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Compositional methods in characterization of
timed event structures∗

E.N. Bozhenkova

Abstract. In this paper we use compositional methods for construction of a char-
acteristic formula for the timed testing preorder in a model of timed event structures
with discrete internal actions.

1. Introduction

Complex systems are not trivial for analysis. One of useful tools for that
is the notion of equivalence. As a matter of fact, equivalences are used in
specification and verification both to compare two distinct systems and to
reduce the structure of a system. Over the past several years, a variety of
equivalences have been proposed, and the relationship between them has
been quite well-understood (see, for example, [11]).

Among the major equivalences are testing ones presented in [10]. Two
processes are considered to be testing equivalent, if there is no test that
can distinguish them. A test itself is usually a process applied to another
process by computing them together in parallel. A particular computation
is considered to be successful, if the test reaches a designated successful
state, and the process passes the test if every computation is successful.
This notion has led to a well-developed mathematical theory of processes
that ties together the equivalences and preorders. Testing decision proce-
dures are usually based on reduction of testing to bisimulation [8]. These
equivalences have been considered for synchronous and asynchronous formal
system models without time delays [1], [8], [7], [10], [12].

Testing equivalences have also been developed for models with time (see,
for example, [4], [5], [9], [13], [14], [16]). Papers [9] and [14] have treated
timed testing for discrete time transition models. The alternative character-
ization of timed testing given in these papers uses a notion similar to that
of an acceptance set in the testing theory. Paper [13] has investigated timed
testing for the discrete time process algebra. In [5], time testing relations
have been developed for asynchronous timed Petri nets. In [17], testing
equivalences are considered for the model of determinized timed automata.

In paper [4], a framework for testing preorders and equivalences in the
setting of timed event structures has been developed.

∗Partially supported by DFG-RFBR (under Grants N 436 RFBR 113/1002/01 and
09-01-91334).
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In that model, a time interval associated with an event means the in-
terval, during which the event can occur. Occurrence of the event does
not take any time. The model is a timed generalization of Winskel’s prime
event structures [18]. The alternative characterization of the timed testing
relations is given.

In [6], the problem of decidability of timed must-equivalences is reduced
to the model-checking one. As a basic logic, we take the timed logic Lν .
This logic has been defined in [15] and used for construction of a charac-
teristic formula for a timed automaton up to the timed bisimilarity and, as
a consequence, for reduction of the timed bisimilarity decidability problem
to the model-checking one. It is known that the latter problem is decidable
([2], [3]). In [6], a characteristic formula up to the timed testing preorders
is constructed. We do it for timed event structures with discrete internal
actions. The characteristic formula consists of formulas for each class of the
class graph. Each subformula is modelling a possible transition from the
class and contain conditions on the formula clocks.

Usually, complex systems consist of subsystems. In the case when events
of different subsystems are in the same relation – partial order, conflict or
concurrency – we say that the system is a composition of subsystems.

So, it is interesting to construct characteristic formulas for the whole
system using only similar formulas for subsystems. In such way we can
avoid construction of region and class graphs, algorithms for which are ex-
ponential. According to a usual structure of the characteristic formula, we
construct its subformulas using the formulas for classes of substructures.

The rest of the paper is organized as follows. In Section 2, we remind
the basic notions concerned with timed event structures and timed testing.
The timed modal logic Lν is described in Section 3. In Section 4, we obtain
a class graph from the state-space. In Section 5, we construct a formula
which characterizes a timed event structure up to the timed testing pre-
orders. In Section 6, the characteristic formula for a timed event structure
is constructed on the basis of the formulas for its substructures. Conclusion
is given in Section 7. In Appendix, we consider an auxilary construction of
composition of the class graphs.

2. Timed event structures

In this section, we remind a model of timed event structures that is a real-
time extension of Winskel’s model of prime event structures [18] by equip-
ping events with time intervals.

We first recall the notion of an event structure. The main idea behind
event structures is to view the distributed computations as action occur-
rences, called events, together with the notion of causal dependence between
events (which are reasonably characterized via a partial order). Moreover,
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to model nondeterminism, there is a notion of conflicting (mutually incom-
patible) events. A labelling function determines which action corresponds
to an event.

Let Act be a finite set of visible actions and τ be an internal action.
Then Actτ = Act ∪ {τ}.

Definition 1. A (labelled) event structure over Actτ is a 4-tuple
S=(E,≤, #, l), where

• E is a countable set of events;

• ≤ ⊆ E × E is a partial order (the causality relation) satisfying the
principle of finite causes: ∀e ∈ E . {e′ ∈ E | e′ ≤ e} is finite;

• # ⊆ E × E is a symmetric and irreflexive relation (the conflict rela-
tion) satisfying the principle of conflict heredity: ∀e, e′, e′′ ∈ E . e # e′

≤ e′′ ⇒ e #e′′;

• l : E → Actτ is a labelling function.

For pairs of events are neither in causality nor in conflict relations, we
define the concurrency relation as ^ = (E ×E) \ (≤ ∪ ≥ ∪ #).

Let C ⊆ E. Then C is left-closed iff ∀e, e′ ∈ E . e ∈ C ∧ e′ ≤ e ⇒
e′ ∈ C; C is conflict-free iff ∀e, e′ ∈ C . ¬(e # e′); C is a configuration of
S iff C is left-closed and conflict-free. Let Conf(S) denote the set of all
configurations of S. For C ∈ Conf(S), we define the set of events enabled
in C as En(C) = {e ∈ E | C ∪ {e} ∈ Conf(S)}.

In the following, we will consider only finite event structures, i.e. the
structures whose sets of events are finite.

Before introducing the concept of a timed event structure, we need to
propose some auxiliary notations. Let N0 be the set of natural numbers
with zero, R+ be the set of positive real numbers, and R+

0 be the set of
nonnegative real numbers. For any d ∈ R+

0 , {d} denotes its fractional part,
bdc and dde – its smallest and largest integer parts, respectively.
Define the set Interv(R+

0 ) = {[d1, d2] ⊂ R+
0 | d1, d2 ∈ N0}.

We are now ready to introduce the concept of timed event structures.

