
Joint NCC & IIS Bull., Comp. Science, 18 (2002), 45–67
c© 2002 NCC Publisher

Options management in RescueWare
system

M. A. Bulyonkov

A complex programming system may have a large number of parameters controling

its configuration and behavior. The editing, programmatic access, packaging and upgrade

of these parameters may become a complicated and time-consuming task. We present a

component called Dialogic, which stores options as a strictly typed XML structure and

automatically generates elaborated dialogs for editing options.

1. Introduction

The paper summarizes the experience gained during the development of the
reengineering system RescueWare©R and addresses one particular aspect: op-
tion management1. RescueWare is a large multi-purpose and multi-language
system. It may be used for source code analysis and maintenance, for source-
to-source transformation (e.g., business rule extraction), and ultimately for
legacy system modernization, such as conversion of COBOL CICS-based
application to Java and JDBC. The RescueWare system inputs a variety of
legacy languages, such as COBOL, Natural, PL/I, DB/2 DDL, BMS, JCL,
etc. RescueWare provides a number of tools working on a workstation for
automated program analysis and system-wide program navigation.

We consider an option to be a parameter controlling either configuration
or the behavior of the system. The nature and purpose of options may vary
significantly. For example,

• the list of analysis tools;

• default extensions for COBOL files;

• color of the error highlighting in the editor;

• an option controlling whether an Open dialog must show up on startup
or the system should go directly to the most recently opened project;

• a flag indicating whether unused code must be commented out or
deleted during business rule extraction; etc.

Options in RescueWare are classified in four categories:

1RescueWare©R is the registered trademark of Relativity Technologies, Inc.



46 M. A. Bulyonkov

• global options controlling configuration of the system;

• workspace options describing various characteristics of all objects that
constitute the legacy system;

• project options specific to a particular project that is a subsystem
of the workspace. Usually a project groups objects corresponding to
functionality of a particular legacy system;

• user preferences do not affect core functionality of the system, but only
the way the information is shown to the user. Usually, parameters like
colors and sizes fall into this category.

A customer may be interested in a subset of available functionality
and/or a subset of input languages. That gives rise to the problem of pack-
aging. For instance, if some option is specific to the Natural programming
language and this language is not included in the package, the option should
not be displayed on any dialog.

In this paper, we present a component called Dialogic, which enables
the unified storage, access, display, editing and maintenance of options. The
component was originally designed in the context of the RescueWare system,
but turned out to have enough generality to be successfully used in a number
of other projects as well.

2. Option visualization

Modern integrated development environments (IDE) provide a number of
means to ease the graphical user interface (GUI) design. The most common
is visual construction of forms, where the developer can place a control on a
form and immediately set its properties such as color, text, alignment, etc.
Such an approach considerably simplifies GUI development — a lot of ac-
tions that otherwise would have to be done programmatically are performed
by the system. However, this leads to certain drawbacks:

• Usually visual construction does not support corporative GUI stan-
dards, and it is completely up to user’s responsibility to set all the
properties consistently.

• Complex forms with many controls whose visibility is determined at
run-time are hard to edit. Forms with hundreds of controls are prac-
tically un-manageable.

• If the layout of a form depends on configuration or run-time values,
it must be rearranged programmatically anyway. For example, if some



Options management in RescueWare system 47

control is not required in a particular configuration and is made invis-
ible, it still resides on the form and consumes the form loading time,
at least.

Corporative standards may vary, of course. Here are some accepted as
RescueWare standard:

• Alignment and sizes.

– All controls on the form must be properly aligned.

– The gap between a control and its label must be the same through-
out the application.

– Heights of controls of the same type, e.g. buttons or line input
text boxes, must be the same throughout the application.

• Keyboard equivalents.

– All controls must be reachable through Tab and Shift-Tab keys
in a natural order.

– Any input control must be reachable through hot keys. Hot keys
of controls that might be visible simultaneously should differ if
possible.

– “OK” and“Cancel” buttons must have no hot keys at all. “Apply”
button must have a hot key.

• Fonts and colors. All controls must share the same font with the same
size, if only the purpose of the control is not font-specific. Normally it
is a standard system font, e.g., MS Sans Serif, but there might be a
need to change this font throughout the applications for the purpose
of localization.

