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Towards deidability of timed testing

?

E.N. Bozhenkova

In the paper, we onstrut a formula that haraterizes a timed event struture up to

the timed must-preorder.

1. Introdution

An important omponent of every proess theory is a notion of equivalene

between proesses. Typially, equivalenes are used in the setting of spei�-

ation and veri�ation both to ompare two distint systems and to redue

the struture of a system. Over the past several years, a variety of equiv-

alenes have been proposed, and the relationship between them has been

quite well-understood (see, for example, [9℄).

Among the major equivalenes are testing ones presented in [8℄. Two

proesses are onsidered to be testing equivalent, if there is no test that

an distinguish them. A test itself is usually a proess applied to another

proess by omputing them together in parallel. A partiular omputation is

onsidered to be suessful, if the test reahes a designated suessful state,

and the proess passes the test if every omputation is suessful. This notion

is intuitively appealing; it has led to a well-developed mathematial theory

of proesses that ties together the equivalenes and preorders. However, no

haraterization of these equivalenes has led to an algorithmi solution

for �nite-state proesses. Therefore, testing deision proedures are based

on redution of testing to bisimulation [6℄. These equivalenes have been

onsidered for formal system models without time delays [1, 6, 8, 10℄.

Reently, testing equivalenes have been developed for models with time.

One of the papers [13℄ devoted to this subjet investigates di�erent betting

semantis of "must" win and "may" win, taken from the testing methodol-

ogy, in the ontext of an event struture model with delayed ations. Papers

[7℄ and [14℄ have treated timed testing for disrete and dense time transition

models, respetively. The latter paper also tries to provide a testing deision

proedure that uses the untimed bisimulation between deterministi graphs

built from mutually re�ned timer region graphs that are a �nite abstration

of the operational semantis of the model under onsideration.
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In paper [4℄, a framework for testing preorders and equivalenes in the

setting of timed event strutures has been developed. But as for the har-

aterization and the deision proedure, it turns out that the results of [14℄

were not the ase for some timed event strutures. Sine these timed event

strutures an be easily transformed to timed transition systems, it seems

that the results of [14℄ are valid only for some sublass of timed transition

systems. So, we try to give the alternative haraterization of the timed

testing relations. Moreover, we have found a sublass of strutures in whih

we ould redue timed testing relations to the orresponding variants of

symboli bisimulations.

This paper is devoted to deidability of timed must-equivalenes for

timed event strutures. We try to redue this problem to the model-heking

one. As a basi logi, we take the timed logi L

�

. This logi has been de�ned

in [12℄ and used for onstrution of a harateristi formula for a timed

automaton up to the timed bisimilarity and, as a onsequene, for redution

of the timed bisimilarity deidability problem to the model-heking one. It

is known that the latter problem is deidable.

Here we onstrut a harateristi formula up to the timedmust-preoders.

We do it only for timed event strutures without internal ations, but this

approah an be used for those with internal ations, too.

The rest of the paper is organized as follows. In Setion 2, we remind the

basi notions onerned with timed event strutures and timed testing. The

timed modal logi L

�

is desribed in Setion 3. In Setion 4, we onstrut a

formula whih haraterizes a timed event struture up to the timed must-

preoder.

2. Timed event strutures

In this setion, we introdue a model of timed event strutures that is a

real time extension of Winskel's model of prime event strutures [15℄ by

equipping events with time intervals.

We �rst reall a notion of an event struture. The main idea behind event

strutures is to view the distributed omputations as ation ourrenes,

alled events, together with a notion of ausal dependene between events

(whih are reasonably haraterized via a partial order). Moreover, to model

nondeterminism, there is a notion of oniting (mutually inompatible)

events. A labelling funtion determines whih ation orresponds to an event.

Let At be a �nite set of visible ations and � be an internal ation. Then

At

�

= At [ f�g.

De�nition 1. A (labelled) event struture over At

�

is a 4-tuple S=(E;�;

#; l), where
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� E is a ountable set of events;

� � � E � E is a partial order (the ausality relation) satisfying the

priniple of �nite auses: 8e 2 E : fe

0

2 E j e

0

� eg is �nite;

� # � E�E is a symmetri and irreexive relation (the onit relation)

satisfying the priniple of onit heredity: 8e; e

0

; e

00

2 E : e # e

0

� e

00

) e #e

00

;

� l : E ! At

�

is a labelling funtion.

