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Three-dimensional vortex flows of incompressible
two-velocity media at constant saturation of

substances

Kh.Kh. Imomnazarov, P.V. Korobov, N.M. Zhabborov

Abstract. A flow of incompressible viscous two-velocity fluids for the case of
pressure equilibrium of phases at constant saturation of substances is described with
the help of scalar functions. A system of differential equations for these functions
is obtained. An example illustrating this method is presented.
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1. Introduction

A fundamental goal of modern hydrodynamics originating from the classical
fluid mechanics, is to study the dynamics and interaction of vortex struc-
tures. According to P.G. Saffman [1], vortices are “the sinews and muscles”
of hydrodynamics. Construction of dynamic models of turbulence, solving
problems of flow stability and control, improvement of wing aerodynamics,
and development of many other areas of hydrodynamic theory and techni-
cal applications are impossible without understanding the mechanisms that
determine the behavior of vortices.

In the long history of development of hydrodynamics, several formula-
tions of the initial equations to be used as a basis for investigating various
aspects of the dynamics of vortices have been proposed. For instance, one
can consider velocity as a function of coordinates in space, or the current
coordinates of fluid particles, as functions of their initial locations. In some
cases, one can take the velocity components, the complex potential, and
the stream function as independent variables, and use the Clebsch poten-
tials, Hamiltonian formalism, etc. The well-known theoretical methods are
subdivided into the three large groups depending on the principles used to
describe the fluid motion: Eulerian, Lagrangian, or mixed (combining the
elements of the first two ones) [1].

Numerous theoretical and experimental papers are devoted to studying
vortices, specific forms of fluid flows with almost closed streamlines, and
nonzero vorticity in a bounded space domain. The interest in this form of
flows is caused by several mutually complementary factors: first of all, it
is widespread in natural conditions, and the parameters of such flows have
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a wide dynamic range of variation. In terrestrial conditions, one can ob-
serve vortices with scales of several hundreds kilometers; in the atmosphere
spiral cloud systems and their extreme forms (typhoons or hurricanes) [2];
and in the ocean mesoscale vortices and annular flows [3]. Compact vortices
in the atmosphere (tornadoes) cause a great economic damage and loss of
life. The vortex form of flows is often used in industrial devices to stabilize
physico-chemical processes (for instance, combustion) and for environmen-
tal protection by separating the components and extracting solid or liquid
impurities [4].

As noted in [5], investigations of incompressible fluid flows are most
successful when the vector equations of motion for the velocity field of flows
are reduced to one scalar equation for some function. In this case, the
corresponding scalar function may be either a hydrodynamic potential or
a stream function. In the former case, the range of problems to be solved
is limited to potential flows, whereas in the latter case flows may also be
vortices but efficiently two-dimensional.

In [5], the third version for describing flows of incompressible viscous
fluid by one scalar function is proposed. This approach can also be ap-
plied to three-dimensional flows without symmetry and depending on all
the three spatial coordinates. In this case, it is only assumed that one of the
vorticity components is zero. This approach does not depend on the choice
of a coordinates system. The purpose of this paper is to describe flows of
incompressible viscous two-velocity fluids for the case of the pressure equi-
librium of phases with the help of two scalar functions based on the method
proposed in [5].

2. Equations of two-velocity hydrodynamics with one
pressure

In [6, 7], a nonlinear two-velocity model of fluid motion through a deformable
porous medium was constructed based on conservation laws, invariance of
the equations with respect to Galilei transformations, and the thermody-
namic consistency condition. A two-velocity two-fluid hydrodynamic theory
with the condition of pressure equilibrium of the subsystems was developed
in [8]. The equations of motion of a two-velocity medium in the dissipa-
tive case with one pressure in the system in the isothermal case have the
following form [8]:

∂ρ̄

∂t
+ div(ρ̃ṽ + ρv) = 0,

∂ρ̃

∂t
+ div(ρ̃ṽ) = 0, (1)

