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Redution of oloured Petri nets based on resoure

bisimulation

V.A. Bashkin, I. A. Lomazova

A pair onsisting of a plae and a token in a oloured Petri net is onsidered as an elementary resoure for this net,

and a resoure is a multiset of elementary resoures. Two resoures are bisimilar, if replaement of one by another in

any marking doesn't hange the net behaviour. Due to this fat, bisimilar resoures an be merged. The paper presents

an algorithm for omputing resoure bisimulation for oloured Petri nets and desribes some ways of net redution based

on merging bisimilar resoures.

1. Introdution

Coloured Petri nets (CPN) [2℄ is a lass of high-level Petri nets, widely used for modelling and analysis

of onurrent and distributed systems. In this paper CPN are studied with respet to bisimulation

equivalene.

A notion of bisimulation equivalene has been introdued by R. Milner and D. Park. It aptures

an observable behaviour of a system. As a rule, bisimulation equivalene is a relation on sets of

states. Two states are bisimilar, if they are undistinguishable modulo system behaviour. For ordinary

Petri nets, the state (marking) bisimulation is undeidable [3℄. To overome this, a weaker plae

bisimulation has been introdued for ordinary Petri nets in [1℄. A plae bisimulation is a relation on

sets of plaes. Two plaes are bisimilar, if replaement of a token in one plae by a token in another

plae in all markings doesn't hange the system behaviour. Hene, bisimilar plaes an be merged

without hanging the behaviour of a net.

In this paper a similar approah is developed for high-level CPN. Sine in CPN a olour of a token

must be taken into aount, we onsider not plaes but elementary resoures | pairs of plaes and

oloured tokens. A resoure is a multiset of elementary resoures. For CPN a resoure bisimulation is

de�ned. When elementary resoures are onsidered, it orresponds to plae bisimulation for ordinary

Petri nets. Otherwise it gives a generalization of plae bisimulation for ordinary Petri nets to multisets

of plaes, whih allows us to obtain additional net redutions.

We desribe a simple algorithm of omputing an approximation of the largest bisimulation.

The paper is organized as follows. In Setion 2 we reall basi de�nitions and notations on CPN

and bisimulations and give de�nitions of an elementary resoure and a resoure for CPN. In Setion

3 resoure bisimulations are studied and an algorithm for omputing the maximal bisimulation of

�nite resoures is presented. Setion 4 ontains an algorithm for CPN redutions based on resoure

bisimulations and some examples.

2. Basi de�nitions

A multiset M over a non-empty set X is a funtion M : X ! Nat where Nat is a set of non-negative

integers. The non-negative integers fM(x) j x 2 Xg are the oeÆients of the multiset. As usually,

we de�ne

(M

1

+M

2

)(x) =M

1

(x) +M

2

(x),

(M

1

�M

2

)(x) =M
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The power of a multiset M over X is de�ned as jM j =

P

x2X

M(x). By X

MS

we denote the set of

all multisets over X.

Let us suppose L to be a language of typed expressions and U its �nite model. Expressions in L

are built from variables and onstants using the only operation of a multiset addition. Elements of U

are oloured tokens. A type is de�ned as a set of olours, and the type of the sum of two multisets |

as the union of their types. The type of an element e is denoted by Type(e), the type of an expression

� 2 L| by Type(�). V ar(b) denotes the set of all variables of the expression b. A binding of variables

in an expression is de�ned in the usual way.

A labelled (unmarked) oloured Petri net (CPN) is a tuple N = (
; N; Type;W;A; l), where 
 is

a �nite nonempty set of types; N = (P; T; F ) is a net, where P are plaes, T | transitions, F | a

ow relation; Type : P ! 
 is a type funtion; W : F ! L is an ar expression funtion, where for

all p 2 P; t; u 2 T s.t. (t; p); (p; u) 2 F we have Type(W (t; p)) = Type(W (p; u)) = Type(p); A is an

alphabet of labels; l : T ! A is a labelling funtion for transitions.

A marking of a net N is a funtion M : P ! U

MS

s.t. Type(M(p)) = Type(p). It puts a multiset

of tokens of the appropriate type in every plae. A marked CPN is a pair (N ;M

0

) of a net and its

initial marking.

For a transition t 2 T V ar(t) denotes a set of all variables in an ar expression adjaent to t.

A binding of a transition t is a funtion b de�ned on V ar(t), s.t. 8v 2 V ar(t) b(v) 2 Type(v). A

binded transition t[b℄ is enabled in a marking M if 8p 2 P W (p; t)[b℄ �M(p).

If t[b℄ is enabled in M , it may �re hanging M to another marking M

0

, s.t. 8p 2 P; M

0

(p) =

M(p)�W (p; t)[b℄ +W (t; p)[b℄ (written a M

t[b℄

!M

0

).