Definition 2. A (labelled) timed event structure over Actτ is a pair TS =
(S, D), where

• S = (E,≤, #, l) is a (labelled) event structure over Actτ ;

• D : E → Interv(R+
0 ) is a timing function such that D(e) = [d, d] for

some d ∈ N0 for all e with l(e) = τ .
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In a graphic representation of a timed event structure, the corresponding
action labels and time intervals are drawn close to events. If no confusion
arises, we will use action labels instead of the event identifiers to denote
events. The <-relations are depicted by arcs (omitting those derivable by
transitivity), and conflicts are depicted by “#” (omitting those derivable by
the conflict heredity). Following these conventions, a trivial example of a
labelled timed event structure is shown in Fig. 1.

S1
a : e1[0, 1] b : e2 [0, 1]

τ : e3 [1, 1]

#

-

Figure 1. A simple example

Let Eτ denote the set of all labelled timed event structures over Actτ .
For convenience, we fix timed event structures TS = (S = (E,≤,#, l), D),
TS′ = (S′ = (E′,≤′, #′, l′), D′) from the class Eτ and work with them
further.

TS is called conflict-free, if E is conflict-free. TS′ is called a substructure
of TS, if E′ ⊂ E, ≤′⊆≤|E′ , #′ ⊆ # |E′ , l′ = l |E′ , D′ = D |E′ .

A state of TS is a pair M = (C, δ), where C ∈ Conf(S) and δ : E → R+
0 .

The initial state of TS is MTS = (C0, δ0) = (∅, 0). A state M = (C, δ) is
said to be terminated, if En(C) = ∅. Let ST (TS) denote the set of all states
of TS.

A timed event structure progresses through a sequence of states in one
of two ways given below.

Let M1 = (C1, δ1),M2 = (C2, δ2) ∈ ST (TS) such that M1 is a non-
terminated state. An event e ∈ En(C1) may occur in M1 (denoted as
M1

e→) if δ1(e) ∈ D(e) and ∀e′ ∈ En(C1) ∃d ∈ R+
0 . δ1(e′) + d ∈ D(e). We

write M1
a→, if M1

e→ and l(e) = a. The occurrence of e in M1 leads to M2

(denoted as M1
e→ M2), if M1

e→, C2 = C1 ∪ {e} and

δ2(e′) =
{

0, if e′ ∈ En(C2) \En(C1)
δ1(e′), otherwise.

We write M1
a→ M2, if M1

e→ M2 and l(e) = a.
A time d ∈ R+ may pass in M1 (denoted as M1

d→), if ∀e ∈ En(C1) ∃d′ ∈
R+

0 (d′ ≥ d) . δ1(e)+d′ ∈ D(e). The passage of d in M1 leads to M2 (denoted

as M1
d→ M2), if C2 = C1 and δ2(e) = δ1(e) + d for all e ∈ E.

The weak leading relation ⇒ on the states of TS is the largest relation
defined by: ε⇒ ⇐⇒ τ→∗

and x⇒ ⇐⇒ ε⇒ x→ ε⇒, where τ→∗
is the reflexive and

transitive closure of τ→ and x ∈ Act ∪R+. We consider the relation d⇒ as
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possessing the time continuity property: M
d1+d2=⇒ ⇐⇒ M

d1⇒d2⇒ for some
d1, d2 ∈ R+.

From now on, we will use the following notions and notations. Let
Act(R+

0 ) = {a(d) | a ∈ Act ∧ d ∈ R+
0 } be the set of timed actions

of Act over R+
0 . Then (Act(R+

0 ))∗ is the set of finite timed words over
Act(R+

0 ). The function 4 : (Act(R+
0 ))∗ → R+

0 measuring the duration
of a timed word is defined by: 4(ε) = 0, 4(w.a(d)) = 4(w) + d. The
domain for real-time languages is denoted by Dom(Act, R+

0 ) = {〈w, d〉 |
w ∈ (Act(R+

0 ))∗, d ∈ R+
0 , d ≥ 4(w)}.

The weak leading relation⇒ is extended to timed words from (Act(R+
0 ))∗

and Dom(Act, R+
0 ) as follows. Let d ∈ R+

0 , d′ ∈ R+, a ∈ Act and
w ∈ (Act(R+

0 ))∗. Then

if M
a⇒ M ′, then M

a(0)⇒ M ′; if M
d′⇒ a⇒ M ′, then M

a(d′)⇒ M ′;

if M
w⇒a(d)⇒ M ′, then M

w.a(d)
=⇒ M ′; if M

w⇒ M ′, then M
〈w, 4(w)〉

=⇒ M ′;

if M
〈w,d〉
=⇒ d′⇒ M ′, then M

〈w, d+d′〉
=⇒ M ′.

The set L(TS) = {〈w, d〉 ∈ Dom(Act,R+
0 ) | MTS

〈w,d〉
=⇒} is the language of

TS. For instance, for the timed event structure TS1 in Figure 1, we have
L(TS1) = {〈ε, d1〉, 〈ε, 1〉, 〈a(d1), d1 + d2〉, 〈a(1), 1〉, 〈a(d1)b(d2), d1 + d2〉 |
d1 + d2 ≤ 1}.

The timed testing relations may be defined in terms of responses of timed
event structures to a collection of tests. We will, however, use an alterna-
tive characterization [4]. It turned out that may-preorder is characterized
by inclusion of languages. For must-preoder to exist, inclusion of sets of
enabled visible actions and the possibility of time passing in states of two
timed event structures reachable by the same timed word are necessary. The
formal definition relies on the following notations. Let M ∈ ST (TS) and
〈w, d〉 ∈ Dom(Act, R+

0 ). Then S(M) = {x ∈ Actτ ∪ R+ | M
x→} and

Acc(TS, 〈w, d〉) = {S(M ′) | MTS
〈w, d〉
=⇒ M ′, M ′ 6 τ→} (timed acceptance set).

Let N, N ′ ⊂ 2Act∪R+
. Then N ⊂⊂ N ′ ⇐⇒ ∀S ∈ N ∃S′ ∈ N ′ . [(S′ |Act⊆

S |Act) ∧ (S |R+= ∅ ⇒ S′ |R+= ∅)]; N ≡ N ′ ⇐⇒ N ⊂⊂ N ′ ∧ N ′ ⊂⊂ N .

