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Numerical solution to combined
one-dimensional inverse problems
for Maxwell’s equation and equations
of porous media*

E.V. Goryunov, Kh.Kh. Imomnazarov

Combined one-dimensional inverse problems for Maxwell’s equation and equa-
tions of porous media are solved numerically using the optimization approach. Rep-
resentative series of numerical calculations for various models of media are given.

Introduction

The choice of simplifying assumptions on a real geological medium is espe-
cially important in the interpretation of geophysical data. As a rule, the
geological medium is assumed ideally elastic in most cases. Real geological
media, however, are multiphase, conducting, fracturous, porous, etc. During
the propagation of seismic waves their dissipation which is associated with
energy absorption takes place.

The numerical solution of some combined one-dimensional inverse prob-
lems for the equations of SH waves in conducting porous media using the
optimization approach is considered. Theoretical aspects of some combined
one-dimensional inverse problems can be found in [1-4] and their references.

1. Numerical determination of conductivity
of porous body, liquid, density of conductivity
of the porous body

Assume that a half-space z > 0 is filled with a conducting porous medium
with the parameters A, u, a, the conductivities oy, oy and the partial densi-
ties po,i, po,s which are functions of the coordinates z, y, z. In the case of a
one-dimensional inhomogeneous medium, the process of propagation of SH
waves is described by the following initial boundary value problem [5]:
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po,s(2)u — (pu;), = 0, teR, z>0, (1)
o(2)E; — E,, + Hos(z)uy = 0, teR, z>0, (2)
ulico = 0, 250, (3)

Elico =0, =z >0, (4)

pugle=0 = f(t), tER - (9)

E;|,=0 = 0, t € R;. (6)

Here u(t,z) and E(t,z) are the horizontal components of the displacement

vector of the velocity of particles of the conducting elastic porous body and

. the electric field, respectively [5], f(t) is the form of a sounding signal (a finite

continuously differentiable function on the interval [0, 00)), & = const is the
shear modulus, po,(z) is the partial density of the elastic porous body,
o(z) = 01(z) + 04(z), 05(2), and o1(2) are conductivities of the body and the
liquid, respectively [3].

In paper [6], it was found that for the conducting porous media the
Archie law holds: o1/ = p(} (the consolidation index m is designed from
the empirical grounds and it varies for different rocks within (1.3, 3) (7], we
assume m = 1.3 in the sequel).

In this case, partial density of the elastic porous body pg (2) and liquid
po,1(z) are connected w1th the physical densities of the elastic porous body
p (<) and the liquid f () by the formulas po(2) = p1(z) (1-d(2)), ps(e) =

(z) d(z), where d(z) is porosity. '

The determination of u(t,z) and E(t,z) from (1)~(6), given the func-
tion pf (2), d(2), o1(z), o5(z) from M = {m(2) |0 <§ < m(z) <A<
00, hmz_mm(z) = my, m(z) — my € Lz(0,00) N 01(0 o0)} is the direct
problem, and the determination of the functions pj f(2), oi(z), a5(2) (d(2)

and H are assumed to be known) using the complementary information

; uizzﬂ = .“'O(t): t € Ry, b ; (7)

Eiz=0 = Eﬂ(t): te Rh : (8)
is the inverse problem for the system of equations of SH waves in the con-
ducting porous medium.

We seek for the solution to the combined inverse problem as a minimum
point of the misfit functionals

Bl = [ lal®) - Bl GNORd ®)
Balo(e)] = [ 1Ba(t) - Bilo@IOPe. (10)
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Here Bi[pf(2)](t) and B, [0(2)](t) are operators that transform the functions
pf(z) and o(z) into the solutions to the initial boundary value problems (1)-
(8) at z=0:

Bi[pf(2)I(t) = uo(t), Bso(2)](t) = Eo(t).

The issues connected with the uniqueness of a minimum point of the
misfit functional (9) and the existence of the gradient are considered in
[8]. For misfit functional (10) the uniqueness of a minimum point and the
existence of the gradient are similarly proved.

Since functionals (9) and (10) are quadratic, it is reasonable to realize
the iterative process of the search for the minimum in the frequency domain
using the Parseval equality. Thereby we avoid the labor-consuming opera-
tion of the transfer from the frequency domain to the time domain in the
solution to the direct combined problem. It permits to make a considerable
reduction of computations. In the frequency domain, functionals (9), (10)
take the form

lpf() = [ lto(w) — B [pf (2))(w) Pdw, (11)
®alo(:)] = [ 1b(w) - Balo(2))w) P (12)

Here (w1, wy) is the range of the time frequencies determined by a compo-
sition of the sounding signal F(w),

(o (w), By (w), F(w)) = /;m(uo(t),Eo(t)po,,(O) c2(0)£(£))e~“tdt.