Let C � E. Then C is left-losed i� 8e; e

0

2 E : e 2 C ^ e

0

� e )

e

0

2 C; C is onit-free i� 8e; e

0

2 C : :(e # e

0

); C is a on�guration

of S i� C is left-losed and onit-free. Let Conf(S) denote the set of all

on�gurations of S. For C 2 Conf(S), we de�ne the set of events enabled

in C En(C) = fe 2 E j C [ feg 2 Conf(S)g.

In the following, we will onsider only �nite event strutures, i.e., the

strutures whose sets of events are �nite.

Before introduing the onept of a timed event struture, we need to

propose some auxiliary notations. Let N

0

be the set of natural numbers

with zero, R

+

be the set of positive real numbers, and R

+

0

be the set of

nonnegative real numbers. For any d 2 R

+

0

, fdg denotes its frational part,

bd and dde | its smallest and largest integer parts, respetively. Let us

de�ne the set Interv(R

+

0

) = f(d

1

; d

2

); (d

1

; d

2

℄; [d

1

; d

2

); [d

1

; d

2

℄ � R

+

0

j d

1

; d

2

2 N

0

g.

We are now ready to introdue the onept of timed event strutures.

De�nition 2. A (labelled) timed event struture over At

�

is a pair TS =

(S;D), where

� S = (E;�;#; l) is a (labelled) event struture over At

�

;

� D : E ! Interv(R

+

0

) is a timing funtion suh that D(e) is a losed

interval from Interv(R

+

0

) for all e 2 E with l(e) 2 At.

In a graphi representation of a timed event struture, the orresponding

ation labels and time intervals are drawn lose to events. If no onfusion

arises, we will often use ation labels instead of the event identi�ers to denote

events. The <-relations are depited by ars (omitting those derivable by

transitivity), and onits are depited by \#" (omitting those derivable by

the onit heredity). Following these onventions, a trivial example of a

labelled timed event struture is shown in Figure 1.

Let E

�

denote the set of all labelled timed event strutures over At

�

.

For onveniene, we �x timed event strutures TS = (S = (E;�;#; l);D),

TS

0

= (S

0

= (E

0

;�

0

;#

0

; l

0

);D

0

) from the lass E

�

and work with them

further.
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TS

1

a : e

1

[0; 1℄
b : e

2

[0; 1℄

� : e

3

[0; 1)

#

-

Figure 1

A state of TS is a pairM = (C; Æ), where C 2 Conf(S) and Æ : E ! R

+

0

.

The initial state of TS is M

TS

= (C

0

; Æ

0

) = (;; 0). A state M = (C; Æ) is

said to be terminated, if En(C) = ;. Let ST (TS) denote the set of all states

of TS.

A timed event struture progresses through a sequene of states in one

of two ways given below.

Let M

1

= (C

1

; Æ

1

);M

2

= (C

2

; Æ

2

) 2 ST (TS) suh that M

1

is a non-

terminated state. An event e 2 En(C

1

) may our in M

1

(denoted M

1

e

!)

if Æ

1

(e) 2 D(e) and 8e

0

2 En(C

1

) 9d 2 R

+

0

: Æ

1

(e

0

) + d 2 D(e). We write

M

1

a

!, if M

1

e

! and l(e) = a. The ourrene of e in M

1

leads to M

2

(denoted M

1

e

!M

2

), if M

1

e

!, C

2

= C

1

[ feg and

Æ

2

(e

0

) =

�

0; if e

0

2 En(C

2

) n En(C

1

);

Æ

1

(e

0

); otherwise:

We write M

1

a

!M

2

, if M

1

e

!M

2

and l(e) = a.

A time d 2 R

+

may pass in M

1

(denoted M

1

d

!), if 8e 2 En(C

1

) 9d

0

2

R

+

0

(d

0

� d) : Æ

1

(e) + d

0

2 D(e). The passage d in M

1

leads to M

2

(denoted

M

1

d

!M

2

), if C

2

= C

1

and Æ

2

(e) = Æ

1

(e) + d for all e 2 E.

The weak leading relation) on states of TS is the largest relation de�ned

by:

�

)()

�

!

�

and

x

)()

�

)

x

!

�

), where

�

!

�

is the reexive and transitive

losure of

�

! and x 2 At [R

+

. We onsider the relation

d

) as possessing

the time ontinuity property: M

d

1

+d

2

=) () M

d

1

)

d

2

) for some d

1

; d

2

2 R

+

.