Definition 3.

• TS ≤must TS′ ⇐⇒ ∀〈w, d〉 ∈ Dom(Act,R+
0 ) . Acc(TS′, 〈w, d〉) ⊂⊂

Acc(TS, 〈w, d〉);
• TS 'must TS′ ⇐⇒ TS ≤must TS′ and TS′ ≤must TS.

An example of timed must-equivalent structures is shown in Figure 2(a).
The timed event structures TS3 and TS′3 shown in Figure 2(b) are not timed
must-equivalent. Let us consider the timed word 〈w, d〉 = 〈a(0.5), 1.5〉 ∈
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L(TS3)∩L(TS′3). We have Acc(TS3, 〈w, d〉) = {{b, c}∪(0, 1]} and Acc(TS′3,
〈w, d〉) = {{b, c} ∪ (0, 1], {c}}. This means that in TS3, after executing the
action a and passing time 1, the action c or b can be executed or time from
(0, 1] can pass. In TS′3, after executing the same timed word, we get two
states. In the first state, also as in TS3, the action c or b can be executed
or time from (0, 1] can pass, but in the other state only the action c can be
executed. So, ¬(

Acc(TS′3, 〈w, d〉) ⊂⊂ Acc(TS3, 〈w, d〉)).

a a

τ

[1, 1] [1, 1]

[0, 1]

TS2

a

τ

[1, 1]

[0, 1]

TS′

2

a

τ

[1, 1]

[0, 1]

#

[0, 1]a

b

c

#

[1, 3]

[0, 2]

1

q

TS3

[0, 1]a

b

c

#

[1, 3]

[0, 2]

1

q

TS′

3

[0, 1]a c [0, 1]-

#

(a)

(b)

# #
-τ

[0, 1]

#

Figure 2. An example of (a)timed must-equivalent and (b)non-timed must-
equivalent timed event structures

3. Timed modal logic

Here we will recall a dense-timed logic Lν [15] and modify a satisfiability rela-
tion for timed event structures. The logic Lν is a fragment of µ-calculations
with maximal recursion. Below we will use formulas of this logic for char-
acterization of timed event structures up to testing equivalences.

Definition 4. Let K be a finite set of clocks, Id be a set of identifiers and
k be an integer. The set of formulas of Lν over K, Id and k is generated
by the abstract syntax with φ and ψ ranging over Lν :

φ := tt | ff | φ ∧ ψ | φ ∨ ψ | ∃∃φ | ∀∀φ | 〈a〉φ | [a]φ | x in φ | x + n ./ y + m |
x ./ m | Z,
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where a ∈ Act, x, y ∈ K, n,m ∈ {0, 1, . . . , k}, ./∈ {=, <,≤, >,≥} and
Z ∈ Id.

The meaning of identifiers from Id is specified by a declaration D that
assigns a formula of Lν to each identifier. When D is clear, we write Z := φ
for D(Z) = φ. The clocks from K are called formula clocks and a formula
φ is said to be closed if every formula clock x occurs in φ in the scope of
an “x in . . . ” operator. Given a timed event structure TS, we interpret the
formulas from Lν over an extended state (C, δu), where (C, δ) is a state of
TS and u is a time assignment for K. Transitions between extended states

are defined by: (C, δu)
ε(d)→ (C, (δ + d)(u + d)) and (C, δu) a→ (C ′, δ′u′) iff

(C, δ) a→ (C ′, δ′) and u = u′. Formally, the satisfaction relation between
extended states and formulas is defined just as in [15] and here only a part
of operators is given.

Definition 5. Let TS be a timed event structure and D be a declaration.
The satisfaction relation |=D is the largest one that satisfies the following
implications:

(C, δu) |=D tt ⇒ true;
(C, δu) |=D ff ⇒ false;

(C, δu) |=D φ ∧ ψ ⇒ (C, δu) |=D φ and (C, δu) |=D ψ;

(C, δu) |=D ∃∃φ ⇒ ∃d ∈ R+
0 . (C, δ)

ε(d)⇒ (C ′, δ′)
and (C ′, δ′u + d) |=D φ;

(C, δu) |=D [a]φ ⇒ ∀(C ′, δ′) ∈ ST (TS) . (C, δ) a→ ε⇒ (C ′, δ′)
implies (C ′, δ′u) |=D φ.

(C, δu) |=D x + m ./ y + n ⇒ u(x) + m ./ u(y) + n;
(C, δu) |=D x in φ ⇒ (C, δu′) |=D φ, where u′ = [{x} → 0]u;

(C, δu) |=D Z ⇒ (C, δu) |=D D(Z).

Any relation that satisfies the above implications is called a satisfiability
relation. We say that TS satisfies a closed formula φ from Lν and write
TS |= φ, when (C0, δ0u) |=D φ for any u. Note that if φ is closed, then
(C, δu) |=D φ iff (C, δu′) |=D φ for any u, u′ ∈ R+

0
K .

4. From state-space to class graph

For the purpose of constructing a characteristic formula, the infinite state-
space is transformed to a finite representation in such a way that states
reachable by the same timed word be collected together in one class. We
will briefly consider the transformation through this section. As usual, in
order to get a discrete representation of the state-space of a timed event
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structure, the concept of regions (equivalence classes of states) [2] is used.
To get a deterministic representation, classes are used.

In the definition of a region, we will use the notion of common states.

Definition 6. A subset µ ⊆ ST (TS) is called a common state of TS. The
initial common state of TS is µ0 = {MTS}.

Sometimes µ is denoted as (M1, . . . , Mn) or (〈C〉n, 〈δ〉n), where Mi =
(Ci, δi) ∈ µ (1 ≤ i ≤ n), 〈C〉n = (C1, . . . , Cn), 〈δ〉n = (δ1, . . . , δn).

Let n+ = {1, . . . , n}. Renaming π(n) : n+ → n+ is extended to 〈C〉n as
π(n)(〈C〉n) = (Cπ(n)(1), . . . , Cπ(n)(n)), in a similar way π(n)(〈δ〉n) is defined
and π(n)(µ) = (π(n)(〈C〉n), π(n)(〈δ〉n)).