In terms of the Fourier transforms, i(w, z) and E(w, z) satisfy the following
boundary value problem

dzﬁ 2 2 ~
a?+w ni(z)u =0, z€Q, (13)
dE - .
E+twa(z)E+sz0,(z)u=0, z€Q, (14)
Uz|y=0 = F(""’)’ (15)
E,|,=0=0. (16)

Here n}(z) = pgs(2)/p. In formula (15), we use the definition of the trans-

verse wave velocity c;(2) = \/u/po s(2).

As in [3, 9], it can be shown that the gradients of the misfit functionals
(11) and (12) have the form
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il @(0) = —3Re [ [a0(w) = Bulpl ()] Clor 0,
V(o) Balo (2)](e) = 2H Re [ " [Bo(w) ~ Balo (2)](w)]| (e, 0)0(e, ) +
2H Im [ w* [fow) - Balo(2](w)] Galor ) X

ANU(T)G,(T,w)w(T, w)drdw, (12"

w(w,2) = (1 - pi3(2)) u(w, 2).

Here G,(z,w) is Green’s function for the operator dif-; — win?(z), ni(z) =
—iwo(z), a bar over the function denotes the complex conjugation.

2. Numerical determination of conductivity
of porous body, liquid, and friction coefficient
The propagation of SH waves in the case of the energy dissipation caused by *

the friction coefficient x(z), in a one-dimensional inhomogeneous medium is
described by the initial boundary value problem (2), (4), (6) and

Po,s(2)uee — (Bus)z + x(2)p31(2) (e —v) =0, t€R, z>0, (17)
v — x(2)po(2)(us —ve) =0, t€R, 250, o (18)
ultc0 =0, vftco=0, z>0. : (19)

Here v(t, z) is the horizontal velocity component of the conducting liquid
with the partial density pg;(z).

Inverse problem 1. It is necessary to determine the functions oy(z), oy(z2),
x(2) € M (given the functions c(2), po,i(z), po,s(z) € M and constants H)
from (2), (4)-(8), (17)~(19).

We search for the solution to this combined inverse problem as a mini-
mum point of the misfit functionals (10)

Blx(2)] = [ luo®) - Blx(2)(0)at. (20)

Here Bj[x(z)](t) is the operator that transforms the function x(z) into the
solutions to the initial boundary value problems (5), (17)—(19) at z = 0.

Passing into the frequency domain, after simple transformations we ob-
tain, for #(w, z), the following boundary value problem (15):
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~

d*a .Pg,z(z) x(2)
izt (1 T 002 (2) 0+ ix(2)por(z

)>w2nf(z)ﬂ =0, zeq.
In this case, the function 9(w, z) is determined by the formula

V=1

X(Z)Po,z(z) i
w+ix(2)pou(2)

Functional (20) and its gradient in the frequency domain have the form

()] = [ lao) - Bylx(2)] (@),

w1

_ P(z),z(-’)_ w3 w3
V(o) 2slx(2))(s) = 2p5,,(s>Re/w, CERT YO

[0(w) — Balx(2)(w)] C(s, w) duv.
Here Gy (s,w) is Green’s function of problem (5), (17)-(19).

Remark. The case of magnetic fields is considered in a similar way.

3. Numerical experiments

A program package in C++ with an extended graphic interface was writ-
ten for the numerical experiments. It made it possible to reconstruct the
functions ¢;(2), 0y(2), o4(2).

To organize the iterative process of search for the minimum points of
the misfit functionals, we used the method of conjugate gradients in the
following interpretation:

fi+1(2) = fi(2) — a;P;(2),
o = argglzig@[fj(z) — aPj(z)],

Po(2) = V18[fo()),
V®(fj(2)] - BiPi(2), j=>1,
Bi = (V53U Vs2lf51(2)] - V425()]),

where f(z) and ®[f(z)] take the values ¢;(z), o(z), x(z) and ®[es(2)],
®[o(2)], 2[x(2)], and the step c; is chosen using the “golden section”
method.

As a sounding signal, we chose a pulse with the “bell-shaped envelope”
with the dominant frequency f = 20 Hz (Figure 1):

Y
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= (55 o (55 ()

The calculations were made for the time frequency of range 2-40 Hz.

A simple model was chosen in the first case: 4 layers of equal thickness
located on underlying half-space (the distribution of the basic porosity is
presented in Figure 2). All the models that the physical density of the
liquid was assumed equal to 1 g/cm®.

t
) d(z)
0.3
0.2 — I
0 A
v 01
t . z

00 02 04 06 08 10 1.2 00 02 04 06 08 1.0
Figure 1 Figure 2

It is also necessary to add the sewing conditions at the interfaces of
layers: 4

['&]Izzz,. = [ﬂz]lz=zk =0, [E]lz;zk = [U_lEz]lz=z,, =0.

