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On one domain decomposition method
with nonmatching grids for solving
parabolic equations™®

S.V. Gololobov, Yu.M. Laevsky

In the article we propose and study a noniterative domain decomposition algo-
rithim without overlapping subdomains and with the use of the penalty functionals
on the interface between subdomains. Such type of algorithms were considered in
[1-5]. In all these works the error estimate for optimal penalty parameter is O(/T).
In this work the error estimate is improved and our approach is similar to [6], where
the alternating direction type splitting was used.

1. The original boundary value problems

Let © be a bounded open connected polytop in R™, m = 2,3, and let
and 5, be subdomains of € such that

Then, let
“ du Ov
a,(u,v) = A i(Z)5— w— d7, =1,2. 1.1
)= [ 3 Xs@)g g dan » (1)
Here z = (zj,...,%m) denotes a point in R™. The bilinear forms are sym-

metric, continuous in H}(,) x HY(S,), and H}(Q,)—elliptic, i.e., there are
positive numbers A; and A; such that

lap(u, v)| < Mlulgyolvlag,), lap(u,u)| > AZluli{l(Qp)- (1.2)

Here H{(S2,) is the subspace of H!(Q,) obtained by the taking of clo-
sure, in the norm of H'(,), of the set of infinitely differentiable functions
with compact support in ,. Next, we introduce one-parameter families
of continuous linear functionals on H'(§2,) by using the duality pairing on
H=1(Q,) x HY(,); ie., L(t;v,) = (fo(t), vp)p, p = 1,2, where (-,-), is the
scalar product in L3(Q,), t € [to,t.]. Here and in what follows u(t) is the
value of a function w : [to, t.] — X and %%(t) is the strong limit in X of the
elements [u(t)], = (u(t + 7) — u(t))/7 as 7 — 0 (if it exists).
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We denote by H’c the space of the functions in Hk(Qp) extended to Q
by zero beyond Q,. Now, we may introduce the space H* = H¥ fx HY of
vector-functions mth a norm || - The scalar product in L, is

”Hk :
(u? v) = (u1, v1)1 + (ug,v2)2.
In the space H 1 we introduce the bilinear form
a(u,v) = ay (w1, v1) + az(uz, ve).
We distinguish ‘the following subspace in H!:
HYW ={ve H' |v(3) = (7)), 2 € S = 0 N ).

Now, we formulate the parabolic Neumann problem as some problem in
the subspax:e H'0. Assume ug € L and fe Lg(tg te H™ 1. The problem
is to find a vector-functmn u € Lo(to, t.; H? °), € Ly(to, t; H- 1) and the
equalities

du
(-&?(t), v) + a(u(t),v) = (f(t),v), (1.3)

(ulto), v) = (uo, v) - 4

hold for every v € A0 and almost every t € (tg,t.). It is easy to see that
problem (1.3), (1.4) is equivalent to the conventional Neumann problem in
the space H'(f2). We point out that the Neumann problem is considered
exclusively for notational simplicity. All results of the present article remain
valid for other boundary value problems.

Following (1], we formulate the Neumann problem with conditions of a
nonideal contact on the interface: given the same initial data as in problem
(1.3), (1.4), find the function u” € Ly(to, t.; HY), ‘i;‘: € Ly(to, t,; H1) and,
for every v € H! and almost every t € (to,t.), the equahtles

(%20, 0) + aw(t), v 42 [0 - @) - ) ds = (70, v), (15)
(u"(tg),v)z (uo, v) (1.6)

hold, where p > 0.
It is shown in [1] that if a solution to problem (1.3), (1.4) is sufﬁaently
smooth in subdomams then the following inequalities hold:

[lu u”C(tq tu: Lz) = clp”u“Hl(to't.';ﬁz)a ”up”X < C?IIU*”Xa (17)

where X is an arbltrary subspace in La(to, t.; I?l), P < po, and the numbers
¢; and c; are independent of the parameter p and the vector-functions u and
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u?. These equalities justify the use of the penalty method for solving prob-
lem (1.3), (1.4).on applying the domain decomp051t10n method to problem
(1.5), (1.6).

All notations connected with the a.pprommatxon of problem (1.5), (1.6)
by the finite element method adhere to [5].