A visible action and time can be executed in a common state only if an
internal action is not enabled. So, the relation z→ is defined on common
states as follows:

• µ
τ→ µ′ iff µ 6= µ′ and µ′ = {(C ′, δ′) | ∃(C, δ) ∈ µ . (C, δ) τ→ (C ′, δ′)}∪µ;

• µ
z→ µ′ iff µ 6 τ→ and µ′ = {(C ′, δ′) | ∃(C, δ) ∈ µ . (C, δ) z→ (C ′, δ′)}

(z ∈ Act ∪R+).

STC(TS) denotes the set of all common states reachable from µ0. Below we
will consider common states only from STC(TS). The leading relation on
common states of STC(TS) is extended to timed words from Dom(Act,R+

0 )
just as on the states of ST (TS).

Let µ = (C1, . . . , Cn, δ1, . . . , δn) 6= µ′ = (C ′
1, . . . , C

′
n, δ′1, . . . , δ

′
n). Then

µ ' µ′ iff (C1, . . . , Cn) = (C ′
1, . . . , C

′
n) and

(i) ∀1 ≤ i ≤ m . bδ1| . . . |δn(i)c = bδ′1| . . . |δ′n(i)c;
(ii) ∀1 ≤ i, j ≤ m .

– {δ1| . . . |δn(i)} ≤ {δ1| . . . |δn(j)} ⇐⇒
{δ′1| . . . |δ′n(i)}≤ {δ′1| . . . |δ′n(j)},

– {δ1| . . . |δn(i)} = 0 ⇐⇒ {δ′1| . . . |δ′n(i)} = 0,

where δ1| . . . |δn is the concatenation of vectors δ̄i (1 ≤ i ≤ n) and m =∑
1≤i≤n | Ci |.
A set R = [µ] = {µ′ | ∃π(n) µ ' π(n)(µ′)} is called a region of TS. We

define R0 = [µ0].
Let R and R′ be regions of TS. Then the leading relation on regions is

defined as follows:

• R
a→ R′ iff ∃µ ∈ R, µ′ ∈ R′ . µ

a→ µ′ (a ∈ Actτ );

• R
χ→ R′ iff ∃µ ∈ R, µ′ ∈ R′ ∃d ∈ R+ . µ

d→ µ′ ∧ ∀ 0 < d′ < d µ
d′→

µ̃ ∈ R ∪R′.
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We will call a partition of STC(TS) into regions stable if the following
holds:

• if R
a→ R′, then ∀µ ∈ R . µ

a→ µ′ for some µ′ ∈ R′ (a ∈ Actτ );

• if R
χ→ R′, then ∀µ ∈ R ∃d ∈ R+ . µ

d→ µ′ for some µ′ ∈ R′ and
µ

d′→ µ̃ ∈ R ∪R′ for all 0 < d′ ≤ d.

So, we can define the notion of a region graph of TS.

Definition 7. A region graph of TS is a tuple RG(TS) = (VRG, ERG, lRG),
where the set of vertices VRG is the stable partition of STC(TS), the set of
edges ERG is the leading relation on regions of VRG and the labelling function
lRG : ERG −→ Actτ ∪ {χ} is defined as l((R, R′)) = z ⇐⇒ R

z→ R′.

We define Der(R, z) = {R′ | R z→ R′}.

Lemma 1. Let R ∈ VRG. Then ∀µ, µ′ ∈ R ∀(C, δ) ∈ µ ∃ (C ′, δ′) ∈
µ′ . C = C ′ ∧ S((C, δ)) |Act= S((C ′, δ′)) |Act ∧ S((C, δ)) |R+= ∅ ⇐⇒
S((C ′, δ′)) |R+= ∅.

4.1. Adding of counters

Let RG(TS) be a region graph and X be a countable set of counters. Let
all the regions of RG(TS) get a unique number, then each region Ri is
associated with its own counter xRi . For simplicity, sometimes we will denote
xRi by xi.

Moreover, a tuple T = (RC(R), µR, σR, ∆R) is associated with each
region R, where RC(R) is the set of counters, µR = (〈C〉nR , 〈δ〉nR) ∈ R is
the region representative, the function σR : RC(R) −→ 2E×N associates a
pair, an event and a configuration number from µR, with each counter of
RC(R), ∆R : RC(R) → R+

0 is a time assignment of counters.
The counter xR is added to RC(R), if some event becomes enabled in

µR and this event is associated with xR by the function σR. Counters for
which there is no associated event are deleted from RC(R). The values of
counters (∆R) depend on the values 〈δ〉nR of µR.

4.2. Class graph

To receive the deterministic representation, the notion of a class [4] as the
τ -closure of regions is used.

Let RG(TS) = (VRG, ERG, lRG) and Q ⊆ VRG. A set Qτ = {R′ ∈
VRG | ∃R ∈ Q . R

ε⇒ R′} is called a class of TS. Define Q0 = {R0}τ , and
Der(Q, z) =

⋃
R∈Q Der(R, z).
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For classes Q,Q1 and z ∈ Act ∪ {χ}, the leading relation on classes is
given by: Q

z→ Q1, if Q1 = (Der(Q, z))τ .
We need the following notations.
S(Q) = {z ∈ Act ∪ {χ} | Q

z→}, QC(Q) =
⋃

R∈Q RC(R).

Definition 8. A class graph of TS is the labelled directed graph CG(TS)
= (VCG, ECG, lCG). The set of vertices VCG is the set of reachable classes
of TS, ECG is the leading relation on the classes of VCG and the labelling
function lCG : ECG −→ (Act ∪ {χ}).

5. Formula construction

For each class Q, a formula FQ is constructed. The characteristic formula
of TS consists of the formulas of classes.

In the formula, we use the notations Qa and Qχ, if Q
a→ Qa and Q

χ→ Qχ,
and we write its optional parts between 〈〈 and 〉〉. In addition, we suppose
R̂ ∈ Q such that R̂ 6 τ→, vis(R̂) = {M ∈ µR̂ | M 6 τ→}. The clocks x̂i

correspond to counters xi ∈ QC(Q), and the clock x̂ is used additionally.