Y (t) denotes a set of all possible bindings of t 2 T . T (N ) = ft[b℄ j t 2 T; b 2 Y (t)g is a set of all

binded transitions of N .

An elementary resoure is a pair (p; d) 2 P � U , where d 2 Type(p), i.e. it's a plae with one

oloured token. A resoure is a multiset of elementary resoures.

Reall that a marking maps eah plae to a multiset of oloured tokens and an be onsidered as a

set of pairs of the form (a plae, a multiset of oloured tokens). It is easy to see that atually resoures

and markings are the same mathematial objets represented in a slightly di�erent form or enoding.

In this sense, every marking is a resoure, and every resoure is a marking. However, we distinguish

between these notions, beause we give them di�erent substantative interpretations. We mean that a

resoure represents a part of markings whih provides this or that kind of the net behaviour.

We denote the set of all resoures of CPN N by M(N ), the set of all its elementary resoures by

M

1

(N ). We de�ne a preondition of t[b℄ to be a resoure

Æ

t[b℄ =

P

p2P

W (p; t)[b℄, and a postondition

of t[b℄ to be a resoure t[b℄

Æ

=

P

p2P

W (t; p)[b℄.

We say that a symmetri relation R on the set of markings of CPN N satis�es the transfer

property i� for all (M

1

;M

2

) 2 R, for every step M

1

t[b℄

!M

0

1

there exists an imitating step M

2

u[℄

!M

0

2

with

(M

0

1

;M

0

2

) 2 R and l(t) = l(u).

A symmetri relation R on the set of markings of CPN N whih satis�es the transfer property is

alled a (marking) bisimulation for N (written as R : N$N ).

3. Resoure bisimulation

Given a relation B �M(N )�M(N ), we de�ne the relation B �M(N )�M(N ) by

(D

1

; G

1

); : : : ; (D

n

; G

n

) 2 B ) (D

1

+ : : :+D

n

; G

1

+ : : : +G

n

) 2 B.

So, two markings are related by B if their tokens an be partitioned into pairs satisfying B.

A relation B � M(N ) � M(N ) is alled a resoure bisimulation over N i� B is a marking

bisimulation (written as B : N � N ).
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A resoure bisimulation detets the possibility of replaement of one multiset of tokens by another

in all CPN markings, so that this replaement doesn't inuene the net behaviour. The resoure

bisimulation equivalene is stronger than the marking bisimulation. Bisimilarity of two resoures

implies bisimilarity of them as markings, but the onverse is not true.

Æ
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2

Figure 1. An example of bisimilar resoures ((p

1

; b) � 2�(p

1

; a))

Figure 1 represents two bisimilar resoures. The �rst ontains one elementary resoure (p

1

; b), and

the seond ontains two opies of the same elementary resoure (p

1

; a).

Theorem 1. Given a CPN N , there exists the maximal resoure bisimulation over N .

The proof is straightforward. The sum of two bisimulations is also a bisimulation. Therefore, the

sum of all bisimulations is the maximal bisimulation.

Now we de�ne an analog of the weak transfer property ([1℄) for CPN resoure bisimulation. We

say that a relation B �M(N )�M(N ) satis�es the weak transfer property i�, for all (D;G) 2 B and

for all t[b℄ 2 T (N ), s.t. D \

Æ

t[b℄ 6= ;, there exists a binded transition u[℄ 2 T (N ), s.t. l(t) = l(u)

and, writing M

1

for

Æ

t[b℄ [ D and M

2

for

Æ

t[b℄ � D + G, we have M

1

t[b℄

! M

1

0

and M

2

u[℄

! M

2

0

with

(M

1

0

;M

2

0

) 2 B.

Theorem 2. A reexive and symmetri relation B satis�es the weak transfer property i� B is a

reexive and symmetri resoure bisimulation.

Proof. ()) Assume the onverse. Let B be not a resoure bisimulation. Then B is not a marking

bisimulation, so it doesn't satisfy the transfer property. Therefore 9(M

1

;M

2

) 2 B; t[b℄ 2 T (N ), s.t.

M

1

t[b℄

! M

1

0

annot be imitated starting from the marking M

1

�

Æ

t[b℄ + t[b℄

Æ

.

However, M

1

and M

2

an be deomposed into pairs, belonging to B:

M

1

= D

1

+ : : :+D

n

, M

2

= G

1

+ : : :+G

n

, where (D

i

; G

i

) 2 B.