∂v

∂t
+ (v,∇)v = −∇p

ρ̄
+ ν∆v +

ρ̃

2ρ̄
∇(ṽ − v)2 + f , (2)
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∂ṽ

∂t
+ (ṽ,∇)ṽ = −∇p

ρ̄
+ ν̃∆ṽ − ρ

2ρ̄
∇(ṽ − v)2 + f , (3)

where ṽ and v are the velocity vectors of the subsystems forming a two-
velocity continuum with the corresponding partial densities ρ̃ and ρ, ν and
ν̃ are the corresponding kinematic viscosities, ρ̄ = ρ̃+ ρ is the total density
of the two-velocity continuum; p = p(ρ̄, (ṽ − v)2) is the equation of state of
the two-velocity continuum; and f is the mass force vector per unit mass.

Let us rewrite equations (2) and (3) in the equivalent form:

∂v

∂t
+

1

2
∇(v2)− v × rotv = −∇p

ρ̄
+ ν∆v +

ρ̃

2ρ̄
∇(ṽ − v)2 + f , (4)

∂ṽ

∂t
+

1

2
∇(ṽ2)− ṽ × rot ṽ = −∇p

ρ̄
+ ν̃∆ṽ − ρ

2ρ̄
∇(ṽ − v)2 + f . (5)

From these equations one can derive other equations for the time vari-
ation of vortices. Denote Ω = rotv and Ω̃ = rot ṽ. Then we apply the
operator rot to both sides of (4) and (5). As a result we have

∂Ω

∂t
− rot(v ×Ω) = − rot

(∇p
ρ̄

)
+ ν∆Ω + rot

( ρ̃
2ρ̄
∇(ṽ − v)2

)
+ rotf ,

∂Ω̃

∂t
− rot(ṽ × Ω̃) = − rot

(∇p
ρ̄

)
+ ν̃∆Ω̃− rot

( ρ
2ρ̄
∇(ṽ − v)2

)
+ rotf .

Hence, using the vector analysis formula, we obtain

∂Ω

∂t
− rot(v ×Ω) =

1

ρ̄2
(∇ρ̄×∇p) + ν∆Ω +

1

2

(
∇
( ρ̃
ρ̄

)
×∇(ṽ − v)2

)
+ rotf ,

∂Ω̃

∂t
− rot(ṽ × Ω̃) =

1

ρ̄2
(∇ρ̄×∇p) + ν̃∆Ω̃− 1

2

(
∇
(ρ
ρ̄

)
×∇(ṽ − v)2

)
+ rotf .

3. A scalar description of three-dimensional vortex flows of
two-velocity hydrodynamics of incompressible media
with constant saturation

In the absence of mass forces f = 0, the system of equations (1)–(3) has a
solution: v = 0, ṽ = 0, ρ = ρ0, ρ̃ = ρ̃0, p = p0 for a mixture of fluids at rest
with a uniform pressure p = p0, partial densities ρ0, ρ̃0, and a temperature T .
In the case of homogeneous incompressible media, that is, provided ρf =
const, ρ̃f = const, where ρf , ρ̃f are the physical densities of phases with
constant saturation of substances forming a two-phase continuum: ⇒ ρ =
const, ρ̃ = const ⇒ div v = 0, div ṽ = 0 ⇔ v = rotA, ṽ = rot Ã. Here
A and Ã are the corresponding vector potentials of the velocities v and ṽ,
and ρ0 and ρ̃0 are the physical phase densities. In other words, the vectors
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v and ṽ are solenoidal. Since the vector-potential has a gradient invariance,
without loss of generality one of its components can be made zero.

According to [5], assume that the vector-potentials are non-divergent:
divA = 0, div Ã = 0. This assumption limits the class of flows to be
considered. Hence, the two-component vector-potentials are expressed in
terms of the scalar functions σ(x, y, z, t) and σ̃(x, y, z, t) as follows: A =
∂σ

∂y
i−∂σ

∂x
j, Ã =

∂σ̃

∂y
i−∂σ̃

∂x
j. These limitations lead to the fact that the vorticity

fields are also two-component. In fact, since Ω = rotv = rot rotA =
−∆A + ∇ divA, Ω̃ = rot ṽ = rot rot Ã = −∆Ã + ∇ div Ã, we have Ω =