FQ = ∀∀β(Q) ⇒ ψQ;
ψQ =

∧
a 6∈S(Q)|Act

[a]ff ∧ ∧
a∈S(Q)|Act

[a](〈〈XQa in〉〉 FQa) ∧
〈〈Fχ〉〉 ∧ 〈〈FQχ〉〉 ∧ (ACC(Q) ∨ 〈τ〉tt);

Informally, ψQ can be written as:

ψQ =
[ part for actions which

can’t be run in Q

] ∧ [ part for actions which
can be run Q

] ∧
〈〈 Qχ doesn’t exist〉〉 ∧ 〈〈 Qχ exists〉〉 ∧ [ modeling of Acc(TS, 〈w, d〉)].

The conditions β(Q) hold for the time assignment of states only from R̂.
Below we give the subformulas of ψQ and conditions on including them

into ψQ.

• XQa = {x̂ | x ∈ QC(Qa) \QC(Q)} is added, if it is not empty;

• Fχ = x̂ in (∀∀x̂ > 0 ⇒ ∧
a∈Actτ

[a]ff) is added into ψQ, if the class Qχ

does not exist;

• FQχ is added into ψQ, if there is the class Qχ;

• ACC(Q) =
∨

M∈vis(R̂)

(
(
∧

a∈S(M)|Act
〈a〉tt) ∧ 〈〈χ′〉〉 ∧ 〈〈Fall〉〉

)

• Fall =
∨

a∈Act[a]tt is added into ACC(Q) for all M ∈ µR̂ such that
S(M)) |Act= ∅;

• χ′ = x̂ in (∃∃x̂ > 0 ⇒ (
∨

a∈Actτ
〈a〉tt) is added into ACC(Q) for all

M ∈ µR̂ such that S(M) |R+ 6= ∅, i.e. time may pass in the state M .

For a timed event structure TS, a characteristic must-formula is defined
as F

must

TS = x̂0 in FQ0 .



Compositional methods in characterization of timed event structures 55

Theorem 1. [6] TS ≤must TS′ ⇐⇒ TS′ |=D F
must

TS , where D corre-
sponds to the previous definition of FQ for each Q from VCG(TS).

Using the defined identifiers and formulas, a characteristic may-formula
is constructed as follows.

F ′
Q = ∀∀β(Q) ⇒ φQ;

φQ =
∧

a 6∈S(Q)|Act
[a]ff ∧ ∧

a∈S(Q)|Act
〈a〉(〈〈XQa in〉〉 F ′

Qa
) ∧ 〈〈Fχ〉〉 ∧

〈〈FQχ〉〉.

Definition 9. For a timed event structure TS, a characteristic may-formula
is defined as F

may

TS = x̂0 in F ′
Q0

.

Theorem 2. [6] TS ≤may TS′ ⇐⇒ TS′ |=D′ F
may

TS , where D′ corre-
sponds to the previous definition of F ′

Q for each Q from VCG(TS).

6. Compositional methods

Let us consider timed event structures TS1 and TS2 from Eτ and their
characteristic must-formulas F

must

TS1
, F

must

TS2
. Suppose that their event sets do

not intersect.
Let TS1 and TS2 be substructures of TS such that the event set of TS

is a union of their event sets. We say TS is constructed from TS1 and
TS2 using the operator || (; or #) if the events of TS1 and TS2 are in
the pairwise ^-relation (#-relation or ≤-relation, respectively). In the case
of the operator ;, TS1 must be conflict free. Our aim is to construct the
characteristic must-formula for TS using characteristic must-formulas of its
substructures without constructing the region and class graphs of TS.

Suppose TS = TS1αTS2, where α ∈ {; , #, ||}.
Let K1 and K2 be non-intersecting sets of clocks and Id1 and Id2 be

non-intersecting sets of identifiers used in the characteristic must-formulas
F

must

TS1
and F

must

TS2
, and their meanings are specified by the declarations D1

and D2.
By definition, F

must

TS1
= x1

0 in F 1
0 and F

must

TS2
= x2

0 in F 2
0 .

6.1. Composition with operator ;

Suppose TS = TS1; TS2, where TS1 is a conflict free structure.
In the formula F

must

TS1
, there are subformulas for classes which are lists

in the class graph. Denote the set of such identifiers as LIST (TS1). By
construction, F 2

0 = ∀∀β(F 2
0 ) ⇒ ψ(F 2

0 ) and F 1 from LIST (TS1) are of the
form F 1 = ∀∀β(F 1) ⇒ ψ(F 1).

Let K = K1 ∪ K2 be the set of clocks and Id = Id1 ∪ Id2 be the set
of identifiers. Then the declaration D of Id coincides with D1 and D2 on



56 E.N. Bozhenkova

all identifiers except those from LISTS(TS1). For F 1 from LIST (TS1), we
define D(F 1) = x2

0 in ∀∀β(F 1) ⇒ ψ(F 2
0 ), i.e. we combine time conditions of

the list vertices of the class graph of TS1 with the main part of the formulas
of the initial class of TS2.

Let F = x1
0 in F 1

0 .

Theorem 3. F is the characteristic must-formula of TS with the declara-
tion D.

6.2. Composition with operator #

Suppose TS = TS1#TS2. Let K be the set of clocks and Id be the set of
identifiers, which do not intersect with K1 ∪K2 and Id1 ∪ Id2.

To connect clocks and identifiers from substructures formulas with those
from the structure formula, we will use the functions to : Id1 ∪ Id2 → Id,
to : K1 ∪K2 → K and from : K → (K1 ∪ {∗}) × (K2 ∪ {∗}). The clocks
x̂′ ∈ K1 ∪K2 and x̂ ∈ K will be called synchronized if to(x̂′) = x̂.

The main idea of construction of the characteristic must-formula for
TS is sequential consideration of formulas for classes of TS1 and TS2 and
composition of parts of these formulas.

Let F, F0 ∈ Id, x̂0 ∈ K, define F = x̂0 in F0.
Construct F0 as a composition F 1

0 #F 2
0 , where F 1

0 ∈ Id1, F 2
0 ∈ Id2.