2. Alternating direction type decomposition

In this section' we describe the domain decomposition method in vector-
matrix form. The splitting method is based on the following addltlve pre-
sentatlon

A,,_A+ lp. (2.1)

Lét N be a natural number, 7 = (t* — to)/N and t, = to —|- nr, n =
., N. We write down the method as follows:

+ AT+ %B"_‘H% = 5, (2:2)
+ Aa"H 4 }-Bﬁ“+15 = frts, (2.3)

where f*+3 = 3(F" + 1) and (&); = pp 0, (2p), p = 1,2 (see [5]).
Here we assume ug, € H%(Q,).

Let @™ be the vector, corresponding to the Ritz projection of u?(t,)
- (solution to problem (1.5), (1.6)) on space of piecewise linear functions.
Introduce the following sequence of vectors: &* = " — @w", E-“"'%- = a"+: —
Hw"™+ "), n=0,...,N = 1. Then from (2.2), (2.3) it follows:

§n+- fn 1 + gl ' '
+ AL + f" =gz, 24
R p , _ 24)
£n+1 - §n+2 n+1 1 n+L _ =n+l1
5 A pBE Pt 29
where X ' o o _
—n+s __ __ -n _ ' an . :
g =an 4 o, " (2.6)
and

B 1 (1 ,/du? du? :
(a;;)t' = _p"'{E ("a'f(tn) + d_tp(tu+1)? (Pﬁ-")p - dh-P([w;‘]T! ‘PP'*')}’
= Awr, wr =TT
. T
vector W} corresponds to vector-function [w"],.
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3. Convergence theorems

Rewrite system (2.5), (2.6) in the form

(E+ -2%3)5"4'% = (B- -;:A) en | %a“ + %E“, (3.1)
(E+ZA)e+ = (B~ 2153)5"*%‘ + 56" - %zﬁ_“. (3.2)

Let us denote ¢" = (E + FA)", Ry = (E+ ZA)"Y(E - 5A). Then, it is
not difficult to receive from (3.1). (3.2) the following equations

g 4 %Bg‘ﬂ+% — RAg" — 1G" = 0, (3.3)

_ 2 -
¢n+l + RA@“ _ 2Eu+1§ + %ﬂn =0. (34)

From (3.4) it follows that E""‘é’ = I;-ﬁ“ + ‘5—"“—;’552. Substitute this equality

into (3.3):
Zn+l -n r zn+1 MY — A" — 3 an )
@ Ra@" + _QpB.((‘o + Rag™) =T1a 4—pBﬁ . (3.5)

Then, let us multiply (3.5) by " *!1+ R4@" and use e-inequality. As a result
we will obtain

TEL\ || zn+1) 2 TE2 a2z, T(1 1Nynp2 | T o
- < — (=4 — S )
(1= < (14 F2RaG + 5 (5 o+ ) la I+ 5 1A™ 1

Let 7 < 1,2y =4, g5 = 1. Then,

5
- A (¥ T 3"
™7 < (14 IRAPIE + 378"17 + {137

Using mesh Gronwall’s lemma and taking into account that ||[R4]| < 1 (ac-
cording to (1.2) matrix A is positive semi-definite), we will receive

n—1 5 n—1 B
1612 < eo{ll”12 + 7 3 NlakP + = 37 118413 ) (3.6)
k=0 p k=0

Let us estimate the norms in right-hand side of (3.6). Firstly, with the
use of the estimate for ||u(t) — w(t)|| 5, from [5] we have

_ . h _
112 < ea(1 4 ;)(rﬂ RN ey (3.7)

Let us consider the presentation
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& =ak' ab? +akd, (3.8)
where
(@) = p,l,;{z (G200 + Tt ), = (w50l
(@) = i {00 00), = Ty 1)) 0}
(ah%); = ;;dh,p (T p (2t = (3]s, 0p.).