From now on, we shall use the following notions and notations. Let

At(R

+

0

) = fa(d) j a 2 At ^ d 2 R

+

0

g be the set of timed ations

of At over R

+

0

. Then (At(R

+

0

))

�

is the set of �nite timed words over

At(R

+

0

). The funtion 4 : (At(R

+

0

))

�

! R

+

0

measuring the duration

of a timed word is de�ned by: 4(�) = 0; 4(w:a(d)) = 4(w) + d. The

domain for real-time languages is denoted by Dom(At; R

+

0

) = fhw; di j

w 2 (At(R

+

0

))

�

; d 2 R

+

0

; d � 4(w)g. The weak leading relation ) is

extended to timed words from (At(R

+

0

))

�

and Dom(At; R

+

0

) as follows.

Let d 2 R

+

0

; d

0

2 R

+

; a 2 At and w 2 (At(R

+

0

))

�

. Then

if M

a

)M

0

, then M

a(0)

) M

0

; if M

d

0

)

a

)M

0

, then M

a(d

0

)

) M

0

;

if M

w

)

a(d)

) M

0

, then M

w:a(d)

=) M

0

; if M

w

)M

0

, then M

hw; 4(w)i

=) M

0

;

if M

hw;di

=)

d

0

)M

0

, then M

hw; d+d

0

i

=) M

0

.
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The set L(TS) = fhw; di 2 Dom(At;R

+

0

) j M

TS

hw;di

=)g is the language of

TS. For instane, for the timed event struture TS

1

(see Figure 1) we have

L(TS

1

) = fh�; d

1

i; h�; 1i, ha(d

1

); d

1

+ d

2

i, ha(1); 1i, ha(d

1

)b(d

2

); d

1

+ d

2

i j

d

1

+ d

2

< 1g.

The timed testing relations may be de�ned in terms of the responses

of timed event strutures to a olletion of tests. We shall, however, use

an alternative haraterization that relies on the following de�nitions. Let

M 2 ST (TS) and hw; di 2 Dom(At; R

+

0

). Then S(M) = fx 2 At

�

[R

+

j

M

x

!g and A(TS; hw; di) = fS(M

0

) j M

TS

hw; di

=) M

0

; M

0

6

�

!g (timed

aeptane set). Let N;N

0

� 2

At[R

+

. Then N �� N

0

() 8S 2

N 9S

0

2 N

0

: [(S

0

j

At

� S j

At

) ^ (S j

R

+
= ; ) S

0

j

R

+
= ;)℄; N � N

0

()

N �� N

0

^ N

0

�� N .

De�nition 3.

� TS �

must

TS

0

() 8hw; di 2 Dom(At;R

+

0

) : A(TS

0

; hw; di) ��

A(TS; hw; di);

� TS '

must

TS

0

() TS �

must

TS

0

and TS

0

�

must

TS.

An example of timedmust-equivalent strutures is shown in Figure 2(a).

The timed event strutures TS

3

and TS

0

3

shown in Figure 2(b) are not timed

must-equivalent. Let us onsider the timed word hw; di = ha(0:5); 1:5i 2

L(TS

3

) \ L(TS

0

3

). We have A(TS

3

; hw; di) = ffb; g [ (0; 1℄g, A(TS

0

3

;

hw; di) = ffb; g[ (0; 1℄; fgg, i.e., :(A(TS

0

3

; hw; di) �� A(TS

3

; hw; di)).

a a

�

[1; 1℄ [1; 1℄

[0; 1℄

TS

2

a

�

[1; 1℄

[0; 1℄

TS

0

2

a

�

[1; 1℄

[0; 1℄

#

[0; 1℄

a

b



#

[2; 3℄

[0; 2℄

1

q

TS

3

[0; 1℄

a

b



#

[2; 3℄

[0; 2℄

1

q

TS

0

3

[0; 1℄

a 

[0; 1℄

-

#

(a)

(b)

# #

-

�

[0; 1℄

#

Figure 2
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3. Timed modal logi

In [12℄, a dense-timed logi L

�

was onsidered. Here we shall reall it and

modify a satis�ability relation for timed event strutures.