By definition, the formula for the class F0 is of the form ∀∀β(F0) ⇒ ψF0 .
Define β(F0) = (x̂0 = 0) and construct ψF0 as a composition ψF 1

0
#ψF 2

0
.

Synchronize clocks as follows: to(x̂1
0) = to(x̂2

0) = x̂0, from(x̂0) = (x̂1
0, x̂

2
0).

ψF0 will be constructed as a composition ψF 1
0
#ψF 2

0
.

Beginning from F0, we construct identifiers from K. Let Fm be the
current identifier which we construct.

We suppose that β(Fm) has been defined already and ψFm must be con-
structed as ψF 1#ψF 2 for some identifiers F 1, F 2 from Id1, Id2, respectively.

In the following, we need notations for conditions on the clocks from K,
which are synchronized with only one clock from K1 ∪ K2. Let B1 be a
condition from the formula of TS1 and B2 be a condition from the formula
of TS2. We define Synchm(B1, B2) =

∧{{x̂i} < {x̂j} | {x̂i} < {x̂j} ∈
β(Fm), i 6= j ∈ {1, 2}, from(x̂1) = (x̂, ∗), from(x̂2) = (∗, ŷ), x̂ ∈ B1, ŷ ∈
B2} ∧

∧{{x̂i} = {x̂j} | {x̂i} = {x̂j} ∈ β(Fm), i 6= j ∈ {1, 2}, from(x̂1) =
(x̂, ∗), from(x̂2) = (∗, ŷ), x̂ ∈ B1, ŷ ∈ B2}.

By construction of the characteristic formulas, F 1 and F 2 areofthe form
F 1 = ∀∀β1 ⇒ ψ1 and F 2 = ∀∀β2 ⇒ ψ2, where

ψ1 =
∧

a∈S1 [a]ff ∧ ∧
a∈S1 [a](〈〈X1

a in〉〉 F 1
a ) ∧ 〈〈F 1

χ〉〉 ∧ 〈〈F 1
Qχ
〉〉 ∧

(ACC1 ∨ 〈τ〉tt);
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ψ2 =
∧

a∈S2 [a]ff ∧ ∧
a∈S2 [a](〈〈X2

a in〉〉 F 2
a ) ∧ 〈〈F 2

χ〉〉 ∧ 〈〈F 2
Qχ
〉〉 ∧

(ACC2 ∨ 〈τ〉tt)
and S1, S1 ⊆ Act, S1 = Act \ S1, S2, S2 ⊆ Act, S2 = Act \ S2.

Then
ψFm =

∧
a∈S1∩S2 [a]ff ∧ ∧

a∈S1∪S2 [a](〈〈Xa in〉〉 Fa) ∧ 〈〈Fχ 〉〉 ∧ 〈〈FQχ 〉〉 ∧
(ACC ∨ 〈τ〉tt).

Let us consider how to define parts of ψFm .

a) The acceptance set is modeled as ACC = ACC1 ∨ACC2.

b) If the action a ∈ Act can not be executed in both substructures, it can
not be executed in TS, therefore, we include it into the corresponding
part of the formula TS.

c) If theaction a ∈ Act can be executed in both substructures, then the
corresponding part Fa will be found as a composition of subformulas
of the substructures formulas F 1

a #F 2
a .

d) If the action a ∈ Act can be executed only in the substructure TS1

(TS2) (i.e. a ∈ S1 \ (S1 ∩ S2) (a ∈ S2 \ (S1 ∩ S2), respectively)), then
Fa = to(to(F 1

a )), (Fa = to(to(F 2
a )), respectively). A composition of

functions to(to(F 1
a )) replace all clocks and identifiers from K1 and Id1

by those from K and Id.

e) For each a ∈ S1 ∩ S2 (which can be executed in both substructures),
we define timed conditions for the identifier Fa.

– If X1
a and X2

a are both non-empty and x̂1 ∈ X1
a , x̂2 ∈ X2

a , then
we add a new clock x̂Fa and synchronize it with the corresponding
ones from X1

a and X2
a : Xa = {x̂Fa}, to(x̂1) = x̂Fa , to(x̂2) = x̂Fa ,

from(x̂Fa) = (x̂1, x̂2).

If one of Xi
a is empty, then ∗ is used in from(x̂m) instead. If both are

empty, then Xa is empty.

– If β is a set of conditions with clocks from K1∪K2, then an extension
of the function to to β gives the condition β with replacing all clocks
from K1 ∪K2 by the corresponding values of the function to.

We construct the condition β(Fa) such that it includes the correspond-
ing conditions of the substructures formulas and additional conditions
for clocks, for which only one synchronized clock exists K1 or K2,
namely, if we add a new counter which is synchronized only with the
counter from one substructure, we include the relation of the new
counter with counters from another substructure. For keeping similar
relations defined in the previous steps, we use Synchm(β(F 1

a ), β(F 2
a )).

So,

β(Fa) = to(β(F 1
a )) ∧ to(β(F 2

a )) ∧ rel(xm, a) ∧ Synchm(β(F 1
a ), β(F 2

a )),
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where rel(xm, a) =
∧{{xm} < y} | y from to(β(F 1

a )) if (X1
a = ∅ ∧

X2
a 6= ∅) and y from to(β(F 2

a )) if (X2
a = ∅ ∧ X1

a 6= ∅)}.
– Define ψFa as a composition ψF 1

a
#ψF 2

a
.

f) – If there is no F 1
Qχ

and F 2
Qχ

, then Fχ is included.

– If there is only F 1
Qχ

(or F 2
Qχ

), then FQχ = to(to(F 1
Qχ

)) (FQχ =
to(to(F 2

Qχ
)), respectively).

– Suppose F 1
Qχ

and F 2
Qχ

both exist. By definition, existence of F i
Qχ

corresponds to the relation
χ→ on classes and, therefore, to a change of

the order on fractional parts and/or to a change of the integral part
of counters. So, we need to understand what to prefer: the change of
counters of TS1 or of TS2. The change in the integral part is perfomed
earlier, so, we will find the clocks which are changing in the integral
part, and in the case of its absence, we consider which fractional part
is larger.