Then the use of standard technique results in the following estimates:

fla*!]% < cs (3.9)

" dt3 "Lz(tk,ka L)’

du® y2 du? y:
k2|2
<
”a “ e (“ Lz(tk tets Hl II dt ILz(tk thy1s Hz)) (310)
duf 2
k3|12 o ( R ) _
“Of “ c7 " ILz(tk.fk+1;H2) (3 11)
Presentation (3.8) and inequalities (3.9)—(3.1 l) give the estimate for ||a*||.
To estimate [|3%||% let us note that (3%); = ap([wp] @p,i), and it is clear
that we have to estimate
6[u" te)]- tk) B
ap([":(tk)}n‘:%,é) :js on, o ppids — /p 121)‘ Ba: 9z . Ppi AT

With the use of the trace theorem and taking into account that ||Bi| < ‘—'h—

we obtain: e
1813 <cs—(1+ )|

£t 3.12
L’2(t_k~tk+1;H2) { )

Substitute inequalities (3.7), (3.9)-(3.12) into (3.6). As ||f™] < ||@"| we
have:

“np)2 2 4 2 h T
ilcn 2 34 i o
R s etz 14 B (et )L G
where ¢g = cg(e3, ..., cg) and
d3ur
Sl v PR TV L P CA R

The existence of M, and M, are provided by corresponding a priori
smothness of the solution of the problem (1.5), {1.6}. We have proved the
following
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Theorem 3.1. Let. the smothness of the solution of (1.5), (1.6) correspond
to (3.14). Then for the solution of (2.2), (2.3) at T < 19 and h < hg the
following estimate is valzd

| lgu%v”u —u"( )“A <cM(uf’){r+h+ +h\/_) \/..} (3.15)

e
where 7o, ho, € do not depend onrt, h,pand functwnal M(u") is defineded
by M, » and M‘,J h- : ,

In'equ'ality (3 15) means that for ﬁxed p we have error estimate O(T +
h+3 ) For small p we will use (1.7) and will receive the error estimate for. -
the solutmn of origmal problem (1.3),.(1.4). A_ccordmg to (1.7) we have

. : : 1
1;<nal<xN||u —u(tn)||3 ch(u){p+r+h_+ \—/_—( -i-h\/_) P\/_}

It is a difficult problem to find optimal p, which minimizes the right-hand
side of the last inequality. Instead of the one we will find m1n1mum of two
following expressmns appart: p + ‘/—{T + hv/h) and p + - \/— - Then we

will obtam correspondmg M= (1r + VR = O(h + -rsh ) and

p2.= Th™ ¥. The best estimate is realized at p = p1. Then the following
theorem is proved: - -

Theorem 3.2. Let the smothness of the solution of (1.3), (1. 4) promde the

existence of functional M(u). Then, for T = h* and p= c’(h2 + h?e- 1)3 at
h < hg the followmg mequahty

d,4-2
h3o 3, a(%_,

: 5
h,. o> rg)

1r<na<xN||u - u(tn)ﬂ z, < cM(u){

(3.16)
~ holds, and numbers ho, c, ¢ do nof depénd on h and vector-function u.

4. Convergence for one-dimensional problem

The estimate from Theorem 3.2 may be improved for one-dimensional prob-
- lem or for the problems with dividing variables. For simplicity we will
consider convergence for one-dimensional problem, but all analysis will be
realized for multidimensional case and specific of one-dimensionalness will
be used only in the proof of Lemma 4.1. For this aim we will use the tech-
nique from [6]. This technique requires an existence of A;!, and, therefore,
in this section we will consider the Dirichlet problem. The Neumann prob-
lem may be considered too, but it requires some modifications (see [6]). Let
us present the solution of (3 1), (3 2) as
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& ="+ (" (4.1)

(E+ %;B) i = (B - %A) "+ %Ez",
(B4 Za)im+ = (B - 5%3) i+ 28", (4.2)
7 =€,

and
(E+ %B)C“*% =(FE- ;A)g F T—QB“,
(E+5A)0 = (B L)+ - L, (43)
& =0 |

Similar to previous analysis (inequality (3.13)) it is easy to receive the
estimate for the solutin of the first systen:

h . :
17 < eno{ M2, 74+ M2, (14 ;) (12 + h*) }. (4.4)
Now let us estimate the solution of (4.3). Let
AN ] _7_: ~n —ndd » _F‘:_ P
e = (E+5A)0 ¢t = (B4 2pB)“ i,

Then equations (4.3) will transform to

37 = Ryo" 2 an Zrtl _ sty r 3" 4
PE=RaQ"+ 8% ¢ = Rpo 2 A (4.5)

l\.'n—
1

where Rp = (E+ L B) ™' (E — 7;B) and ¢ = 0. Denote " = @t ot

’,5”2 - T""’n where & will be defined later. Then from (4.5) it foliows:

2

Tn4 L n, T 3 -y it IS @& YA
T = Rawt (-t T = Rpy i - T (3" = Rp"). (4.6)
Let us define vecror & by the following equality:

- _7: / \ign L ” j:_ an -n
(1 + AN - = {E+2p3)w — Rpa").