De�nition 4. Let K be a �nite set of loks, Id be a set of identi�ers and

k be an integer. The set of formulas of L

�

over K, Id and k is generated by

the abstrat syntax with � and  ranging over L

�

:

� := tt j ff j � ^  j � _  j 99� j 88� j hai� j [a℄� j x in � j x+ n ./ y +m j

x ./ m j Z,

where a 2 At, x; y 2 K, n;m 2 f0; 1; : : : ; kg, ./2 f=; <;�; >;�g and

Z 2 Id.

The meaning of the identi�ers from Id is spei�ed by a delaration D

that assigns a formula of L

�

to eah identi�er. When D is lear, we write

Z := � for D(Z) = �. The K loks are alled formula loks and a formula

� is said to be losed if every formula lok x ours in � in the sope of

an \x in . . . " operator. Given a timed event struture TS, we interpret the

formulas from L

�

over an extended state (C; Æu), where (C; Æ) is a state of

TS and u is a time assignment for K. Transitions between extended states

are de�ned by: (C; Æu)

�(d)

! (C; (Æ + d)(u + d)) and (C; Æu)

a

! (C

0

; Æ

0

u

0

) i�

(C; Æ)

a

! (C

0

; Æ

0

) and u = u

0

. Formally, the satisfation relation between

extended states and formulas is de�ned as follows:

De�nition 5.

1

Let TS be a timed event struture and D be a delaration.

The satisfation relation j=

D

is the largest one that satis�es the following

impliations:

(C; Æu) j=

D

tt ) true;

(C; Æu) j=

D

ff ) false;

(C; Æu) j=

D

� ^  ) (C; Æu) j=

D

� and (C; Æu) j=

D

 ;

(C; Æu) j=

D

99� ) 9d 2 R : (C; Æ + du+ d) j=

D

�;

(C; Æu) j=

D

hai� ) 9(C

0

; Æ

0

) 2 ST (TS) : (C; Æ)

a

! (C

0

; Æ

0

)

and (C

0

; Æ

0

u) j=

D

�;

(C; Æu) j=

D

x+m ./ y + n ) u(x) +m ./ u(y) + n;

(C; Æu) j=

D

x in � ) (C; Æu

0

) j=

D

�; where u

0

= [fxg ! 0℄u;

(C; Æu) j=

D

Z ) (C; Æu) j=

D

D(Z):

Any relation that satis�es the above impliations is alled a satis�ability

relation. We say that TS satis�es a losed formula � from L

�

and write

TS j= � when (C

0

; Æ

0

u) j=

D

� for any u. Note that if � is losed, then

(C; Æu) j=

D

� i� (C; Æu

0

) j=

D

� for any u; u

0

2 R

+

0

K

.

1

For the omplete de�nition, see [12℄.
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4. Formula onstrution

Further we restrit our model to timed event strutures labelled only over

At.

Sine a timed event struture is de�ned over a dense time domain, the

number of its states is in�nite. In order to get a disrete representation

of the state-spae of a timed event struture, we use the onept of regions

(equivalene lasses of states) [2℄. But we do not onstrut regions over states

of ST (TS) for the following reasons.

One of the problems we meet when trying to develop an algorithm of

deidability of timed testing [4℄ is existene of several regions whih ontain

states reahable by the same timed word. So, we onstrut a region over

states that unite all states of TS whih we get by passing some time word.

By doing so, we want to exlude nondeterminism when progressing in a

timed event struture from state to state. For this purpose we de�ne the

notion of ommon states of TS.

The other problem is to synhronize ations being exeuted in two timed

event strutures. Here we deide it by inluding ounters into regions of one

timed event struture in order to restrit states of the seond one for whih

a region formula has to be heked.

Some subset of ST (TS) is alled a ommon state of TS, i.e., � � ST (TS)

is a ommon state of TS. We shall sometimes denote � as (C

1

; : : : ; C

n

; Æ

1

; : : :;

Æ

n

), where (C

i

; Æ

i

) 2 � (1 � i � n) and En(�) =

S

fEn(C) j C 2 �g. The

initial ommon state of TS is �

0

= fM

TS

g. The relation

z

! is modi�ed

on ommon states as follows: �

z

! �

0

= f(C

0

; Æ

0

) j 9(C; Æ) 2 � : (C; Æ)

z

!

(C

0

; Æ

0

)g, where z 2 At [ R

+

. Let STC(TS) denote the set of all om-

mon states reahable from �

0

. The leading relation on ommon states of

STC(TS) is extended to timed words from Dom(At;R

+

0

) just as on the

states of ST (TS).