First, propose some auxiliary notations.

Let A1, A2, β be conditions on the clocks from K.

Diff(A1, A2) = {x̂ | there exists an equality (x̂ = c) in Ai and there
exists an inequality (b < x̂ < b + 1) in Aj for some c, b ∈ N0, i 6= j ∈
{1, 2}}
So, for for each F i (i = 1, 2), the set Diff(to(βi), to(β(F i

Qχ
))) includes

the clocks which were changed.

Let i 6= j ∈ {1, 2}, for Ai s.t. Diff(Ai, Ai) 6= ∅ define the relation
mβ as follows: Ai mβ Aj iff Diff(Aj , Aj) 6= ∅ and there exists x̂j ∈
Diff(Aj , Aj), x̂i ∈ Diff(Ai, Ai) s.t. for some a ∈ N0, there exists
either (({x̂j} > {x̂i}) ∧ (x̂i = c)) or (({x̂j} < {x̂i}) ∧ (c < x̂i < c + 1))
in β.

Now we are ready to construct β(FQχ):

1. There exist changes on clocks from K which are synchronized
with the clocks from both substructures formulas, i.e.
Diff(to(β1), to(β(F 1

Qχ
))) ∩Diff(to(β2), to(β(F 2

Qχ
))) 6= ∅

Then we take the conditions from F i
Qχ

and keep relations between
counters synchronized only with one counter:
β(FQχ) = to(β(F 1

Qχ
))∧to(β(F 2

Qχ
))∧Synchm(β(F 1

Qχ
), β(F 2

Qχ
))[A].

Since the order on fractional parts is changed with changing in
integral part, namely, the largest became the smallest, we replace
the inequalities for the clocks such that there exists an inequality
of the form b < x̂ < b + 1 in β(Fm).
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Synchm[A] is Synchm after replacing {ŷ} < {x̂} by {x̂} < {ŷ},
where x̂ ∈ A.
A = ∅, if for some x̂ ∈ Diff(to(β1), to(β(F 1

Qχ
))) and some

b ∈ N0, there exists an equality (x̂ = b) in β , otherwise A =
Diff(to(β1), to(β(F 1

Qχ
))) ∪Diff(to(β2), to(β(F 2

Qχ
))).

Define ψFQχ
as a composition ψF 1

Qχ
#ψF 2

Qχ
.

2. There exist changes in the clocks synchronized with the clocks
from only one of the substructures formulas, i.e.
Diff(to(β1), to(β(F 1

Qχ
))) ∩Diff(to(β2), to(β(F 2

Qχ
))) = ∅

If changes occur in the clocks from formulas of both substructures,
then the condition is constructed as in the previous item (1). Else

– Suppose βi mβ(Fm) βj for i 6= j ∈ {1, 2}. Then β(FQχ) =
to(β(F i

Qχ
)) ∧ to(βj) ∧ Synchm(β(F i

Qχ
), βj)[A].

A = ∅, if for some x̂ ∈ Diff(to(βi), to(β(F i
Qχ

))) and some
b ∈ N0 there exists a condition (x̂ = b) in β(Fm),
otherwise A = Diff(to(βi), to(β(F i

Qχ
))).

And ψFQχ
is defined as a composition ψF i

Qχ
#ψF j .

– if it is not true that β1mβ(Fm)β
2 or β2mβ(Fm)β

1, then β(FQχ)
is constructed as in item (1) and ψFQχ

is defined as a com-
position ψF 1

Qχ
#ψF 2

Qχ
.

We would like to show that F is the characteristic must-formula of TS.
We will construct in a similar way the class graph of TS and show that
the characteristic formula F (Q) for each class coincides with some identifier
Fi from Id. Since a tuple of attributes T of the region R̂ (R̂ 6 τ→) is used
for constructing characteristic formulas, we will also construct a tuple of
attributes for R̂ of each class.

Let GC(TS1) and GC(TS2) be graph classes of TS1, TS2. Construct a
graph GC ′(TS) as a composition GC(TS1)#GC(TS2) (see Appendix).

Lemma 2. The graph GC ′(TS) = GC(TS1)#GC(TS2) is the class graph
of TS.

Proof is given by induction on classes reachable from the initial class
Q0. ¤

Theorem 4. The formula F is the must-characteristic formula of TS.

¤
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6.3. Composition with operator ||
Suppose TS = TS1||TS2. Under assumptions on the sets of clocks, identi-
fiers and functions to and from of the previous section, we will construct F0

from Id as a composition F 1
0 ||F 2

0 . Define β(F0) = (x̂0 = 0). We construct
ψF0 as a composition ψF 1

0
||ψF 2

0
.

So, beginning from F0, we will construct the subformulas Fi ∈ Id. Let
Fm be a current identifier which we are constructing.

We suppose that β(Fm) has been allready defined and ψFm must be
constructed as ψF 1 ||ψF 2 for some identifiers F 1, F 2 from Id1 and Id2, re-
spectively.

By definition, ψFm has the form:
ψFm =

∧
a∈S1∩S2 [a]ff ∧ ∧

a∈S1∪S2 [a](〈〈Xa in〉〉 Fa) ∧ 〈〈Fχ 〉〉 ∧ 〈〈FQχ 〉〉

a) If X1
a and X2

a are both non-empty and x̂1 ∈ X1
a , x̂2 ∈ X2

a , then
Xa = {x̂a}, to(x̂1) = x̂a, to(x̂2) = x̂a, from(x̂a) = (x̂1, x̂2). If both
are empty, then Xa is empty.

For Fa, the condition β(Fa) is defined as:
β(Fa) = to(β(F 1

a )) ∧ Synchm(β(F 1
a ), β(F 2

a )) ∧ to(β(F 2
a )) ∧ rel(xa, a),

ψ(Fa) is defined as a composition ((ψ(F 1
a )||ψ2)||(ψ1||ψ(F 2

a )).

b) If F 1
Qχ

and F 2
Qχ

both exist, then construction is similar to the corre-
sponding case for the operation #.

c) If there is F i
χ for one of i ∈ {1, 2}, then Fχ is included.

Let F ′ ∈ Id. Define F ′ = x̂0 in F0.