• Online help. Eeach control must have assigned reference to correspond-
ing Help topic.

• Common behavior. As an example, suppose that we have a check-
box “Limit Impact Depth” controlling appropriateness of a textbox
“Max Depth”. Then we have a choice of behavior: either the textbox
is disabled when the checkbox is unchecked, or it may be enabled all
the time and the checkbox is checked automatically whenever the user
modifies the content of the textbox. Both behaviors have their benefits
and drawbacks, but we need to choose only one to be used throughout
the product.

The task of satisfying all these requirements becomes at least tiresome
when the application grows larger and displays a lot of forms. It consumes



48 M. A. Bulyonkov

significant development and quality assurance time, as well as management
for supporting strict development discipline. Although all the above require-
ments might look supplementary since they do not affect the core function-
ality of the system, they are, in fact, very important because they guarantee
common look-and-feel of the system and form the first customer’s impres-
sion.

Dialogic provides a solution to this problem: all options are organized
in a strictly typed data structure and all forms for editing any part of the
structure are generated completely automatically satisfying all the above
requirements.

3. Data types

An atomic parameter may have one of the following types: text, number, set
of strings, font, file name, color, enumeration, or boolean. Atomic parameters
may be composed into groups or lists. We do not claim the set of types is
complete, but it covers most of the practical needs. Some atomic types can
be narrowed by imposing additional restrictions. For example, we can specify
the minimum, the maximum and the step for a number tag.

We represent option definition in the form of XML files. The benefits
of XML files will be discussed later. Each parameter — either atomic or
structured — can have attributes controlling the way it is displayed and
edited. For example, a number can be displayed either as a textbox, or as a
slider, or somehow else. So we can also consider options as an hierarchy of
selection pages. Each selection page may contain some elements correspond-
ing to atomic parameters and/or subordinate selection pages. Usually the
set of top-level selection pages is displayed as a tab strip, so that the user
may select a page by clicking the corresponding tab. Selection could also be
controlled by combo-boxes, radio buttons, etc.

3.1. Accessing options

We keep options in XML format. One of the main reasons for using XML for
representing options is it is being open and becoming a standard — there is
a variety of tools for manipulating a document. Let us compare XML format
to other format and tools that were used at different times for storing options
in RescueWare.

• X
¯
ML vs. Databases. Databases allow for elaborate data access. But

XML also does. And since XML provides primarily hierarchical nav-
igation, it is probably more suitable for options logical organization.
For comparatively small amount of data, which is the case for options,



Options management in RescueWare system 49

access will probably be even faster. The disk space of options data is
an order of magnitude smaller when implemented with XML.

• X
¯
ML vs. INI files. INI files are easy to manipulate. So are XML files.

You may edit them with your favorite text editor. Even if XML is
more verbose, in a long run it is preferable, because the structure of
XML is typed, and it is more flexible and reliable.

• X
¯
ML vs. Registry. Registry is conceptually very close to options model,

and it is easy to store hierarchical data in registry. But the same is
true for XML. Registry is very hard to trace and there is an obvious
tendency to leave a lot of hard-to-detect garbage there.

The Dialogic component is implemented as an ActiveX DLL and declares
two classes: a global multi-use class OptionManager and a multi-use class
DiaLogicOptions. The main method provided by OptionManager is

Public Function GetOptions(nm As String, FileName As String) As

DiaLogicOptions

The function associates a set of options from the file FileName with the
same internal name nm. If the name nm is not yet defined, then the content of
the FileName is loaded so that the loaded document could be later referred to
as nm. Otherwise, a reference to the previously loaded object is just returned.
This allows various components to share the same options and load them
on demand.

Example.

Set DLO = DiaLogic.GetOptions("RescueWare", GetRescueDir & _

"Data\Options\RWOptions.xml")

The class DiaLogicOptions has the following methods:

Public Function LoadFile(FileName As String) As Boolean

loads options definition from XML file and returns true if successful.

Public Function Document() As DOMDocument

gives access to the loaded XML document.