Then the notion of region is de�ned analogously to Alur's one. Let

� = (C

1

; : : : ; C

n

; Æ

1

; : : : ; Æ

n

) 6= �

0

= (C

0

1

; : : : ; C

0

n

; Æ

0

1

; : : : ; Æ

0

n

). Then � ' �

0

i� there exists renaming �(n) : l ! �(n)(l), where l = 1; : : : n, suh that

(C

1

; : : : ; C

n

) = (C

0

�(n)(1)

; : : : ; C

0

�(n)(n)

) and

(i) 81 � i � m : bÆ

1

j : : : jÆ

n

(i) = bÆ

0

�(n)(1)

j : : : jÆ

0

�(n)(n)

(i);

(ii) 81 � i; j � m :

| fÆ

1

j : : : jÆ

n

(i)g � fÆ

1

j : : : jÆ

n

(j)g () fÆ

0

�(n)(1)

j : : : jÆ

0

�(n)(n)

(i)g�

fÆ

0

�(1)

j : : : jÆ

0

�(n)

(j)g;

| fÆ

1

j : : : jÆ

n

(i)g = 0 () fÆ

0

�(n)(1)

j : : : jÆ

0

�(n)(n)

(i)g = 0,
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where Æ

1

j : : : jÆ

n

is the onatenation of vetors Æ

i

(1 � i � n) and m =

P

1�i�n

j C

i

j.

A set R = [�℄ = f�

0

j � ' �

0

g is alled a region of TS. We de�ne

R

0

= [�

0

℄. Let R and R

0

be regions of TS. Then the leading relation on

regions is de�ned as follows: R

a

! R

0

i� 9� 2 R; �

0

2 R

0

: �

a

! �

0

(a 2 At);

R

�

! R

0

i� 9� 2 R; �

0

2 R

0

9d 2 R

+

: �

d

! �

0

^ 8 0 < d

0

< d �

d

0

! e� 2 R[R

0

.

The leading relation on regions is extended to timed words fromDom(At;

R

+

0

) just as on the states of ST (TS).

We shall all a partition of STC(TS) into regions stable if the following

holds: ifR

a

! R

0

, then 8� 2 R : �

a

! �

0

for some �

0

2 R

0

(a 2 At); ifR

�

! R

0

,

then 8� 2 R 9d 2 R

+

: �

d

! �

0

for some �

0

2 R

0

and �

d

0

! e� 2 R[R

0

for all

0 < d

0

� d. So, we an de�ne the notion of region graph of TS RG(TS) =

(V

RG

; E

RG

; l

RG

). The set of verties V

RG

is a stable partition of STC(TS),

the set of edges E

RG

is the leading relation on regions of V

RG

, the labelling

funtion l

RG

: E

RG

�! At[f�g is de�ned as: l((R;R

0

)) = z () R

z

! R

0

.

For orretness of our formula onstrution we need to introdue the

following notion.

De�nition 6. Let hw; di 2 L(TS) and RG(TS) = (V

RG

, E

RG

, l

RG

). Let

p = R

0

: : : R be a path in RG(TS). Then � 2 STC(TS) is reahable by

hw; di onsistent with p i� � 2 R and either

� p = R

0

and hw; di = h�; 0i,

or

� p = p

0

z

! R and there exists �

0

2 STC(TS) reahable by hw

0

; d

0

i

onsistent with p

0

and either

{ z = a 2 At, �

0

a

!

d

00

! � and hw; di = hw

0

a(d

0

��(w

0

); d

0

+ d

00

i for

some d

00

2 R

+

0

,

or

{ z = �, �

0

d

00

! � and hw; di = hw

0

; d

0

+ d

00

i for some d

00

2 R

+

.

Note that �

0

hw;di

) � () 8(C; Æ) 2 � (C

0

; Æ

0

)

hw;di

=) (C; Æ). Moreover,

for any hw; di there exists only one � 2 STC(TS) suh that �

0

hw;di

=) �.

Consequently, R and path p from R

0

to R, suh that � is reahable by

hw; di onsistent with p, are unique.

Lemma 1. Let hw; di 2 L(TS) and �

0

hw;di

=) �. Then there exists only one

path p in RG(TS) suh that � is reahable by hw; di onsistent with p.
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Lemma 2. Let R 2 V

RG

. Then 8�; �

0

2 R 8(C; Æ) 2 � 9 (C

0

; Æ

0

) 2

�

0

: C = C

0

^ S((C; Æ)) j

At

= S((C

0

; Æ

0

)) j

At

^ S((C; Æ)) j

R

+
= ; ()

S((C

0

; Æ

0

)) j

R

+= ;.