−∂∆σ

∂y
i +

∂∆σ

∂x
j, Ω̃ = −∂∆σ̃

∂y
i +

∂∆σ̃

∂x
j. In this case the velocity fields remain

three-dimensional:

v =
∂2σ

∂x∂z
i +

∂2σ

∂y∂z
j−
(
∂2σ

∂x2
+
∂2σ

∂y2

)
k =

∂2σ

∂x∂z
i +

∂2σ

∂y∂z
j +

(
∂2σ

∂z2
−∆σ

)
k,

ṽ =
∂2σ̃

∂x∂z
i +

∂2σ̃

∂y∂z
j−
(
∂2σ̃

∂x2
+
∂2σ̃

∂y2

)
k =

∂2σ̃

∂x∂z
i +

∂2σ̃

∂y∂z
j +

(
∂2σ̃

∂z2
−∆σ̃

)
k.

Since the third vorticity component is absent, it follows from (4), (5)
when projecting onto the axis z that rot(v ×Ω) = rot(ṽ × Ω̃) = 0. These

equalities mean that J
(

∆σ,
∂2σ

∂z2

)
= J

(
∆σ̃, ∂

2σ̃
∂z2

)
= 0 (J(f, g) ≡ fxgy−fygx).

It follows from these relations that ∆σ = −H
(
∂2σ

∂z2

)
, ∆σ̃ = −H̃

(
∂2σ̃

∂z2

)
,

where H and H̃ are arbitrary functions of their arguments.
Now it is convenient to introduce functions

Φ(x, y, z, t) =
∂σ

∂z
, Φ̃(x, y, z, t) =

∂σ̃

∂z
.

Then the velocity fields can be represented in the form

v =
∂Φ

∂x
i +

∂Φ

∂y
j +

[
∂Φ

∂z
+H

(∂Φ

∂z

)]
k = ∇Φ +H

(∂Φ

∂z

)
k, (6)

ṽ =
∂Φ̃

∂x
i +

∂Φ̃

∂y
j +

[
∂Φ̃

∂z
+ H̃

(∂Φ̃

∂z

)]
k = ∇Φ̃ + H̃

(∂Φ̃

∂z

)
k. (7)

Note that in a particular case, where H
(
∂Φ

∂z

)
≡ 0, H̃

(
∂Φ̃

∂z

)
≡ 0, the

velocity fields are potential, and the functions Φ(x, y, z, t) and Φ̃(x, y, z, t)
are hydrodynamic potentials. According to [5], such functions will be called
quasipotentials.

The vorticity fields are expressed in terms of the quasipotentials as fol-
lows:



Three-dimensional vortex flows of incompressible two-velocity media. . . 21

Ω =
∂H

∂x
i− ∂H

∂y
j = H ′

∂

∂z

(
∂Φ

∂x
i− ∂Φ

∂y
j

)
, (8)

Ω̃ =
∂H̃

∂x
i− ∂H̃

∂y
j = H̃ ′

∂

∂z

(
∂Φ̃

∂x
i− ∂Φ̃

∂y
j

)
, (9)

where the prime denotes differentiation of the functions H and H̃ with re-
spect to the corresponding arguments. In this case the continuity equations
are written down as

∆Φ +
∂H

∂z
= 0, (10)

∆Φ̃ +
∂H̃

∂z
= 0, (11)

or

∆Φ +H ′
∂2Φ

∂z2
= 0, (12)

∆Φ̃ + H̃ ′
∂2Φ̃

∂z2
= 0. (13)

Substituting the velocity fields from (6), (7) into equations (4), (5) in
the case of homogeneous media, we obtain the following integrals of motion
for the first two components:

∂Φ

∂t
+

(∇Φ)2

2
+

∫
H dΦz = −p

ρ̄
+ ν∆Φ− F +R(z, t) +

ρ̃

2ρ̄

[
(Φx − Φ̃x)2 + (Φy − Φ̃y)

2 + (Φz − Φ̃z +H − H̃)2
]
, (14)

∂Φ̃

∂t
+

(∇Φ̃)2

2
+

∫
H̃ dΦ̃z = −p

ρ̄
+ ν̃∆Φ̃− F + R̃(z, t)−

ρ

2ρ̄

[
(Φx − Φ̃x)2 + (Φy − Φ̃y)

2 + (Φz − Φ̃z +H − H̃)2
]
, (15)

where F (x, y, z, t) is the potential of mass forces, and R(z, t) and R̃(z, t) are
arbitrary functions of their arguments defined by the boundary conditions.