Public Function DisplayOptions(Section As String, _

OwnerForm As Object, _

Optional StartID As String, _

Optional DefaultWidth as Single= 6120, _

Optional DefaultHeight as Single= 5355)



50 M. A. Bulyonkov

displays dialog for the specified Section, modally over OwnerForm. StartID,
if specified, is the XML address of the selection page to be initially selected.
If StartID is omitted, then the selection is performed based on the VALUE

attributes of LIST tags. StartID is relative to the node specified by Section.
DefaultWidth and DefaultHeight specify the desired width and height of
the dialog window. These values will be automatically increased if necessary.

Event Saved()

is raised when “OK” or “Apply” button is pressed. In both cases the VALUE
attributes are updated and the XML document is saved back to the disk.

Let us now describe all parameter types supported by DiaLogic.

3.2. Selection lists

A selection list is represented by the LIST tag, which contains a number of
CASE tags, one per each selection page. For example,

<LIST NAME="RW" TYPE="select" CAPTION="RescueWare"

DISPLAY="page" VALUE="Env">

<CASE NAME="Env" CAPTION="Environment">

<LIST NAME="OnStart"

CAPTION="When RescueWare starts"

TYPE="data" DISPLAY="radio" VALUE="Prompt">

<CASE NAME="Prompt"

CAPTION="Prompt for project"/>

<CASE NAME="Open"

CAPTION="Open most recent project"/>

</LIST>

</CASE>

<CASE NAME="General" CAPTION="General">

...

</CASE>

<CASE NAME="Diagrammer" CAPTION="Diagrammer">

...

</CASE>

<CASE NAME="Editor" CAPTION="Editor">

...

</CASE>

<CASE NAME="HyperCode" CAPTION="HyperCode">

...

</CASE>

</LIST>



Options management in RescueWare system 51

Here, as well as for any other tag, the attribute NAME serves for option
identification, while CAPTION provides the text to be shown on the screen.
The VALUE attribute of the LIST tag holds the currently selected page that
must coincide with the name of some of the CASE’s. The attribute TYPE may
hold values select or data and distinguishes between the lists designed only
for page selection and those whose VALUE is essential data.

Here and below the DISPLAY attribute controls the way information will
be presented to the user. Currently we have the following styles for displaying
lists:

• page — displays tabstrip where cases occupy the client area;

• combo — a combo-boxed controlled frame;

• list — the list of cases is on the left-hand side;

• radio — all selection pages are visible at once and selection is con-
trolled by radio buttons;

• checkdetailslist and detailslist — the list whose cases are dis-
played on demand in a separate window.

The list above will be displayed as shown in Figure 1(a).

(a) (b)

Figure 1. Paged and radio list (a), list view and combo lists (b)

Had we changed the DISPLAY attributes of tags named RescueWare and
OnStart to page and radio respectively, the dialog would appear as shown
in Figure 1(b).

If the DISPLAY attribute is equal to checkdetailslist or detailslist,
the content of a case sub-page is displayed on a separate dialog available via
“Details” button. If the attribute equals to checkdetailslist, then the list
with checkboxes is displayed, and “Select All” and “Unselect All” buttons



52 M. A. Bulyonkov

Figure 2. List with separate display of cases

are displayed as well. An example of a list displayed as checkdetailslist
is shown in Figure 2.

This feature is useful in cases of voluminous and rarely accessed “details”,
since it significantly decrease loading and makes the dialog more compact.

3.3. Texts

The TEXT tag represents a text option. Besides the current value, it may
specify the maximal allowed data length. Texts are displayed either as single-
or multi-line, if the value of the DISPLAY attribute equals line and area,
respectively. For example, suppose that the “General” page of the above list
is specified as the following:

<CASE NAME="General" CAPTION="General">

<TEXT NAME="PrjName" CAPTION="Project Name"

MAXLENGTH="255" DISPLAY="line" VALUE=""/>

<TEXT NAME="PrjDescr" CAPTION="Project Description"

MAXLENGTH="255" DISPLAY="area" VALUE=""/>

</CASE>

Then the page will be displayed as shown in Figure 3.
Note that we try to occupy the whole space of the page evenly. So if the

page contains flexible height options, like area text, then their height will
be extended to fit the height of the page.