The initial velocity approximation cy(z) shown in Figure 3 with a dashed
line was chosen in the form of a linear function not containing any informa-
tion about waveguides and high-speed layers. The initial approximation for

5| Pi(2)

00 02 04 06 08 10

Figure 3
- o1(z) 0.710,(2)
0.6 — U
0.4 r 0.3
0.2 . o
Z Z
00 0.2 04 06 08 10 00 02 04 06 08 1.0

Figure 4 Figure 5



Numerical solution to combined one-dimensional inverse problems . .. 31

the conductivity of the liquid and porous elastic body are shown in Figures 4
and 5, respectively.

The wave field and the electric field intensities on the surface are pre-
sented in Figure 6 (u(t, z)|.—0) and Figure 7 (E(t, z)|,—0), respectively. It is
seen from the figures that the measured fields and the fields calculated for
the initial approximation substantially differ.

The corresponding full wave field and the electric field intensities are
presented in Figures 8 and 9.

The velocity c;(z) was reconstructed at the first stage. The obtained
velocities are shown in Figure 10. The wave field u(t,0) on the surface
calculated for them is presented in Figure 11, and the electric field intensity
E(t,0) - in Figure 12. The wave shape for the wave field was reconstructed

0 V\T/\/\\/\”

i
00 02 04 06 0.8 1.0 1.2 00 02 04 06 0.8 1.0 1.2

o

Figure 6 Figure 7

t
00 02 04 06 0.8 1.0 00 02 04 06 0.8 1.0 1.2

Figure 10 Figure 11
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reasonably well, with the exception of a small phase lag, and for the electric
field intensity, the general shape of the calculated signal differed from that
of the recorded signal mainly in amplitude.

Then the conductivity of the medium o(z) was reconstructed. Using the
Archie law and the determination of conductivity, the conductivities of the
liquid (Figure 13) and the elastic porous body (Figure 14) were calculated.
The electric field intensity on the surface calculated for them is shown in
Figure 15.

A more complex model was chosen in the second case: 6 layers of equal
thickness located on underlying half-space (the dlstrxbutlon of the basic
porosity is shown in Figure 16).

The velocity distribution for this model (Figure 17) had a screened
waveguide. This made difficult the reconstruction of the structure char-
acteristics of the medium. The reconstruction of the distributions of the
conductivities of the liquid (Figure 18) and the elastic porous body (Fig-
ure 19) was also not easy.

The calculated wave field and the electric field intensity on the surface
are presented in Figures 20 and 21, respectively.

As for the first model, the distribution of the velocity c;(z) was recon-
structed at the first stage. The velocity distribution obtained is shown in
Figure 22. The wave field u(t,0) on the surface calculated for it is presented
in Figure 23, and the electric field intensity E(t,0) in Figure 24.

Then the conductivity of the medium was reconstructed. The results
obtained for the conductivity of the liquid, the elastic porous body, and the
electric field intensity on the surface are presented in Figures 25, 26, and 27.
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In the third case, the friction coefficient x(z) with the basic parameters
of the medium for the second model was reconstructed. The full wave fields
for this model are presented in Figures 28 and 29.

The distribution of the friction coefficient is presented in Figure 30, and
its reconstructed value — in Figure 31.

The wave field and the electric field intensities on the surface for the
second model (solid line) and the third model with the introduced friction
coefficient (dashed line) are given in Figures 32 and 33 for comparison. It can
be seen that the allowance for the friction coefficient causes the amplitude
decay of the incoming signal, i.e., energy dissipation, which logically follows
from the physical picture of the phenomenon.

4. Numerical determination of conductivity
of a porous elastic body, liquid, and second
longitudinal wave velocity

Assume that vectors of velocity elements of the porous elastic body u(t, z)
and the liquid (%, z) are directed along the axis z, i.e., u(t, z) = (0,0, u(t, 2)),
v(t,z) = (0,0,v(t, 2)). The electric field intensity E(t,z) is directed along
the axis y, i.e., E(t,z) = (0, E(t, 2),0).