Here the pair (D

1

; G

1

) satis�es the weak transfer property. It means that there exists a transition

u

1

[

1

℄, s.t. l(u

1

) = l(t) and

Æ

u

1

[

1

℄ � F

1

= M

1

�D

1

+G

1

, where markings F

1

�

Æ

u

1

[

1

℄ + u

1

[

1

℄

Æ
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M

1

�

Æ

t[b℄ + t[b℄

Æ

are bisimilar w.r.t. B. If D

1

\

Æ

t[b℄ = ;, we an hoose u

1

[

1

℄ = t[b℄.

Similarly, there exists a binded transition u

2

[

2
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1

[

1

℄ (and, therefore, t[b℄) with a pre-

ondition ontained in F

2
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1
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2
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2

=M

1
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1
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1
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and a postondition bisimilar

to F

1

�

Æ

u

1

[

1
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1

[

1

℄

Æ

.

Repeating this reasoning for the n-th time, we obtain a binded transition u

n

[

n

℄ with the preon-

dition

Æ

u

n

[

n

℄ � F

n

= F

n�1

�D

n

+G

n

.

It is lear that F

n

= M

1

�D

1

+G

1

�: : :�D

n

+G

n

= (D

1

+: : :+D

n

)�D

1

+G

1

�: : :�D

n

+G

n

= M

2

.

Sine the relation B is transitive, markings F

n

�

Æ

u

n

[

n

℄+u

n

[

n

℄

Æ

andM

1

�

Æ

t[b℄+t[b℄

Æ

are bisimilar

w.r.t. B.

So, we've got a binded transition u

n

[

n

℄ with the same (as for t[b℄) label, transforming M

2

to some

bisimilar to M

0

1

marking. Hene u

n

[

n

℄ imitates t[b℄. This ontradits our assumption.

(() It follows from the fat that the weak transfer property is a speial kind of the transfer property

restrited to pairs (M

1

;M

2

) and steps M

1

t[b℄

! M

1

0

, where M

1

and M

2

di�er only in one resoure. 2

Corollary. The maximal resoure bisimulation oinides with the maximal reexive and symmetri

relation B satisfying the weak transfer property.
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Note that for a net with at least one plae its maximal resoure bisimulation is in�nite. The

point is that, if a net ontains at least one elementary resoure r, then an in�nite relation B =

Id(M

1

(N )) [ f(2 � r; 2 � r); (3 � r; 3 � r); : : :g is a resoure bisimulation. Sine the maximal bisimulation

ontains all others, it is also in�nite.

By Res

p

we denote the set of all resoures R, s.t. j R j� p, i.e. ontaining no more than p

elementary resoures (taking opies into aount).

Theorem 3. Given a CPN N and a positive integer p, there exists the maximal resoure bisimulation

on Res

p

(written as B(N ; p)).

The proof is straightforward.

Sine Res

p

is �nite, we an use the weak transfer property to ompute B(N ; p).

An algorithm for omputing B(N ; p).

input: a labelled unmarked CPN N , a positive integer p

output: the relation B(N ; p)

step 1: Set B = Res

p

�Res

p

step 2: Chek whether B satis�es the weak transfer property:

� If it's true then B is B(N ; p).

� Otherwise, there is a t[b℄ 2 T (N ); D;G 2 Res

p

with D \

Æ

t[b℄ 6= ; and (D;G) 2 B, s.t. t[b℄

annot be imitated by

Æ

t[b℄�D +G. Then remove pairs (D;G) and (G;D) from B and go bak

to step 2.

Sine Res

p

is �nite, the algorithm makes a limited number of steps. The output is the maximal

relation, beause no element of B(N ; p) an be removed from B (sine B � B(N ; p), these elements

always satisfy the weak transfer property in B). The time omplexity of the algorithm is O(S

2

�

jT (N )j

2

� jM

1

(N )j

2�p

), where S = max

t2T

fj

�

tj; jt

�

jg.

Replaing Res

p

by M

1

(N ), we obtain the algorithm for omputing the maximal elementary re-

soure bisimulation. Elementary resoure bisimulations in CPN orrespond to plae bisimulations for

ordinary Petri nets [1℄ (where all tokens are of the same olour).

By applying the resoure bisimulation to ordinary Petri nets, we obtain a bisimulation of multisets

of plaes. For example, this allows us to determine that two tokens in one plae are equivalent to

three tokens in another plae (for all markings). This equivalene is weaker than plae bisimulation

and in some ases allows us to derive additional redutions.

It is easy to show that the linear ombination of resoure bisimulations (with respet to the op-

eration of multiset addition) is also a resoure bisimulation. So, a �nite set of resoure bisimulations

generates in�nite resoure bisimulations. The question whether for a given CPN there exists a �-

nite basis of �nite resoure bisimulations generating all resoure bisimulations is a subjet of further

investigations.

4. Redution

The resoure bisimulation an be used for CPN redution, sine bisimilar resoures an be merged.