Let RG(TS) be the region graph and X be a ountable set of oun-

ters. Before we shall start to onstrut the formula, we need to add some

additional information into ommon states and regions. Let all regions of

RG(TS) get a unique number, then with eah region R

i

we shall assoiate

its own ounter x

R

i

. For simpliity, sometimes we shall denote x

R

i

by x

i

.

Moreover, with eah region R we shall assoiate the additional set of oun-

ters RC(R), the region representative �

R

= (C

1

; : : : ; C

n

R

; Æ

1

; : : : ; Æ

n

R

) 2 R

and the funtion �

R

: RC(R) �! 2

n

R

whih assoiates the set of on�gura-

tions from �

R

with eah ounter of RC(R). At �rst, we suppose RC(R

0

) =

fx

0

g and take �

0

as a representative of R

0

, �

R

0

(x

0

) = fC

0

g. For others

R 2 RG(TS) we suppose RC(R) = ; and take an arbitrary � 2 R as its

representative, �

R

� ;. Then the leading relation on regions is modi�ed so

that we add x

R

into RC(R), if after exeution of some ation we get � 2 R

and some event beomes enabled in C 2 �. Then the on�guration C is

assoiated with x

R

. Additionally, we delete from RC(R) the ounters for

whih there are no on�gurations assoiated with them. More formally:

� (R;RC(R))

a

! (R

0

; RC(R

0

)) (a 2 At) i� R

a

! R

0

(suppose �

R

a

! e�

for some e� 2 R

0

) and the set RC(R

0

) is modi�ed in two steps:

1. RC(R

0

) = RC(R

0

) [ (R n OLD(R; a)), where OLD(R; a) = fx

i

j

8j 2 �

R

(x

i

) : (C

j

; Æ

j

) 6

a

!g;

2. RC(R

0

) = RC(R

0

) [ fx

R

0

g if 9e 2 En(e�) n En(�

R

) ^ 8(C; Æ) 2

�

R

8e 2 C [En(C) Æ(e) 6= 0

and �

R

0

is modi�ed as follows:

1. for all x 2 RC(R

0

) \RC(R)

�

R

0

(x) = �

R

0

(x) [ fj j 9i 2 �

R

(x) 9(

e

C

k

;

e

Æ

k

) 2 e� : (C

i

; Æ

i

)

a

!

(

e

C

k

;

e

Æ

k

) ^ 9�(n

R

0

) : (C

0

j

; Æ

0

j

) = (

e

C

�(n

R

0

)(k)

; e�

�(n

R

0

)(k)

) 2 �

R

0

g;

2. if x

R

0

2 RC(R

0

) then �

R

0

(x

R

0

) = fi j (C

i

; Æ

i

) 2 �

R

0

: 9e 2

En(C

i

) Æ

i

(e) = 0g;

� ((R;RC(R))

�

! (R

0

; RC(R

0

)) i� R

�

! R

0

(suppose �

R

d

! e� for some

d 2 R

+

and e� 2 R

0

) and

{ RC(R

0

) = RC(R

0

)[ (RnOLD(R;�)), where OLD(R;�) = fx

i

j

8j 2 �

R

(x

i

)(:9(

e

C;

e

Æ) 2 e� : (C

j

; Æ

j

)

d

! (

e

C;

e

Æ)g;
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{ for all x 2 RC(R

0

) \RC(R)

�

R

0

(x) = �

R

0

(x) [ fj j 9i 2 �

R

(x) 9(

e

C

k

;

e

Æ

k

) 2 e� : (C

i

; Æ

i

)

d

!

(

e

C

k

;

e

Æ

k

) ^ 9�(n

R

0

) : (C

0

j

; Æ

0

j

) = (

e

C

�(n

R

0

)(k)

; e�

�(n

R

0

)(k)

) 2 �

R

0

g.

We also need a time assignment of our ounters, so, into all ommon states

� 2 R, we inlude RI

�

= RC(R) and the time assignment �

�

: RI

�

! R

+

0

.

At �rst, suppose �

�

� 0. We shall omit subsription � if it will be lear.