In the case of a one-dimensional inhomogeneous medium, the process of
propagation of seismic waves is described by the following initial boundary
value problem [3, 5]: ‘

u — a1(2)u,, + az(2)v,, = 0, teR, z>0, (21)

v + az(2)u,, — ag(2)v,, = 0, teR, z>0, (22)

0(2)Ey — E;, + Hoy(2)u; + Ho(z)vy = 0, teR, z>0, (23)
(u?'u)lt(U = 0: z > 0: (24)

E|t<0 =0, z>0, (25)

(has + p)|2=0 = f(t), %lﬂz:o =0, tE€Ry, (26)
Ezlz:l) = 0, t € R;. (27)

Here f(t) is the form of a sounding signal (a finite continuously differentiable
function on the interval [0, 00)), pg ,(2)(c,(z)) and po,1(z)(o1(2)) is the partial
density of the porous elastic body and the liquid, respectively, o(z) = o;(z)+
os(2), po(z) = po(z) + po,s(2), fzij is the tensor of tension, p is pressure,
the coefficients a,,n = 1,4 are expressed by the velocities of longitude €l s
m = 1,2, transverse c; waves, and by the ratio of the porous body and the
liquid partial densities i?f [10]:
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2
_poi(2 2\, 4Pos 2 Pos— POl
i (cl' +'cl’) t2 R T letope b
P22 o 22
az = % (c,1+c,2—.2z——§ct),

ag = £0.s (c?1 + clzz —2z- —c‘t) )

3
_ PO [ 2 2_22)_1’0,:";00,1-
a4 e (c, +a, 3Ct —_—2,

= 1/, P 8 pos o 1 2 2 16 po,1po,s 4
zZ = E(cll +cp, — §*pTCt) + 1 (Cl1 —6122) = ?—p%——ct

Inverse problem 2 [1]. Find the functions oi(z),05(2), i, (z) € M (given
the functions ci(2), ¢, (2),P04(2), po,s(2) € M, f(t), and constant H ) from
equations (21)—(27) through the complementary information

ul;=0 = uo(t), t€ Ry, (28)
E|=0 = Eo(t), t€R: (29)

We seek for the solution to the combined inverse problem as a minimum
point of the misfit functionals

Biley ()] = [ o) = Biley (<)) o (30)

&alo(a)] = [ |o(w) = Balo(e))w)P do- ()

Here B[, (2)](w) and B;[0(2)])(w) are operators which transform the func-
tions ¢;,(z), F(w), and o(2) into the solutions to the initial boundary value

problems (21)—(29) in a frequency domain at z =0, (wy,ws) is the range of
the time frequencies determined by composition of the sounding signal F(w)

(fo(w), Bo(w), F(w)) = [~ (uo(®) Bo(t), F(B)e™* dt.
Tt can be shown that the gradient of the misfit functional (30) has the form
Ve, @ilen(2](s) = ~2Re [ [fa(w) ~ Bl (2))@)]
(211G (s,0) + a1 Gz, w))i(s,0) +

(a15G11(5,w) + 852Cra (8, )5 8, w) ) dw,
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2p0,1 Po,s = Pol 5 Po,l -
! 3 !
ay = ———ey, — ———=Z, ap=2—(¢q, - 2
11 Po 2 o ) 12 20 ( 2 ))
N 2 ~ P =
a’21 = 2p0,3 (012 - Z)! f35"22 =- At i, + PO — Poi Z,
Po Po Po
2 _ 2
5 f, G <
Z =, + A 1y
) 16 Po.1h0.s 4
NACET e oy

Here G;j(z,w) is Green’s function for the operator A di:g —Iw?, A = (aij)2x2,
a11 = —@1, @12 = G2, az1 = @3, G2 = —ay, I is the identity matrix, a bar
over the function denotes the complex conjugation.

The gradient of functional (31) is given in work [1], moreover the function
w = —iwH (0,4 + 0;9) is used as function w belonging to the right-hand side
of formula (9) [1].

5. Numerical experiments

A chosen model was discussed in [1] (the distribution of the velocity is shown
in Figure 34, and the distribution of the conductivity of a porous elastic body
and liquid in Figures 36 and 38). In this case, the sewing conditions at the
interfaces of layers were added:

. o H o Po,l .
[”]|Z=Zk = [”]|z=Z;, = [ha3 +p]|Z=zk = [E‘ Pllz=z, =0,

[E]’fﬂ:zk = [a'ul E'z”zzn =0, we (wlsw2)-

The initial velocity approximation c1,(2), shown in Figure 34 by a dashed
line, was chosen in the form of a linear function not containing any infor-
mation about waveguides and high-speed layers. The initial approximations
for the conductivity of the liquid and porous elastic body are shown in Fig-
ures 36 and 38 respectively. Intensity of electric field E(t) calculated for
them is shown in Figure 42 by a dashed line.

0.50 Cl, 0.50 cl,

0.25 0.25

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

Figure 34 Figure 35
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The velocity c;,(z) was reconstructed at the first stage. The obtained

velocities are shown in Figure 35. The wave field u(t,0) on the surface
calculated for initial approximation is presented in Figure 40, and for recon-
structed approximation is presented in Figure 41.

Then the conductivity of the medium o(z) was reconstructed. Using

Archie’s law and the determination of conductivity, the conductivities of
the liquid (Figure 39) and elastic porous body (Figure 37) were calculated.
The electric field intensity on the surface calculated for them is shown in
Figure 43.
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