3.4. Colors

The COLOR tag represents a color. It is shown as a filled box, on which the
user may click to popup the color selection dialog. For example, Figure 4
shows how a couple of such options will be dispayed:

<COLOR NAME="Paragraph"

CAPTION="Paragraph default color"

VALUE="1552345"/>

<COLOR NAME="Paragraph Selected Color"



Options management in RescueWare system 53

Figure 3. Texts

CAPTION="Selected paragraph color"

VALUE="12343245"/>

Figure 4. Colors

The color selection dialog allows for selecting colors from both palette
and system colors.

3.5. Fonts

Colors may also be manipulated by the FONT tag designed to select the font,
fore color and background for texts. For example,

<FONT NAME="Fore" CAPTION="Fore Color"

SAMPLE="MOVE A+ TO . "

SELECT="fore,back,font"

FORECOLOR="16777215"

BACKCOLOR="255" />

The SELECT attribute specifies what the corresponding dialog may select.
The optional SAMPLE attribute allows for indicating the text to be shown
inside the textbox. If the attribute is omitted, then the current font name



54 M. A. Bulyonkov

and its size are used as a sample. It is also possible to specify BOLD and
ITALIC attributes for font characteristics.

Figure 5. Fonts

3.6. Booleans

Boolean options are represented by the BOOL tag that can hold either true
or false values and is displayed as a check-box. Since a boolean option
represents the user’s choice, it is natural that it could control a sub-page,
which becomes enabled only if the check-box is checked. For example,

<BOOL NAME="Colorize" CAPTION="Colorize" VALUE="false">

<COLOR NAME="Color" CAPTION="Fore Color" VALUE="312345"/>

</BOOL>

will be displayed as shown in Figure 6.

Figure 6. Booleans

3.7. Numbers

The NUMBER tag specifies numeric options. MIN, MAX, and STEP attributes
limit the range of allowed values. Numbers are displayed and manipulated
in three different ways depending on the value of the DISPLAY attribute:

• text — an ordinary textbox (the STEP attribute is ignored).

• updown — an ordinary text accompanied by buddy up-down control
for incremental modification.

• slider — the slider control.

For example,

<NUMBER NAME="TabStep" CAPTION="Tabulation step"

VALUE = "4" MIN="2" MAX="8" STEP="1" DISPLAY="slider"/>



Options management in RescueWare system 55

Figure 7. Number as a slider

will be displayed as shown in Figure 7

The usage of NUMBER tags, as well as various selection styles, is illustrated
in Figure 8.

Figure 8. Numbers

3.8. File names

The FILE tag supports manipulation with file names. It is similar to the TEXT
tag, but has special prompts when a file name is entered, and an additional
button to call up a standard file selection dialog. In order to restrict selection
to directories only, one must set the TYPE attribute to dir. For example,

<FILE NAME="Target directory"

CAPTION="Target directory"

VALUE="C:\Relativity.Inc\Samples"/>

is displayed as shown in Figure 9.



56 M. A. Bulyonkov

Figure 9. Files and Directories

3.9. Strings

Quite often an option is a set of strings. This capability is provided by
the STRINGS tag. If the STYLE attribute equals to check, then a check box
appears for extra selection. Each string is represented by a STRING tag with
two attributes: VALUE for the string itself and CHECKED to indicate whether
the string is selected. For example,

<STRINGS NAME="Filter" CAPTION="Filters" STYLE="check">

<STRING VALUE="*exit*" CHECKED="false"/>

<STRING VALUE="*error*" CHECKED="true"/>

<STRING VALUE="*warning*" CHECKED="true"/>

</STRINGS>

is displayed as shown in Figure 10.

Figure 10. Strings

The user can add a new string by pressing Insert, delete the selected
string by pressing Delete, or edit the selected string by pressing F2. The
user may also click the right button and access the same actions from the
popup menu. As usual, the user may left-click on the selected item to start
editing.

The ORDER attribute controls list sorting: none — for no sorting, asc —
for ascending, and desc — for descending. If the string list has been modi-
fied, the user may click F5 to restore the sorting.