The leading relation on ommon states is modi�ed as follows:

� (�;RI;�)

d

! (�

0

; RI

0

;�

0

) (d 2 R

+

) i� �

d

! �

0

and �

0

j

RI

= � j

RI

+d;

� (�;RI;�)

a

! (�

0

; RI

0

;�

0

) (a 2 At) i� �

a

! �

0

.

It is lear that additional piees of information have no inuene on leading

relations on ommon states and regions. In the following, we shall use a

simple notation R and � instead of (R;RC(R)) and (�; RI; �).

Now we an onstrut a formula for eah region R = [�

R

℄. In the formula,

we shall use the following notations: R

a

! R

a

and R

�

! R

�

and write its

optional parts in hhii.

F

R

= 88�(R) )  

R

;

 

R

= hh88�

>

(R) ) F

nil

ii ^

V

a62

S

fS((C;Æ))j(C;Æ)2�g

[a℄ff ^

V

a2

S

fS((C;Æ))j(C;Æ)2�g

[a℄(hhX

a

inii

b

F

R

a

) ^ ACC(R);

b

F

R

a

=

(

F

R

; if 9� 2 R 9d 2 R

+

: �

R

d

! �;

 

R

; otherwise:

Here onditions �(R) that hold for the time assignment of states only from

R are onstruted in the following way:

1. �(R) = tt;

2. for all x

i

; x

j

(x

i

6= x

j

) 2 RC(R) let b�

�

R

(x

i

) = a, b�

�

R

(x

j

) = b,

then

�(R) = �(R) ^

�

x

i

= a; if �

�

R

(x

i

) = b�

�

R

(x

i

);

a < x

i

< a+ 1; otherwise;

3.

�(R) = �(R) ^

8

<

:

x

i

+ b = x

j

+ a; if f�

�

R

(x

i

)g = f�

�

R

(x

j

)g;

x

i

+ b < x

j

+ a; if f�

�

R

(x

i

)g < f�

�

R

(x

j

)g;

x

i

+ b > x

j

+ b; if f�

�

R

(x

j

)g < f�

�

R

(x

i

)g:
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The onditions �

>

(R) whih mean that the values of ounters are larger

than appropriate time assignments in the states from R are onstruted as

follows:

�

>

(R) =

8

>

<

>

:

�(R) _

W

x

i

2RC(R)

x

i

� d�

�

R

(x

i

)e; if all(C; Æ) 2 �

R

are terminated;

W

fx

i

2RC(R)jf�

�

R

(x

i

)g=0g

x

i

> d�

�

R

(x

i

)e; otherwise.

Below we give subformulas of  

R

and onditions of inluding them into  

R

.

� X

a

= fx j x 2 RC(R

a

) n RC(R)g is added if it is non empty;

� 88�

>

(R) ) F

nil

is added into  

R

if there is no region R

�

;

� ACC(R) =

W

(C;Æ)2�

((

V

a2S((C;Æ))

haitt) ^ hh�

(C;Æ)

^ F

R

�

ii ^ hhF

nil

ii);

� F

nil

=

V

a2At

[a℄ff is added into ACC(R) for all (C; Æ) 2 �

R

suh

that S((C; Æ)) j

At

= ;;

� �

(C;Æ)

=

�

99�(R

�

) ) (

V

a2S((C;Æ))

haitt); if S(C; Æ) j

At

6= ;;

99�

>

(R

�

) ) (

W

a2At

haitt); otherwise;

� �

(C;Æ)

^ F

R

�

is added into ACC(R) for all (C; Æ) 2 �

R

suh that

S((C; Æ)) j

R

+
6= ;.

Note that we use the symbol of impliation ()) for simpliity. But it is

easy to transform our formula into a orret formula from L

�

, beause nega-

tion of �(R) and �

>

(R) an be expressed in L

�

. Also, X

a

in F means

(x

1

in (x

2

in (: : : (x

n

in F ))) for X

a

= fx

1

; x

2

; : : : ; x

n

g. The formula  

R

ontains three obligatory groups. The �rst group of onjuntions ontains an

[a℄-formula for any ation that an not be exeuted in R. The seond group

of onjuntions ontains an [a℄-formula for any ation that an be exeuted

in R. The third group is a group of disjuntions over all states in �

R

and

eah disjuntion part ontains onjuntions of hai-formulas for eah ation

that an be exeuted in some state, and an optional part whih haraterizes

the possibility of some amount of time to pass in this state. The optional

group of  

R

is inluded into the formula, if there is no region R

�

.