Then, " = A71(4 - 1B)g". Let §" = (E+ ZA)(A" = &), Then,
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5 = %(E + —;-A)A;IBB". (4.7)

Let us multiply the first equation from (4.6) by E + 7 A and the second one
by E + 3, B. As a result we will receive -

2L
%Z,u+% - ,‘Z,n + %A(‘Jlrﬂ-% + ,J)n) - %5“,
2

- —n4 L T - T T <
1bn+l _ ¢n+é + _2_;B(¢n+l +,¢,n+;) —_ _Z_an_

Taking into account positive semi-definitness of the matrices A and B, from
these equations it is not difficult to obtain the inequality

3
_ T en - n -
1™ 1 < He™l1” + - (87, ™) = (87, 8™)),

and after summing;

1™ < T2 gy 4 T 3 (8%, 44y
R [ T 216

With the use of the Cauchy-Buniakovsky and ¢ - inequalities, of the mesh
Gronwall’s lemma and assuming 7 < 1, we will obtain

n-1
1" < eurr* {I18"1 + 7 3 15512} (4.8)
k=1

Remark 4.1. The latter form of our equations, which allows us to present
the right-hand side as
(Sn, @ﬂ - @n-H) = T((‘?:}: ‘pn+l> - (Sﬂ, _n)‘r)v

is the central moment of the analysis in this section. The necessary order
of convergence is provided by not local estimate on one time step, but after
the use of the mesh Gronwall’s lemma.

The following lemma allows us to estimate ll6™|| and [|8%].

Lemma 4.1. For arbitrary vector & the following estimates are valid:

VJ'

vh

where the numbers v’ and v" do not depend on h, p and vector v.

| _ 1 1o v
- ;“Ap Byl < —=|l9l, ;”AA;’ By|| < —l#ll, (4.9)

Proof. For one-dimensional problem the proof may be received from direct
inversion of matrix A,. But toshow difficulties for multidimensional problem
we will give the proof in general case and will indicate the moment, where
we use one-dimensionalness. The structure of A and B is
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Au AlS 0 0 0 0 0 0
ATs A5 0 o B_ |0 Bu Bu 0
0 0 Ag‘g Asz |’ 0 B, By; 0
0 0 AL, Ay 00 o0 0

A=

In accordance with it o = (o, ﬁgl),ﬁg), 92)T, and let §g = (I_I(sl), ﬁg))T. Let
W be the solution of the system A, = %B‘E. Let us denote A, s = As+-;—Bs,

where ) =
A 0 By Bis
e[ ) o (2 )
s [ 0 Ag)] 5 Bf, Bn)’

AY = AG) - AT AT Ars, AD = AD) — A5, 451 AT, are positive semi-
definite matrices, but A, s is a positive definite matrix. Then,
Ap,s(ﬁg - tt_rs) = Asts. (4.10)
From (4.10) we obtain
ll@sllas < 2osllas. (4.11)

In one-dimensional case A_(S?J are the numbers of the same order in h and
from (4.11) immediately follows that

llos]l < ¢llesl] < </|is]]. (4.12)

Yet it is not true in multidimensional case. As it is shown in [7] (Lemma 6.1)
@] < %ﬂzﬁsl[, and according to (4.12) we have the first inequality from
(4.9) with v' = /.

Let Z = JAA;'BS = Ad. It is esy to show that z = (0, (), 3, 0)T
and zs = (28, 2T = Agws. Then,

lzsll < llAsl sl < ¢llAs] [19]].

