
Bull. Nov. Comp.Center, Comp. Science, 46 (2022), 1–11
c© 2022 NCC Publisher

Development and parallel implementation of
cellular automata phase separation models with

an integer state alphabet

K.A. Glinskiy

Abstract. The paper is devoted to the development of two new cellular automata
models of phase separation with synchronous and asynchronous modes. Cell tran-
sition functions with integer alphabet of states for these models are formulated.
Their sequential and parallel program implementations based on the library of cel-
lular automata topologies have been proposed. The simulation results of the new
models were compared with each other and with the model with binary alphabet
of cell states. For the new models, a qualitative correspondence with the physical
view for liquids with high viscosity was obtained.

Introduction

Cellular automata simulation started to develop relatively recently. Many
processes have not been described by means of cellular automata models
yet. Therefore, the construction of new models is an actual task.

The work is devoted to the creation of two cellular automata with an
integer alphabet of ell states taken as the models of phase separation.

The simulated physical process proceeds as follows. If you pour a well-
mixed mixture of two immiscible liquids with different surface tension co-
efficients into a flat vessel, the separation of phases will begin: the first
(lighter) liquid floats and it tends to gather into large spots on the surface
of the second (heavier) liquid.

Traditionally in colloid chemistry this process is described using New-
ton’s, Poiseuil’s and Einstein’s laws [1]. There are a number of cellular au-
tomata models of this process. For example, the model of phase separation
with binary alphabet is described in [2]. This model shows the distribution
of liquids on the surface quite realistically, but the masses of liquids are not
conserved in this type of simulation.

The objective of this work is to develop both of synchronous and asyn-
chronous cellular automata models of phase separation with saving the mass
of liquids.

In order to do this, it is necessary to:

1. Formulate transition functions for each model, using the integer al-
phabet of cell states.



2 K.A. Glinskiy

2. Perform software implementation of the models using the library of
cellular automata topologies [3].

3. Perform computational experiments. Compare the results derived
from the new models with each other and with the existing model
of phase separation with binary alphabet.

4. Reveal the limitations of the developed models and formulate the fur-
ther direction of elaboration.

The paper presents two models, the first one is based on a synchronous
cellular automata, while the second model is based on an asynchronous one
(these models are described in Section 1). The software implementation
of these models is considered in Section 2. The results of computational
experiments are presented in Section 3.

1. Model description

The models presented in this paper are an improvement of the existing
cellular automata model for phase separation with a binary alphabet. The
models have an integer alphabet of cell states X = {0, 1, . . . , Xmax}. State
x ∈ X is interpreted as the amount (the layer thickness) of the first liquid
on the surface of the other one, expressed in relative model units being
proportional to the physical amount of the liquid. The amount of the liquid
K in a cell corresponds to the thickness of the layer at which the equilibrium
of gravity and surface tension forces is achieved, and is chosen arbitrarily
from the range 1 ≤ K < Xmax.

The cellular array lies in a two-dimensional plane, and the cells are square
in shape. The transition function of this model uses a first-order Moore
neighborhood, with each cell interacting with eight nearest neighbors.

1.1. Transition function of synchronous model. The function of cell
transitions in the synchronous model is given by the following rules:

1. Algorithm 1 presents pseudocode of this rule:

If the state of the cell x > K, it is left with the amount of the first
liquid x′ = K, and the value x − K is distributed equally among
the selected neighbors. Neighbors are chosen from those whose state
xi < K, i = 1, . . . , 8. The value xi of each selected neighbor must
not exceed xj of any unselected neighbor. The number of selected
neighbors Nsel should be as large as possible, provided that the value
b(x−K +

∑
xi)/Nselc does not exceed xj of each unselected neighbor.

Then the remainder of the division (x−K +
∑

xi) mod (Nsel) is given
to a random neighbor.



