles behavior on micro
level. In [3], they are called Monte Carlo simulation method; in [11], they
form a class of stochastic CA. A global operator of such a CA is computed
as follows.

1. A cell x ∈ X is chosen with probability p = 1/|X|;
2. A substitution θj ∈ Θ, j = 1, . . . , n, is randomly determined according

to the probabilities pj , computed using the θ intensities r1, . . . , rn as
follows:

pj =
rj

r1 + . . .+ rn
, (14)

and immediately applied to x with probability pj ;

3. Every iteration consists of |X|×|Θ| = Nn repetitions of Steps 1 and 2.

Block-synchronous stochastic mode Φβ,γ is used in large-scale CA to
be implemented on a supercomputing cluster, or, sometimes, when comput-
ing time is wanted to be reduced. The computation of Θ(X) is performed
as follows:

1. A block B(x) containing m adjacent cells is chosen, such that

B(x) ⊇ T ′Σ(x), T ′Σ(x) =
n⋃
i=1

T ′j , j = 1, . . . , n, (15)

where T ′j is the underlying template of θj ∈ Θ;

2. The partitions Γ = {B(x1), . . . B(xM )} and orthogonal to it Π =
{Π1, . . . ,Πm} are constructed according to (10);

3. At each subset Πi, i = 1, . . . , |M |, for all cells x ∈ Π, the following is
done n times: a substitution is chosen according to probabilities (14)
and is immediately executed.

Sequential global mode Φσ,µ is a superposition of global operators of
simple θj(X), each of them operating in its own mode, i.e.,

Θ(X) = θn,ρn(θn−1,ρn−1(. . . θ1,ρ1(X))). (16)

Here θj,ρj , j = 1, . . . , n, are chosen in a deterministic order, while each of
them operates as a simple global operator in its own mode of operation ρj .
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3.2. The concept of CA stochasticity. For investigating the interde-
pendence between the stochastic character of a CA behavior and its simu-
lation performance, a quantitative measure of CA stochasticity is essential.
To introduce the concept, let us denote the total number of elementary op-
erations per iteration as E, the number of randomly chosen operations–– as
Erand and the number of deterministic operations –– as Edet = E − Erand.
An operation is considered to be randomly chosen if its application requires
access to a random number generator (RNG). So, the asynchronous choice
of a cell x ∈ X is a randomly chosen operation, no matter how many ran-
dom numbers are used for obtaining x, since x may be represented by two
or three coordinates in a discrete space. A randomly chosen substitution
θj ∈ Θ is also a randomly chosen operation. However, the deterministic
application of a probabilistic θ is not randomly chosen, although it requires
the use of RNG.

Let us define a stochasticity λ as a fraction of randomly chosen operations
in computing Θ(X), λ = Erand/E.

Stochasticity depends both on the mode of CA operation (ρ) and on
the type of θ-composition (µ). In a simple asynchronous CA ℵα the total
number of operations per iteration is Eα = 2N , N = |X|, because there is N
applications of θ to N randomly chosen cells. Hence, Eα,rand = Eα,det = N .
In a simple block-synchronous CA ℵβ, Eβ = N +mM = 2N , including only
m randomly chosen operations.

Hence, stochasticity of all types of simple CA are as follows:

λα =
1

2
, λβ =

m

2N
, λσ = 0. (17)

From the the definitions of global operator modes, given in Section 3.1,
the stochasticity of all type of complex CA are easily obtained.

For Φα,γ random choice of x ∈ X and random choice of θj ∈ Θ, j =
1, . . . , n, are done n = |X|×|Θ| times plus the same quantity of deterministic
θ- applications, which comprises the total number of operations E = 2Nn,
a half of them being randomly chosen.

For Φβ,γ , the total number of operations is also E = 2Mmn = 2Nn,
among them Erand = mn are randomly chosen, yielding λβ,γ = 1/2M =
m/2N .

For sequential global mode Φρ,δ, the stochasticity is calculated as a sum
of λj of all simple θj,ρj (X). Particularly, when all θj,ρj (X) are asynchronous,
λα,δ = n/2.