Options management in RescueWare system 57

3.10. Groups

The GROUP tag serves primarily for display purposes: it shows a number of
elements on a common frame. For example,

<GROUP NAME="Controls" CAPTION="Controls attributes">

<FONT NAME="LabelFont" CAPTION="Labels"

FONTNAME="MS Sans Serif"

SIZE="8"

BOLD="false"

BACKCOLOR="-2147483633"

SAMPLE = "Label1"

SELECT="font,fore,back"/>

<FONT NAME="TextBoxFont" CAPTION="TextBoxes"

FONTNAME="MS Sans Serif"

SIZE="8"

BOLD="false"

SAMPLE = "Text1"

SELECT="font,fore,back" />

<FONT NAME="ComboBoxFont" CAPTION="Comboboxes"

FONTNAME="MS Sans Serif"

SIZE="8"

BOLD="false"

SAMPLE = "Combo1"

SELECT="font,fore,back" />

</GROUP>

is displayed as shown in Figure 11.

Figure 11. Groups

A GROUP element may have the DISPLAY attribute that is set to frame by
default. If the value of the attribute equals none, the dialog will not have the
surrounding frame. The PLACE attribute controls the placement of grouped



58 M. A. Bulyonkov

options: vert (default) for vertical placement and horz — for horizontal.
For example,

<GROUP NAME="Connections" CAPTION="Connections"

DISPLAY="none" PLACE="horz">

<BOOL NAME="ShowGoto" CAPTION="Show Goto" VALUE="false">

<COLOR NAME="GotoColor" CAPTION="Goto Color"

VALUE="16777023"/>

</BOOL>

<BOOL NAME="ShowPerform" CAPTION="Show Performs’s"

VALUE="true">

<COLOR NAME="PerformColor" CAPTION="Perform Color"

VALUE="16728063"/>

</BOOL>

</GROUP>

will be displayed as shown in Figure 12.

Figure 12. Horizontal groups

3.11. Sections (overall structure)

One file can contain descriptions of several options dialogs called sections.
The root tag for the whole document is OPTIONS containing CASE options,
one for each section. For example,

<OPTIONS>

<CASE NAME="RescueWare" CAPTION="RescueWare">

<LIST NAME="RW" CAPTION="RescueWare"

DISPLAY="page" VALUE="Editor">

...

</LIST>

</CASE>

<CASE NAME="Planning" CAPTION="Planning And Estimation">

<LIST NAME="Source Type" CAPTION="Source Type"

DISPLAY="page" VALUE="COBOL">



Options management in RescueWare system 59

...

</LIST>

</CASE>

<CASE NAME="Methods" CAPTION="Methods">

<LIST NAME="TYPE" CAPTION="Method Type"

DISPLAY="page" VALUE="Verify">

...

</LIST>

</CASE>

<OPTIONS>

4. Advanced display control

In this section, we consider special means for display beautifying. Some ele-
ments in the options structure are used for the only purpose of decorating the
displayed forms. Special attributes make the resulting dialogs more compact
and convenient to use. Finally, we describe how the user-defined behavior
can extend Dialogic.

4.1. Icons

The CASE tag allows for the ICON attribute. Depending on how the case is
displayed, the icon is placed either on a list element, or a tab, or a combo
item. In order to enable icons, the DialogicOptions class is extended with
the property DefaultIconDir that specifies the root path for the icon loca-
tion. So, if the property is set as

ProjectOptions.DefaultIconDir = GetRescueDir,

then the case

<CASE NAME="COBOL" ICON="Model\Repository\Icons\Cobol.gif">

will be displayed with the icon that is used for Cobol throughout the Res-
cueWare system.

4.2. Tooltips

Practically all tags can be decorated with the TOOLTIP attribute. If the
attribute is specified, the standard Windows tool tip will be displayed for
the corresponding displayed element.



60 M. A. Bulyonkov

4.3. Labels

The dialogs constructed by Dialogic may be decorated with arbitrary texts.
The tag LABEL has a single attribute CAPTION. The Dialogic attempts to
reserve the minimal number of lines for displaying the text.