Development and parallel implementation of cellular automata. . . 3

2. Algorithm 2 presents pseudocode of this rule:

If the cell state x = K, and it has one or two neighbors with states
xi ≥ K, i = 1, . . . , 8, then this cell chooses a neighbor whose state
xj is maximal among all neighbors with states xj < K, j = 1, . . . , 8,
and gives him a value K − xj , so that this neighbor’s state becomes
x′j = K, and leaves itself a value x′ = xj .

3. Algorithm 3 presents pseudocode of this rule:

If the cell state 0 < x < K, and it has no neighbors with state xi ≥ K,
i = 1, . . . , 8, then it distributes the value x among its neighbors, first to
the neighbor with the maximum xi, and then to the neighbors standing
next to it. Each of the neighbors is given no more than K − xi. Then
the cell will go to the state x′ = 0.

4. In the other cases the states of cells remain unchanged: x′ = x, x′i = xi,
i = 1, . . . , 8.

Algorithm 1. Cell transition function. Rule 1 (x > K).

procedure phaseSep1(x,K,neighbors[1..8])
sum← x−K
Nneighbors ← 0
neighborsID [1..8]← 0
for i = 1 to 8 do

if K > neighbors[i] then

sum← sum + neighbors[i]
Nneighbors ← Nneighbors + 1
neighborsID [Nneighbors]← i

f lag ← 0
while flag = 0 do

if Nneighbors = 0 then

break

flag ← 1
add← sum/Nneighbors
remainder ← sum%Nneighbors
for i = 1 to Nneighbors do

if neighbors[neighborsID [i]] > add then

flag ← 0
sum← sum− neighbors[neighborsID [i]]
Nneighbors ← Nneighbors − 1
for j = i to Nneighbors do

neighborsID [j]← neighborsID [j + 1]
break

rand← randomFrom(1,Nneighbors)



4 K.A. Glinskiy

for i = 1 to Nneighbors do

if rand = i then

value← add + remainder − neighbors[neighborsID [i]]
else

value← add− neighbors[neighborsID [i]]
addValueToNeighbors(value,neighborsID [i])

x← K

Algorithm 2. Cell transition function. Rule 2 (x = K).

procedure phaseSep2(x,K,neighbors[1..8])
max← 0
Nneighbors ← 0
for i = 1 to 8 do

if neighbors[i] < K then

if neighbors[i] > max then

max← neighbors[i]
IDmax ← i

else

Nneighbors ← Nneighbors + 1
if Nneighbors > 3 then

return

addValueToNeighbors(K −max, IDmax)
x← max

Algorithm 3. Cell transition function. Rule 3 (0 < x < K).

procedure phaseSep3(x,K,neighbors[1..8])
max← 0
Nneighbors ← 0
for i = 1 to 8 do

if neighbors[i] ≥ K then

return

if neighbors[i] > 0 then

if neighbors[i] > max then

max← neighbors[i]
IDmax ← i

Nneighbors ← Nneighbors + 1
if Nneighbors = 0 then

return

sum← x
while sum > 0 do

part← K − neighbors[IDmax ]
if sum > part then



Development and parallel implementation of cellular automata. . . 5

addValueToNeighbors(part, IDmax)
sum← sum− part
IDmax ← IDmax % 8
IDmax ← IDmax + 1

else

addValueToNeighbors(sum, IDmax)
sum← 0

x← 0

1.2. Transition function of asynchronous model. The function of cell
transitions in the asynchronous model is given by the following rules:

1. If
∑8

i=0 xi ≥ 9K, it is distributed evenly between the cell and its
neighbors.

2. Otherwise, it is distributed among the cells in descending order of xi
by K, except perhaps the last one, which gets less liquid than K.

2. Software implementation

The models are implemented in C [4] as three modules–– preprocessor, sim-
ulator, and postprocessor –– using the library of cellular automata topolo-
gies [3].

2.1. Preprocessor. This module sets the size of the array, the proportion
of mixture components and the K level when the equilibrium of gravity and
surface tension is reached. The preprocessor creates a cellular array, fills
some of the cells with mixture components in an amount from 1 to Xmax

equally and writes the cellular array to a file. Parameters such as array size,
number of iterations, and cell size are also written to the same file.