For a timed event struture TS, a harateristi formula is de�ned as

F

TS

= x

0

in F

R

0

. We have the following theorem

Theorem 1. TS �

must

TS

0

() TS

0

j=

D

F

TS

, where D orresponds to

the previous de�nition of F

R

for eah R from V

RG(TS)

.

To prove the theorem, we need

Lemma 3. Let (C

0

0

; Æ

0

0

u) j=

D

F

TS

, where (C

0

0

; Æ

0

0

) = M

TS

0

, u � 0. For all

hw; di 2 L(TS)\L(TS

0

) and (C

0

0

; Æ

0

0

)

hw; di

=) (C

0

; Æ

0

) it holds that (C

0

; Æ

0

u

0

)j=

D

 

R

, where R and u

0

are suh that there exists � whih is reahable by hw; di

onsistent with a path from R

0

to R, and u

0

j

RI

�

= �

�

.
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Proof (Theorem 1).

(() Take an arbitrary hw; di 2 L(TS

0

) and (C

0

; Æ

0

) suh that (C

0

0

; Æ

0

0

)

hw; di

=)

(C

0

; Æ

0

). Aording to De�nition 3, we shall show that there exists (C; Æ) 2

ST (TS) suh that (C

0

; Æ

0

)

hw; di

=) (C; Æ) and S((C; Æ)) j

At

� S((C

0

; Æ

0

)) j

At

,

S((C

0

; Æ

0

)) j

R

+= ; ) S((C; Æ)) j

R

+= ;.

Assume hw; di 62 L(TS). Let hw; di = ha

1

(d

1

) : : : a

n

(d

n

);

P

1�i�n+1

d

i

i.

We an �nd the maximal 0 � k � n and 0 � d

0

� d

k+1

for whih hw; di =

ha

1

(d

1

) : : : a

k

(d

k

);

P

1�i�k

d

i

+ d

0

i 2 L(TS). Let �

0

hw; di

=) � 2 STC(TS)

and (C

0

0

; Æ

0

0

)

hw; di

=) (C

0

; Æ

0

)

h bw;

b

di

=) (C

0

; Æ

0

) for some (C

0

; Æ

0

) 2 ST (TS

0

) and

h bw;

b

di 2 Dom(At;R

+

0

). By Lemma 1, there exists a path p in the region

graph RG(TS) suh that � is reahable by hw; di onsistent with p. Then,

by Lemma 3, (C

0

; Æ

0

u

0

) j=

D

 

R

holds, where p is the path from R

0

to

R and u

0

j

RI

�

= �

�

. Let us onsider  

R

. If d

0

< d

k+1

, then 8 (C; Æ) 2

� : S((C; Æ)) j

R

+= ;, i.e., there is no region R

�

. So, by onstrution of the

formula,  

R

inludes 88�

>

(R) ) F

nil

as a onjuntive part. It is obvious

that (C

0

; Æ

0

u

0

) 2

D

88�

>

(R) ) F

nil

. We have got a ontradition with the

assumption of Theorem 1. Similary, we an get a ontradition if d

0

= d

k+1

.

So, hw; di 2 L(TS).

Let �

0

hw; di

=) � 2 STC(TS). By Lemma 1 and Lemma 3, we an �nd R

and u

0

suh that p is a path from R

0

to R, u

0

j

RI

�

= �

�

and (C

0

; Æ

0

u

0

) j=

D

 

R

.

By onstrution of the formula  

R

and Lemma 2, there exists (C; Æ) 2 � for

whih S((C; Æ)) j

At

� S((C

0

; Æ

0

)) j

At

^ S((C

0

; Æ

0

)) j

R

+
) S((C; Æ)) j

R

+
.

()) Follows from onstrution of the formula F

TS

. 2

5. Conlusion

In this paper, we have used as a formal model a timed generalization of

Winskel's prime event strutures [4℄ whih seems more appropriate for inves-

tigation of timed testing than the ones from [11, 5℄ beause of the possibility

to give notions of states and leading relation. This artile is onentrated on

onstruting a harateristi formula. This formula allows us to deide the

problem of reognizing timedmust-equivalenes by reduing it to the model-

heking one. The formula obtained is only a �rst step towards the deision

proedure for timed testing. The results may be extended onto a model with

internal ations. Also, the way of onstrution of the harateristi formula

may be applied to other timed testing equivalenes.
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