4.4. Details

In a situation when a part of options takes a lot of space but is not frequently
accessed, it is reasonable to separate access to this part via a separate dialog.
The DETAILS attribute permits that for BOOL, LIST and GROUP tags. If the
DETAILS attribute is specified, the element is displayed as a frame with
a button in the right-bottom corner. The caption of the button equals to
the value of the DETAILS attribute. The caption of the frame starts with
the caption of the element and may be extended: for BOOL with Off or On
depending on the value of the element, and for LIST, whose attribute TYPE
is equal to data, with the caption of the selected case.

Figure 13. Separated details

4.5. Availability

Sometimes it is necessary to restrict the user’s access to an option by either
disabling its modification or hiding it completely. The attributes ENABLE and
VISIBLE serve this purpose.



Options management in RescueWare system 61

4.6. User-defined rendering

Despite the variety of display options, some elements require a special treat-
ment, for example, to have lists with several columns, or specially edited
texts, etc. This becomes crucial when the content depends on dynamically
accessed data like HyperCode or Workspace. The idea is to attach a user-
defined class to the element, so that it will perform all the rendering and
event processing. However, for technical reasons, we cannot properly sup-
port an arbitrary ActiveX control and have limited ourselves to a predefined
set of controls.

Practically any element may have a specified attribute CLASS. The value
of this attribute must be a registered ActiveX class with an appropriate
interface. If the element has both CLASS and DETAILS attributes specified, it
will be displayed according to the CLASS and accompanied with an additional
button to allow fancy editing. The interface of the class must define the
following methods:

• ControlType — determines the type of control that will represent
the element. Presently it can be equal to "list", "text", "area",
"combo", and "bool" corresponding to the ListView, TextBox,
RichText, ImageCombo, and CheckBox, respectively. The set of
these controls may be easily extended on the developers demand. The
ControlType may differ from the type of displayed element. For ex-
ample, you may display a number as a list (of binary digits) if you
wish.

• MinWidth, MinHeight — determines the minimum width and height
required for the control.

• Flexible — determines whether the height of the control may be
changed while formatting.

• LoadControl(aParentForm, aDispayedObject, aOptionElement)—
the action to be performed when the control is placed on the dia-
log. The dialog form is passed through the aParentForm argument,
aDisplayedObject is the reference to the already loaded control of
the type specified by ControlType, and aOptionElement is the refer-
ence to the element to be rendered.

• Render — the method is called when the dialog needs to (re)display
the element.

• ProcessEvent(EventName,arg) — the method specifies reaction
to the loaded control. EventName may be equal to "DblClick",
"ColumnClick", etc., and arg is an additional argument for the event.

• Edit — the method is called when the element has specified DETAILS.



62 M. A. Bulyonkov

• Terminate — any additional actions to be performed when the dialog
is unloaded.

For example, the dialog that assigns colors to the source language keywords
may look like it is shown in Figure 14.

Figure 14. User-defined rendering

The method

Public Function DisplaySubOptions(xn As IXMLDOMElement)

As Boolean

of the object corresponding to the dialog form may be used in user-defined
classes to edit some of the options in the standard Dialogic way. The dialog
form object is passed to the user class via the LoadControl method.

5. Generating dialogs

The dialog construction algorithm takes the structure to be displayed and
the desired sizes — width and height — of the resulting dialog. The de-
sired sizes may be extended if they are not sufficient for displaying the
content. The algorithm is implemented as a two-phase recursive procedure.
At the first phase, we evaluate minimum sizes for all displayed elements.
For example, for a selection list whose DISPLAY attribute is equal to LIST,
the minimum width is equal to the sum of the maximum of all captions
of cases and the maximum width of all cases extended with appropriate
border widths. The second phase of the formatting algorithm extends, if
necessary, the minimal sizes, loads the corresponding controls, and places
them in proper positions on the dialog form.

There is a number of tricky cases in that evaluation. One of them con-
cerns formatting of tab strips and labels. We cannot know the height of
space occupied by tabs themselves without knowing the actual width of the



Options management in RescueWare system 63

control. Since at the first phase of the formatting procedure only the de-
sired width is known, the resulting minimum width might be greater than
necessary, because the width of the whole dialog may be extended.

Yet another interesting problem is the automatic assignment of hot keys.
The main requirement here can be formulated as follows: hot keys must be
different for all controls — visible and enabled — available at the same
time. For example, it is not necessary for the hot keys of controls located on
different pages to differ.