The preprocessor uses the following library functions:

• CAT InitPreprocessor

This function takes as input the specified topology, the size of the data
area occupied by one cell, a size of common data area available to each
cell in the array independently of their neighborhood, and the width
and length of the cellular array.

The task of the function is to initialize the cellular array and generate
a binary file header in RAM.

• CAT PutCell

This function takes as input a pointer to the structure with the state
of a cell and the cell indices in the array.

The function passes the specified values to the cell of the array by the
given index.



6 K.A. Glinskiy

• CAT FinalizePreprocessor

This function takes as input the file name where the cell array infor-
mation will be written.

It writes the generated cellular array into the binary file and frees the
memory used to store the cell array.

2.2. Simulator. The simulator reads the cellular array state from the file,
performs a specified number of iterations on it, and writes the resulting
cellular array state to the file.

In the synchronous mode, the cell transitions function is automatically
applied to all cells of the array at each iteration by the library. This en-
sures that each cell of the array interacts with all eight neighbors. In the
asynchronous mode, the cells are selected randomly.

Periodic boundary conditions are applied to the array, that is, the left-
most neighbors of the cells of the leftmost column are their corresponding
cells of the rightmost column and vice versa. The same principle applies to
the upper and lowermost rows.

During the work on the software implementation for these models, the li-
brary of cellular automata topologies was modified to speed up the program
execution. To speed up the computation of new cell values, for the syn-
chronous mode, a parallel implementation of its cell array traversal module
in a system with shared memory was performed using OpenMP.

The simulator uses the following library functions:

• CAT InitSimulator

This function takes as input a binary file containing information about
the cell array and the simulation mode (synchronous or asynchronous).

The function reads the contents of the cellular array from the file and
puts the read array into memory.

• CAT SetNumThreads

This function takes as input the number of threads.

Sets the number of threads used to run the transition function in
parallel.

• CAT Iterate

This function takes as input the address of the cell transitions function.

It applies the transition function to proper cells of the array according
to the simulation mode. It needs to be called repeatedly, according to
the number of iterations.



Development and parallel implementation of cellular automata. . . 7

• CAT FinalizeSimulator

This function takes as input the name of the file in which the updated
cell array information will be written.

The function writes the updated cellular array to the binary file and
frees the memory used to store the cellular array.

2.3. Postprocessor. In this module, the state of the cellular array is read
from the file, the results are processed and the calculated values (the number
of mixture components in each cell) are output in a user-friendly format.

To visualize the cellular array, a function has been implemented that
creates an image with a grayscale color palette as a pgm file [5] based on the
cell states. The lighter the cell, the higher the content for the first mixture
component, and, vise versa, the darker color means a lower content for this
component. Pure white color represents those cells where the amount of the
first liquid exceeds the amount x ≥ K providing the equilibrium between
gravity and surface tension.

The postprocessor uses the following library functions:

• CAT InitPostprocessor

This function takes as input a binary file containing information about
the cellular array.

The function reads the contents of the cellular array from the file and
places the read array into memory.

• CAT GetCell

This function takes as input a pointer to a structure and the cell indices
in the array.

It writes the current state of a cell in the array by its indices to the
passed structure.

• CAT FinalizePostprocessor

This function frees the memory that was used to store the cellular
array.

3. Computational experiments

The general parameters of the experiments performed with the synchronous
and asynchronous models were as follows:



8 K.A. Glinskiy

• The size of the array is 100 by 100 cells.

• The amount of the first liquid in a cell with equilibrium between grav-
ity and surface tension is taken as K = 100.

• At the initial time, in each cell a random integer amount of the liquid
x ranges from 1 to 350, with a probability of 25 %, otherwise the state
value of that cell is x = 0.