Hence, stochasticity of all types of complex CA is as follows:

λα,γ =
1

2
, λβ,γ =

m

2N
, λρ,δ =

n∑
j=1

λ(θj,ρj ). (18)
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4. Parallel implementation of complex CA

4.1. Parallelization efficiency via stochasticity. Parrallel implemen-
tation of cellular automata models are based on the domain decomposition
method, which consists of dividing the cellular array Ω into N parts, referred
to as subdomains, Ω = ω0∪ . . .∪ωN−1, and allocate them onto N processors,
working in parallel. In order to provide interprocessor data exchange the
subdomians have to be supplemented by V peripheral cells, called shadow
cells,

V = 2DRΣH
D−1, (19)

where D ∈ {1, 2, 3} is the domain dimension, R is the united template
radius (15), and H is the linear size of the domain. Let us assess weak
parallelization efficiency as follows:

ηρ,µ =
t1(ω)

tN (Ω)
=

t1(ω)

t1(ω) + lρ,µtexch
, (20)

where tN (Ω) is the time needed for executing one iteration in N subdomains
using N processors (|Ω| = N |ω|), and lρ,µ is the number of data exchanges,
texch is the time needed for transmitting data from one processor to another.
So, lρ,µ causes a decrease in efficiency, being dependent on the global mode
of operation Φρ,µ. According to (7), a simple synchronous CA ℵσ requires
inter-processor data exchange only once per iteration, i.e. lσ = 1. In the
asynchronous case, each peripheral cell adjustment should be transferred
to the adjacent processor immediately (19), hence lα = V , which is abso-
lutely unacceptable, and, hence, β-mode with m exchanges is used instead.
Summarizing, this yields

lσ = 1, lα = V, lβ = m. (21)

From (21) it follows that synchronous CA are ideal for parallel imple-
mentation and asynchronous CA should not be allocated on clusters with-
out transforming into the block-synchronous mode, the block-size m being
the indicator of the balance between stochasticity and parallelization ef-
ficiency. With allowance for (20) it should be stated that parallelization
efficiency may be achieved at the expense of stochasticity. Graphically, it is
represented in Figure 3, where these two characteristics are shown for the
block-synchronous mode depending on m.

When simulating a large-scale complex phenomenon thought of in terms
of several types of particles interacting with different rates asynchronously
in discrete space, the most appropriate model seems to be a stochastic global
mode of operation. But allocating the task on a computer cluster, changes
the preference towards the block-synchronous mode, where the choice of the
block size m is crucial for achieving a proper balance between the process
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Figure 3. The dependence of block-synchronous CA stochasticity
and parallelization efficiency on the number of data exchanges per
iteration. A zone of preferable values of m is shown in dark color

stochasticity and parallelization efficiency. The responsibility for a proper
choice of m is on the model designer, who has to assess the role of stochas-
ticity in the mathematical representation of a phenomenon and to make a
decision.

If the computation time is the most important parameter, then m should
be taken as small as possible, i.e. mmin = |T ′Σ|, its impact to the performance
being two-fold: increasing parallelization efficiency (20) and decreasing the
time for RG calls (12).

4.2. The simulation results. A reaction–diffusion process identified as
Diffusion Limited Aggregation (DLA), hereinafter called aggregation, has
been chosen as an example for the simulation. The process may be described
as a set of organic particles wandering randomly in a reservoir filled with
water. In the reservoir there are also a number of immobile heavy structures
(nuclei) allocated inside the reservoir. When a walking particle occurs close
enough to an immobile one, it becomes immobile as well. The process looks
like a kind of a growing tree, forming a fractal structure (Figure 4).

Figure 4. A snapshot of simulation a 2D version of aggregation process
Φα,γ(θdiff , θstick) initialized by a single nuclei
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There is no continuous function or differential equation representing the
aggregation process. Its first mathematical model has been expressed in
terms of interactions and displacements of particles [17], being then directly
mapped onto a computer. Later on, the process was simulated by a reaction-
diffusion CA, where diffusion is given as a random walk, and reaction — as
transformation of a walking particle to an immobile one (sticking process).
The model is used for simulating a wide range of phase transition processes
such as electric galvanization [18], formation of crystal structure [19], grow-
ing of settlements [20], etc.

The DLA is simulated by a complex CA ℵρ,µ = 〈A,X,Θ(X)〉, where
A = {0, 1, b}, 0 meaning a water cell, 1 –– a cell with a mobile particle, and
b–– a cell with an immobile particle; X = {x}, x = (i, j) for 2D processes,
and x = (i, j, k) for 3D ones; Θ(X) = Φα,γ(θd(x), θr(x)), θd(x) simulating
mobile particles wandering, θr(x) simulating sticking.

The particles wandering process is simulated by a well-known rule of
asynchronous naive diffusion CA [21,22],

θd(x) : {(u0,x+ a0), . . . , (ul,x+ al), . . . , (ud,x+ ad)}
pd−→

{(ul,x+ a0), . . . , (u0,x+ al), . . . , (ud,x+ ad)}, (22)

and the sticking process is simulated by the substitution

θr(x) : {(1,x), (b,x+ al)}
pr−→ {(b,x, )}, (23)

where l ∈ {1, . . . , 2d} is a randomly chosen number, al are orts shifting xl
to its lth neighbor, pd and pr are probabilities of an application θd and θr,
respectively.