However, this "merging" must be more subtle than plae merging for ordinary Petri nets. Bisimilar

resoures may have di�erent size and struture. Moreover, they may interset. Therefore we an't

just "merge" two resoures, but are to replae one of them by another. Sine we want to redue the

net, we'd like this replaement to derease the number of elementary resoures. For example, if we

have two bisimilar resoures D and G, where G � D, it makes sense to replae D by G, but not vie

versa.

It is not always possible to replae one resoure by another. We give a suÆient ondition for that.

Let D and G be two bisimilar resoures, and M

0

be an initial marking. A resoure D an be

replaed by a resoure G, if
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1. 8t[b℄ (D �

Æ

t[b℄ _ D \

Æ

t[b℄ = ;) ^ (D � t[b℄

Æ

_ D \ t[b℄

Æ

= ;),

2. M

0

= k �D +X, where k 2 Nat and X \D = ;.

The �rst ondition is a rather strong restrition. It means that the resoure D must be indivisible.

For any transition, it either transfers all tokens in D (probably, several instanes of D), or none of

them.

The seond ondition guarantees that the resoure D is entirely ontained in the initial marking.

This is neessary, beause eah of its instanes must be replaed by an instane of G.

It is obvious that elementary resoures satisfy both onditions.

Suppose D and M

0

satisfy onditions 1 and 2. Then the following transformation of the net will

not hange its behaviour (modulo bisimulation):

Resoure replaement algorithm:

input: a labelled marked CPN (N ;M

0

)

output: the labelled marked CPN (N

0

;M

0

0

) with bisimilar behaviour

step 1: Adding imitating transitions.

For all t[b℄ 2 T (N ) s.t. D �

Æ

t[b℄ _D � t[b℄

Æ

add a new binded transition t

0

[b

0

℄ s.t.

1. if

Æ

t[b℄ = m �D + Pre with D \ Pre = ;, then

Æ

t

0

[b

0

℄ = m �G+ Pre,

2. if t[b℄

Æ

= n �D + Post with D \ Post = ;, then t

0

[b

0

℄

Æ

= n �G+ Post,

3. l(t

0

) = l(t).

step 2: Removing D.

Delete from the net all elementary resoures ontained in D and replae types of plaes by new

types Type

0

(p) = Type(p) n Type(D).

Remove all ars, orresponding to binded transitions t[b℄ 2 T (N ), s.t. D �

Æ

t[b℄ _D � t[b℄

Æ

(note

that transitions imitating them were added at step 1).

step 3: Changing the initial marking.

If M

0

= k �D +X, where k 2 Nat and X \D = ;, then M

0

0

= k �G+X.

Note that this algorithm is nondeterministi. Sine we deal with high-level net, there are many

possible ways to add a binded transition (as well as there are many possible ways to build a high-level

Petri net equivalent to the given ordinary Petri net). Choosing the best approah is a nontrivial

problem.

For example, adding a separate transition with onstants on adjaent ars and, hene, with the

only possible binding seems to be the simplest solution. But for some nets this redution would not

be the best.

Now we give a small example of a CPN redution.

Æ

��

bb

Æ

��

�

�

Æ

��

a

�

fa; g

f; dg

fb; dg





a

d

2b

d

x

p

1

p

2

p

3

q

1

y

-

+

s

:

N

B = Id(M

1

(N )) [ f ((p

3

; ); (p

3

; d)); ((p

1

; a) + 2�(p

2

; b); (p

1

; )) g

Figure 2a. An example of a CPN redution | a net and some resoure bisimulation
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Æ
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�

fg

q

1

-



Æ

��

�

fg

q

2

-



-



Æ

��

fdg

q

3

-

d

N

0

(q

1

; ) = f(p

1

; ); (p

1

; a) + 2�(p

2

; b)g

(q

2

; ) = f(p

3

; ); (p

3

; d)g

(q

3

; d) = f(p

1

; d)g

Figure 2b. An example of a CPN redution | the result

Thus, in the net redutions elementary resoures in CPN are similar to plaes in ordinary Petri

nets. Hene the omplexity of redution algorithms depends on the size of M

1

(N ). Our algorithm

redues the set of elementary resoures, but in some ases it an add new transitions.

5. Conlusion

Resoure bisimulation is a generalization of the ordinary Petri net plae bisimulation for the ase

of high-level CPN. It allows us to ompute equivalenes weaker than marking bisimulation. These

equivalenes an be used for simplifying redutions of CPN.

This approah an be easily applied to other lasses of high-level Petri nets, suh as predi-

ate/transition nets, or algebrai nets.

Diretions for further researh ould be onsidered, suh as whether it is possible to represent the

maximal resoure bisimulation by a �nite basis (and to ompute this basis). Also it is interesting to

apply our approah to restrited sets of "relevant" markings introdued in [4℄.
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