Theorem 5. The formula F ′ is the must-characteristic formula of TS.

¤

7. Conclusion

The characteristic formula allows us to decide the problem of recognizing the
timed must-equivalence by reducing it to the model-checking one. This ar-
ticle is concentrated on constructing a characteristic formula for timed event
structures which can be represented as a composition of its substructures.
We develop the methods of composition of the characteristic must-formulas
of substructures for operators of causality, concurrency and conflict. It is
obvious that identifiers and declarations defined here could be easily used
for constructing the characteristic may-formulas for all these operators.
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8. Appendix. Construction of the class graph of TS1#TS2

Let GC(TS1) and GC(TS2) be the graph classes of TS1, TS2. Construct a
graph GC ′(TS) as a composition GC(TS1)#GC(TS2) Define to′ : QC(TS1)∪
QC(TS2) → QC(TS); from′ : QC(TS) → QC(TS1)×QC(TS2).

Let Q0 be the initial class constructed as Q1
0#Q2

0 with attributes µ(Q0) =
{(∅, 0)}, QC(Q0) = {x0}, σ(Q0)(x0) = (e0, 1), ∆(Q0)(x0) = 0.

Suppose that we construct the class Qm as a composition Q1 ∈ GC(TS1)
and Q2 ∈ GC(TS2). Note that n1 =| µ(Q1) |, n2 =| µ(Q2) |.

Then the attributes are defined as follows: µ(Qm) = µ(Q1)
⊎

µ(Q2),
where

⊎
is defined as Ci = Ci(Q1) for i = 1, . . . , n1 , Cn1+i = Ci(Q2) for

i = 1, . . . , n2 ,
δi |E1= δ1

i , δi |E2= δ1
i (e0), i = 1, . . . , n1 ,

δn1+i |E2= δ2
i , δn1+i |E1= δ2

i (e0), i = 1, . . . , n2 (i.e. the functions δ1
i and

δ2
i are extended to the set E),

σ(Qm)(x) =
{

(e, l), if to(x1) = x′ ∧ σ(Q1)(x1) = (e, l)
(e, n1 + l), if to(x2) = x′ ∧ σ(Q2)(x2) = (e, l)

The actions which are executable in substructures are also executable in
TS. Therefore, S(Qm) = S(Q1

l ) ∪ S(Q2
k).

a) Suppose that Q1 a→ Q1
a, Q2 a→ Q2

a, then Qm
a→ Qm′ , where Qm′ is a

composition Q1
a#Q2

a.

If there exist new counters in the classes of substructures xi ∈ QC(Qi)\
QC(Qi

a) (i = 1, 2), then we add a new counter for a class of TS
QC(Qa) = QC(Q) ∪ {xa}, to′(xi) = xa, from′(xa) = (x1, x2) and

∆(Qm′)(x) =
{

∆(Q1
a)(x

′), if from′(x) = (x′, y);
∆(Q2

a)(y), if from′(x) = (∗, y).

b) If χ exists only in S(Qi) (i = 1, 2 ), then Qm
χ→ Qm′ with T (Qm′) =

T (R̂i
χ), R̂i

χ ∈ Qi
χ and Qm′ is a composition Qi

χ # ∗.
c) Suppose that Q1 χ→ Q1

χ and Q2 χ→ Q2
χ. We have to choose one of these

transitions. Analogously to the similar case of formula construction,
we find counters with a change in the integral or fractional parts and
an order on them.

So, let Q1, Q2 be classes of TS1 and TS2, respectively.

Diff(Q1, Q2) = {to′(x) | x in QC(Qi) s.t. ∆Qi(x) = c and
(b < ∆Qj (x) < b + 1) for some c, b ∈ N, i 6= j ∈ {1, 2}}
Suppose that Diff(Q1, Q1) 6= ∅ and define the relation mQ as follows:
Q1 mQ Q2 iff Diff(Q2, Q2) 6= ∅ and there exist x2 ∈ Diff(Q2, Q2)
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and x1 ∈ Diff(Q1, Q1) s.t. for some b ∈ N0 either ({∆(xj)} >
{∆(xi)} ∧∆(xi) = b) or ({∆(xj)} < {∆(xi)} ∧ b < ∆(xi) < b + 1) in
Q.

If change occurs in the counters which rely with counters from both
substructures, then transition

χ→ is taken from both, else choise de-
pends on mQ.

1. Diff(QC(Q1), QC(Q1
χ))) ∩Diff(QC(Q2), QC(Q2

χ))) 6= ∅.
Then Qm

χ→ Qm′ , where Qm′ is constructed as a composition
Q1

χ#Q2
χ, QC(Qm′) = to(QC(Q1

χ)) ∪ to(QC(Q2
χ)).

∆(Qm′)(x) =
{

∆(Q1
a)(x

′), if from′(x) = (x′, y);
∆(Q2

a)(y), if from′(x) = (∗, y).

2. Diff(QC(Q1), QC(Q1
χ))) ∩Diff(QC(Q2), QC(Q2

χ))) = ∅.
– Qi mQm Qj for i 6= j ∈ {1, 2}. Then Qm

χ→ Qm′ , where
Qm′ is constructed as a composition Qi

χ#Qj , QC(Qm′) =
to(QC(Qi

χ)) ∪ to(QC(Qj)) and

∆(Qm′)(x) =
{

∆(Q1
a)(x

′), if from′(x) = (x′, y);
∆(Q2

a)(y), if from′(x) = (∗, y).

– if it is not true that Q1 mQm Q2 or Q2 mQm Q1, then Qm′ is
constructed as in item (1).

Suppose that we construct the class Qm as a composition Q1 ∈ GC(TS1) and
∗. Then all leading relations from Qm, the classes reachable from Qm and a
tuple of attributes for them are copies of the leading relations and the classes
reachable from Q1 in the graph class TS1. The tuple of attributes is extended
from the tuple for R̂ for the corresponding class of TS1. The extension means
that, in the representative state µ = (〈C〉n, 〈δ〉n), the functions from 〈δ〉n
are extended to E as 〈δ〉n(e) = 〈δ〉n(e0) for e 6∈ E1.