Let us state the problem formally. Suppose we have a rooted tree. For
each node in the tree, the set of admissible colors is specified. It is necessary
to choose a color for each node from the set of admissible colors so that none
of the node predecessors or siblings has the same color.

The tree is derived from the options hierarchy in such a way that two
options can be available at the same time if and only if they are either
siblings or one is a predecessor of another. The transformation of the options
hierarchy is rather straightforward: all we need to do is to flatten some
lists, like radio buttons lists, and Booleans since they do not imply visual
hierarchy. Each node in the tree has the set of admissible symbols that is
basically the set of characters in the element’s caption.

We do not know exactly the problem’s complexity, but we suspect that
it is NP-complete, since it is a sort of the graph coloring problem. We use
a heuristic algorithm that traverses the structure of displayed options top-
down and assigns hot keys on each level independently, keeping the set of
occupied hot keys for each branch. In fact, the requirement of absence of
duplicate hot keys is not completely strict, and the implemented algorithm
attempts to minimize the number of coincidences. The implementation of
the algorithm has a number of enhancements: whenever possible it selects
the first symbol in a word and a letter rather than a digit or a special symbol.

The straightforward top-down method has a significant advantage of
preserving the hot keys on the top level and thus keeping the users’ habits.
Had we used a global method, any alteration of options on the lower level,
like changing an element’s caption, might have lead to a completely new
assignment of hot keys to all options.

6. Processing options

6.1. Upgrade

The problem of upgrade becomes much more simple due to the usage of
a strictly typed hierarchy. Suppose the user installs a new version of the
product and the set of options of the previous version is different from the
new one. The option upgrade procedure takes the template file from the



64 M. A. Bulyonkov

new version and copies the corresponding values from the existing file. So,
all obsolete options do not appear in the upgrade file and new options have
default values. Normally, the correspondence between the new and old op-
tions is induced structurally. However, it may happen that the new version
was reorganized so that some of the options were moved to another place
in the hierarchy. It is desirable to keep the user-defined values of moved
options. For this purpose each element may have the ID attribute unique
throughout the whole file. The upgrade procedure exploits this attribute for
establishing the correspondence between the options prior to moving down
the hierarchy. The ID attribute is also very useful for direct programmatic
access to options.

The upgrade procedure is applied to the workspace and project options
as soon as they are opened. The user options are upgraded when the user
logs into the system. There is no reason to upgrade global options because
the user cannot modify them.

Since the option template is available for each type of options, it becomes
easy to add the possibility of restoring system defaults uniformly. For this
purpose any element may be decorated with the attribute RESTORABLE. If
the value of this attribute equals “true”, then any generated dialog for the
element will have the button “Restore” whose function is copying the values
from the corresponding sub-tree of the template into the edited option. For
example,

<CASE ID="BLT.Java" NAME="Java"

CAPTION="Generate Java" RESTORABLE="true">

means that all options for Java generation may be restored by a single click.

6.2. Packaging

Essentially, packaging allows for specifying a subset of options. The whole
set of options may be considered as a multidimensional space. There are two
such dimensions in RescueWare: lingual and functional. In order to support
packaging, each element in the hierarchy of options may have the attribute
PACKAGE. The lingual dimension indicates what source languages a particular
option is relevant to. For example,

<CASE ID="Callie" NAME="Callie" CAPTION="Callie"

PACKAGE="COB,NAT;">

says that control flow analysis tool Callie works for COBOL and Natural
languages only. The functional dimension reflects availability of some func-
tionality in the package. For example,



Options management in RescueWare system 65

<CASE NAME="GenerationOptions"

CAPTION="Generation" PACKAGE=";LT">

says that the generation options are relevant only if the customer has pur-
chased the legacy transition (LT) functionality of the system.

Having the PACKAGE attribute properly set, the task of option packaging
consists in removing (sub-trees of) all elements that do not fit the current
package specification. Note that no modification of the source code or re-
design of dialogs is necessary.