3.1. Synchronous model results. Figure 1 shows the initial distribution
of liquids (T = 0) and results of simulation at iterations 1, 10, and 100. The
cells shown in white are those with the amount of the first liquid exceeding
the value x ≥ K needed for equilibrium between gravity and surface tension
forces.

At the first iteration, the first liquid actively spreads from the cells with
the amount of liquid x > K to the neighboring cells. Then, in the following
iterations, the liquid collects into small drops, but after a certain number of
iterations (T = 10 and T = 100) the liquid hardly moves at all.

Figure 1. Results of simulation of the phase separation process
using the synchronous cellular automaton with integer cell states



Development and parallel implementation of cellular automata. . . 9

Figure 2. Result of simulation of the phase separation process using
the asynchronous cellular automaton with integer cell states

3.2. Asynchronous model results. Figure 2 shows that during the first
iteration the first liquid actively spreads from cells with the first liquid
amount x > K into the neighboring cells. In the following iterations, the
shape and size of the spots remain virtually unchanged. The character of
the droplets, as compared to the synchronous model, is more granular and
less rounded.

3.3. Comparison with binary model. For comparison, the model of
phase separation with a binary alphabet [2] was additionally implemented.

The size of the array was also chosen 100 by 100 cells. Initial states of
cells 0 and 1 were distributed equally throughout the array.

In contrast to synchronous and asynchronous models, in the binary
model (Figure 3) the droplets are collected in larger spots. Since mass
is not conserved in the binary model, depending on the initial conditions,
the ratio of liquids can be significantly disturbed over a large number of
iterations (up to the complete disappearance during one of them).

Unlike the binary model, the new synchronous and asynchronous models
are robust to all initial conditions due to the conservation of liquid mass.



10 K.A. Glinskiy

Figure 3. Result of simulation of the phase separation process using
the cellular automaton with binary cell states

3.4. Discussion of results. The extent to which the liquid pools into
spots depends on physical properties such as viscosity and surface tension
force. As a result of the experiments performed for the synchronous and
asynchronous models, a qualitative correspondence with the physical view
for high viscosity liquids was obtained. Expanding the range towards lower
viscosity can be achieved by modifying the transition functions of these
models. Thus, larger spots are expected to be obtained.

Based on the above results, it can be concluded that the synchronous
model reflects the phase separation process better than the asynchronous
model. For the asynchronous model, the high viscosity and the effect of
automaton noise make the pattern grainy and bear little resemblance to the
real physical view.

Conclusion

During experiments we compared synchronous and asynchronous models
and found out that these models match the physical pattern, but they require
further improvements.



Development and parallel implementation of cellular automata. . . 11

The advantages of models presented in this paper are the conservation of
liquid mass, (due to transition function), and the possibility of controlling
the layer thickness, due to the use of an integer alphabet of cell states. The
disadvantage of existing state models is that they are suitable only for highly
viscous liquids.

In the course of this work, the library of cellular automata typologies was
also modified by adding a parallel implementation of the cell array traversal
module for shared memory systems for synchronous mode.

Further development of the models presented here is expedient in the
direction of describing the phase separation process for liquids with a large
viscosity range of the simulated liquids through modifying the cell transition
functions.

References

[1] Fridrikhsberg D. Course of Colloid Chemistry. –– Leningrad: Chemistry, 1984
(In Russian).

[2] Bandman O. Cellular automata models of spatial dynamics // System Informat-
ics. –– Novosibirsk: Publishing House of SB RAS, 2006. –– Vol. 10. –– P. 59–113
(In Russian).

[3] Medvedev Yu.G. Architecture of the cellular-automata topologies library //
Bull. Novosibirsk Comp. Center. Ser. Computer Science. –– Novosibirsk: NCC
Publisher, 2022. –– Iss. 46. –– P. 27–41.

[4] Prata S. C Primer Plus: Sixth Edition. –– Addison–Wesley, 2013.

[5] PGM Format Specification Available. –– https://netpbm.sourceforge.net/doc/
pgm.html#index (accessed July 18, 2022).



12