A two-dimensional version of the CA with ℵα,γ has been performed
for selecting proper parameters for the large-scale 3D experimental sim-
ulation, namely, probabilities pd and pr, and the initial density D(0) of
mobile particles. As a result, the following parameters have been adopted:
D(0) = 〈u〉t=0 = 0.5, pd = 0.9, pr = 0.1 (see Figure 4).

The 3D large scale computer simulation was carried out on the cellu-
lar array of 1600 × 1600 × 1600 size (Figure 5). The initial global state
Ω(0) = {(u,x) : x ∈ X} contained uniformly distributed “ones” and “ze-
ros”, and 16 nuclei 2 × 2 × 2 cell cubes with u = b. The whole array was
allocated on 64 cores of the cluster, each processing a subdomain having
400 × 400 × 400 cells. To provide data exchange between processes, each
subdomain was enlarged up to 402 × 402 × 402 cells, the added shadow
cells serving for sending-receiving data. The simulation was performed for
the following types of global modes of operation: asynchronous stochas-
tic (Φα,γ), block-synchronous stochastic (Φβ γ) and asynchronous sequential
(Φα,δ). The computation lasted up to t = 10,000 iterations. The time per
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Figure 5. A schematic picture of simulation of 3D diffusion-
limited aggregation initialized by 16 nuclei, the whole task being
allocated in 64 processors

iteration for each case was calculated as an average over the simulation time:
titer = T10000/10000.

The aim of the simulation was twofold:

1. By simulating the process on a single processor (sequentially) to de-
termine what is the difference in the simulation time between asyn-
chronous stochastic mode (γ, α) and block-synchronous stochastic
mode (γ, β);

2. By simulating the process on a cluster, to find out how the paralleliza-
tion efficiency depends on the stochasticity of a model.

From (12) and (20) it follows, that in both cases the crucial model pa-
rameter affecting the computation time is the value of m in β-mode of op-
eration. An intense desire to reduce the simulation time yields in choosing
a minimal m = |T ′Σ|. On the other hand, Monte Carlo methods [3], as well
as the asynchronous CA models [7], are based on the principle of maximal
stochasticity. There is no theoretical answer to the question in what extent
it is admissible to vary stochasticity without violating a given simulation
accuracy. Although, some attempts have been made to resolve the contra-
diction. Thus, in [16] and [15] it was shown, that the simulation results for
different modes of operations of one and the same reaction–diffusion CA are
quite similar, i.e. the difference of evolutions Ω(t) are within the limits of
statistical uncertainty. However, the physical time of an iteration execution
significantly differs, due to the different amount of random generator calls
(12). The above considerations allow one to deduce, that since the general
problem of admissible stochasticity variations is not resolved, and, moreover,
it is not proved, the maximal stochasticity shows the best correlation with
a real phenomenon, then let us leave the choice of m on the responsibility
of the model developer.

The difference in the simulation time for asynchronous and block-syn-
chronous modes obtained by using CA with the above-given parameters on
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Table 1. The time per iteration for asynchronous and block-syn-
chronous modes obtained on a single processor, pd = 0.9, pr = 0.1,
|X| = 400× 400× 400

Global mode α, γ β, γ α, δ β, δ

titer, s 59.75 13.4 77.2 14.6

Table 2. Dependence of parallelization efficiency (η) and stochasticity
(λ) on the block size m = R(T ), obtained by simulation ℵα,γ with pd =
0.9, pr = 0.1, |X| = 1600× 1600× 1600 on 64 cores of a cluster

m 9 25 49 81

η 0.883 0.732 0.5 0.457

λ 0.089 · 10−6 1.9 · 10−6 14.35 · 10−6 64.87 · 10−6

a single processor (Table 1) shows that the block-synchronous case is about
5 times faster.

The dependence of parallelization efficiency and stochasticity, obtained
by simulation using CA ℵα,γ with the above parameters on 64 cores of cluster
NKS-30 of the Siberian Supercomputer Center is presented in Table 2.

5. Conclusion

The dependence of computational performance on stochasticity of asyn-
chronous reaction–diffusion CA-models is investigated. The investigation
aims at finding a compromise between the simulation efficiency and inherent
natural stochasticity of simulated phenomena. In order to quantitatively as-
sess these properties the notion of the CA-model stochasticity is introduced
as a fraction of randomly chosen elementary operations in the asynchronous
CA evolution. It is shown, that inducing some amount of synchronization
by using the block-synchronous mode of operation it is possible to control
the simulation performance. It is most important in large-scale simulation
tasks implemented on a parallel computer architecture. The information
may be essentially helpful at the stage of the CA-model development, when
the elementary operations interaction should be determined with allowance
for parallel implementation conditions. The results of a computational ex-
periment are presented to give the impression of concrete relations between
stochasticity values and parallelization efficiency.
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