For one-dimensional problem ||As]|| < #, and we obtain the second inequality
from (4.9) with v” = ¢/A. _ o

According to (4.7) and Lemma 4.1 we have

2
h

1571 < (= + ) 1B (4.12)
The estimate for ||5"||? is

—n h
1B < era(1+ =

du”f
P)—"%"Tt:.";(tmfn“;ﬁz)’ (4.13)

(see previous sectioh). From (4.12), (4.13) and a continuity of an imbedding
H'(to, t.; H?) into C(to, t.; H?) it follows: :
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- s 3 1y dur 2
[ -m!z < oy Lo R IS | B _ . (. 14
1871 < eas(1 4 ,0)(1+ fa.)h,:' at N (outasiiy t11)
Analogously we have:
o h 2 1 g d%ur 2
k2 5
< ey - — ) =li—== oy +. 12
“(STH = c“(l + P) (] + h )Thzl dt? NLote, by 3H2) (4.15)

Substitute estimates (4.14), (4.15) into {4.8), and as 1 < fl@"]] we will
receive
T'Z

Znj: h T4
IS < exs (14 ;) (1 ) e W oy (4.16)
From (4.4) and (1.16) immediately follows

Theorem 4.1. For the conditions of Theorem 3.1 and Hu”‘i;‘”?“r IS
the Jollowing estimate is valid:
—

. n Y rteop PN h
nax v — u {L ) < eM{u”)o(r, ki1 4 ~,
AR = ), € M ot

/

where o{r,h) = 7+ h + Ihivf,l + %; and functional M'(w?) is defineded by

M, - M, p and ”H’)“Hg(rﬁ'a':g%.

Then for the solution of the original problem it follows from (1.7):

h
Al =t )lr < eM! 1+ = ).
énn%_:}}v {lu “(t“)HL; < eM'(u)| (p-}-a‘{‘r,h) 1+ ,0)

Az easy to see al p = VT2 17 we have error estimate O(a(r, h)), and
optimal p does not improve this estimate.

Theorem 4.2. Let M'(u) < co. Then forp=cdVr2+h?atr <7, h < hy
the following estimate is valid:

2 [ 2
¥ L p— _~ o ’ e ' I
123%XN [|u U(f-n).”b <eM (u)(‘r-{—h-!- h 1+ h )

5. Numerical experiments

Make some tests according to the method under consideration. Firstly, we
will consider one-dimensional problemn. Thus, we can confirm the fact that
the estimate obtained in Theorem 4.2 can not be improved in regard to the
power of 7. As for the power of A, the estimate is not, optimal. Then we will
demonstrate two-dimensional example with the use of nonmatching grid,

Let consider the Dirichlet problem for the heat equation in interval Q =
(0,1):
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Ou 0%u

E = ’\0@1 (t,-’L‘) € (Or 1) X Qa
u(t,0) =u(t,1)=0, te (0,1),
u(0,z) =sinwz, = €0, 1].

The solution of this problem is
u(t, z) = e~ 2"t sin 1z

Put Ao = 0.1. In this assumption the Ly-norm of the solution decrease
approximately in e times to the time ¢ = 1.

The domain decomposition is Q; = (0, %), Q= (g, 1). In the following
tables we use the notations: ¢ = (2, s h(up(1, 2;) ~ ui‘:,v(l,.1:.-))2)1/2 is
the Lo-norm of the error for time t=1; prp = VT2 + h? and pop is the
value of parameter p for which error ¢ takes minimum. In Table 1 the results
are presented at 7 = h and p = 0.7p:.h, 0.65p, 4, 0.75p; 1. The constant 0.7
approximately gives the equality 0.7p, ), = Popt at T =h = 278,

Table 1
T=h 24 2-5 2-¢ 277 278 2~°
Popt 3.810--‘2 2.510—2 1.410—2 7.510-3 3.810—3 1.910—3
£ 6.58,0-4 1.64,5-4 4.10)9-5 | 1.06,5-s 2.6319-6 | 6.44)5-7
0.7p7 1 6.19,5-2 3.09,5-2 1.55,9-2 | 7.73,5-3 3.87,0-3 1.93,4-3
3 7.5710-4 | 1.89,5-4 4.75,0-5 | 1.20,-s 3.04)p-6 | 7.84,5-7
0.65p-n | 5.75,0-2 2.8710-2 | 1.44,9-2 7.18,5-3 | 3.59,5-3 1.80,0-a
€ 7.26,9-4 1.75,5-4 4.16,9-5 | 1.05;5-s 3.68,5-s 1.80,5-¢
0.75p:,n 6.63,5-2 3.31,4-2 1.66,p-2 | 8.29,9-3 4.14,9-5 | 2.07,5-3
€ 7.93,0-4 2.08,-4 5.80,p-5 | 1.79,4-5 6.44,5-6 | 2.67,9-6
Table 2
h 21 28 278 277 278 2-®