6.3. Consistency with the repository model

Some options are directly related to the repository model. For example, the
user may specify the color of boxes for SCREEN objects on diagrams, or the file
extensions for legacy objects of the COBOL type. The relationship is made
explicit by assigning additional semantics to the CAPTION attribute: if the
value of the attribute is equal to "!ENTITY", the packaging procedure looks
up into the repository model and substitutes the value with the caption of
the corresponding repository entity. Also the icon attribute is automatically
added. For example, the element

<CASE NAME="COBOL" CAPTION="!ENTITY">

will be transformed to

<CASE NAME="COBOL" CAPTION="Cobol Program"

ICON="Model\Repository\Icons\cobol.gif">

So there is no need to support consistency manually whenever changes
are made to the repository model.

This was just an example of how a uniform representation of options
allows for automation of their maintenance.

7. Conclusion and future work

We have described an approach to parameters management in a complex
system. The key points of this approach are uniform representation of the
hierarchy of options and automatic generation of dialogs for option editing.
The generation method is data-driven in the sense that all formatting and
behavior of the resulting dialog is based primarily on the data structure. Still
it produces the state of the art dialogs satisfying all corporative standards.

One of the directions of further development is to make formatting pro-
cedure more automatic. For example, the choice of the best way to display a



66 M. A. Bulyonkov

number might be based on the set of values: if the set is small enough, then
the slider representation is the best choice, otherwise textbox will be more
appropriate. Similarly, a combobox representation is not well-suited for lists
that have both empty and non-empty cases — in this case a radio button
representation would be more appropriate.

8. Related works

The overall description of the RescueWare system can be found in [1].
The implementation of Dialogic is based on Micorsoft ActiveX [2] tech-

nology and XML markup language [3].
The idea of automatic derivation of dialogs from data types is far from

new, being common for database management systems. However, usually
the generated forms are rather trivial: either a grid for editing the whole
table, or one plain form for each record type [4].

As an example of elaborate dialog construction, we can mention [5] where
dialogs are constructed from a subset of Algol 68 types.

The XForms [6] bridge the gap between HTML forms and data represen-
tation in XML. However, the resulting forms are still quite simple because
of poor expressiveness of HTML forms.

Microsoft announced XDocs [7], which will generate complex forms based
on XML data definition, to appear in the middle of 2003.

Various approaches to adaptive construction of graphical user interfaces
are discussed in [9–11, 8].

References

[1] Automated Software Re-engineering / Ed. by A. N. Terekhov, A.A.
Terekhov. — Sankt-Petersburg, 2000. (in Russian).

[2] Brown R., Baron W. Chadwick W.D. Designing Solutions with COM+ Tech-
nologies. — Microsoft Press, 2000.

[3] Extensible markup language (xml). — http://www.w3.org/XML/.

[4] Dobson R. Programming Microsoft Access 2000. — Microsoft Press, 1999.

[5] BulyonkovM. A., Bulyonkova A. A. Mapping object-oriented data base scheme
into DBBB DMS file structure // Problems of Theoretical and Experimental
Programming. — Novosibirsk, 1993. — P. 147–157 (in Russian).

[6] Xforms — the next generation of web forms. —
http://www.w3.org/MarkUp/Forms/.

[7] Microsoft “xdocs”.— http://www.microsoft.com/office/xdocs/default.asp.



Options management in RescueWare system 67

[8] Eisenstein J., Puerta A. R. Adaptation in automated user-interface design.
Intelligent user interfaces // Proc. of IUI’2000. — N.-Y.: ACM Press, 2000. —
P. 74–81 (available at citeseer.nj.nec.com/318525.html).

[9] Grundy J., Hosking J. Developing adaptable user interfaces for component-
based systems // Interacting with Computers. — 2002. — Vol. 14, N 3. —
P. 175–194 (available at
citeseer.nj.nec.com/article/grundy00developing.html).

[10] Lecolinet E. XXL: A dual approach for building user inter-
faces // Proc. of ACM Sympos. on User Interface Software and
Technology, Seattle, USA, Nov. 1996. — P. 99–108 (available at
citeseer.nj.nec.com/lecolinet96xxl.html).

[11] Schlungbaum E. Individual user interfaces and model-based user interface soft-
ware tools // Proc. of IUI’1997. — N.-Y.: ACM Press, 1997. — P. 229–232
(available at citeseer.nj.nec.com/schlungbaum96individual.html).



68