€ 1.2710—3 4.0010—4 4.7510-—5 2.8510—1 7.8610—4 1-7710—3

It is interesting to note that at P = popt and p = 0.7p,  assimptoticaly
the error is propotional to 72, nevertheless, p is propotional to 7. But
the first estimate from (1.7) gives the optimal error, and presented fact is
provided by compensating of the mesh error and the error from (1.7) (both
these errors have different sighns). For other constants in p = cdprp (in
Table 1 these are 0.65 and 0.75) we have a convergence which is provided by
Theorem 4.2 (¢ is propotional to 7). Then Table 2 illustrates conditionally
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convergence (the third term in the estimate of Theorem 4.2) — at fixed .
7'= 2-® the error increases with decreasing of the spatial step h.

Now let us consider two-dimensional example with the use of nonmatch-
ing grids. Let Q be the square (0,1) x (0,1)~ Treat in £ the Dirichlet
problem ’ ’ '
du | (32u *u

5= 55%*'3—&:2)’ (t2) € 0.1 9,

w(t,7) =0, (5% € (0,1)x 9,
(0, sT:) = sin rrisinTTy, I € ﬁ
with the exact solution - -
‘ - u(t, &) = e~ 2o’ siin Ty Sin TE2.

Here we put Ag = 0.05 which gives the decreasing of L,-norm of the solution -
approximately in e times to the time ¢ = 1. o .
Here the domain decomposition is' Q2 = (0, 3)x(0,1), Q2 = (3,1)x(0,1).
In ©Q; we use the grid -with' the step h and in Qp with the step 2h in both
variables, In this example we use the formular for parameter p not from
Theorem 3.2, but from the one-dimerisional example. -We think that the
error estimate from Theorem 3.2 is not optimal and in fact a convergence in
two-dimensional problem-is the same as in one-dimensional case. Let us note
that the mesh problem with ‘nonmatching grid is "bad” — the variables are
not divided. Here ¢ = (£5-; T h*(up(1, 2:) - uN(1,2;))%)"/%. In Table 3
‘the constant 14 approximately gives equality 14p.,.,h' = popt &t T =h = 278,

Before to present the numerical results make a shot remark on the realization -

"scheme (2.2), (2.3) in two-dimensional case. For the inverse matfix (E+4;B)
we use the lumping procedure and note -that- matrix ‘B — B{z((El,l +
- #B1,1)7' By, has three-diagonal form (digonal form for matching grids).

Tq@le(i l
r=h | 27 o2 2=* 277 278
Popt 12,00 . | 62i0-1 | 3lio-r - | 1610-1 | 7.9y0-2
e 7.020-5 |, 3650-3 | 187i0-5 | 9A4yo-s | 475i0-4
14prn | L3460 619551 | 3.090-1 *| 1.55,0-1 | 7.7310-3
€ 7.02,0-5 | 365.0-s '| 18Tig-s | 9d4io-a | 4.75,0-4
13prn | 115,00 | 575101 | 287T5-r | Lddie-r | 7.18jg-a
€ 7.0310-s | 367j0-5 | 188j0-3 | 952i0-4 | 4.79p0-4
15pmn | 13310 | 66316-1 | 33Ljg-s | 166i0-1 | 8.2950-2
¢ 7095 | 367i0-s | 18Tip-s | 9dTioms | 47610-4
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The notations which we use here were introduced in the proof of Lem:ma.ti 1.
On the second step instead (2.3) we consider the equation with factorized
ma,tnx
T T aNontl _ (g _ T pYantd o T sl
(B+54)(E+ 2A2)u = (E Bt 5

where Al and A, are the matrices corresponding to the second derivatives
on every variables. -

As we see for optimal p a.nd for ¢p, 5 with different constants the error

decreases proportionally to T (here the previous effect of decreasing of the
error in four times is absent)
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