As a consequence of these equations, we have

∂(ρΦ + ρ̃Φ̃)

∂t
+
ρ(∇Φ)2 + ρ̃(∇Φ̃)2

2
+ ρ

∫
H dΦz + ρ̃

∫
H̃ dΦ̃z + p+ ρ̄F

= νρ∆Φ + ν̃ρ̃∆Φ̃ + ρR(z, t) + ρ̃R̃(z, t). (16)

For the third velocity component, from (14), (15) there follow two more
relations with the quasipotentials satisfying them:
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H ′
∂

∂z

(
∂Φ

∂t
+

(∇Φ)2

2
+

∫
H dΦz

)
= ν∆H − ∂R

∂z
, (17)

H̃ ′
∂

∂z

(
∂Φ̃

∂t
+

(∇Φ̃)2

2
+

∫
H̃ dΦ̃z

)
= ν̃∆H̃ − ∂R̃

∂z
. (18)

System (14), (15) is a generalization of the Bernoulli equation for the two-
velocity hydrodynamics. It naturally transforms to the well-known Bernoulli
equation for potential flows [5] at the same velocities and physical phase
densities, provided that the functions R and R̃ depend only on time and

H
(
∂Φ

∂z

)
≡ 0, H̃

(
∂Φ̃

∂z

)
≡ 0. Note that the found integral (16) makes possible

to determine the pressure field if the quasipotentials at the given functions

H
(
∂Φ

∂z

)
and H̃

(
∂Φ̃

∂z

)
are known. Thus, to construct velocity fields and find

the corresponding vorticity and pressure fields, it is necessary to solve the
systems of equations (10), (11) and (17), (18) for the quasipotentials, and
then use equations (6)–(9) and (16).

To illustrate this approach, let us consider the case when the functions H
and H̃ linearly depend on their arguments: H(Φz) = λΦz and H̃(Φ̃z) = λ̃Φ̃z.
Then equations (12), (13), (17), (18) take the following form:

∆Φ + λΦzz = 0, (19)

∂Φ

∂t
+

(∇Φ)2

2
+
λ

2
(Φz)

2 + λν
∂2Φ

∂z2
= −R(z, t)

λ
+Q(x, y, t), (20)

∆Φ̃ + λ̃Φ̃zz = 0, (21)

∂Φ̃

∂t
+

(∇Φ̃)2

2
+
λ̃

2
(Φ̃z)

2 + λ̃ ν̃
∂2Φ̃

∂z2
= −R̃(z, t)

λ̃
+ Q̃(x, y, t), (22)

where Q(x, y, t) and Q̃(x, y, t) are arbitrary functions.
In [5], three types of solutions to system (19)–(22) are constructed:

Solution I:

Φ(x, y, z, t) = e−νλk
2t
(
Ae−kz +Bekz

)
sin(αx+ βy),

Φ̃(x, y, z, t) = e−ν̃λ̃k̃
2t
(
Ãe−k̃z + B̃ek̃z

)
sin(α̃x+ β̃y).

This solution is valid under the condition λ > 0, λ̃ > 0, α2 +β2 = (1 +µ)k2,
α̃2 + β̃2 = (1 + λ̃)k̃2, and

R(z, t) = −λ
2

(α2 + β2)e−2νλk
2t
(
Ae−kz +Bekz

)2
,

Q(x, y, t) = −2AB(α2 + β2)e−2νλk
2t sin2(αx+ βy),
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R̃(z, t) = − λ̃
2

(α̃2 + β̃2)e−2ν̃λ̃k̃
2t
(
Ãe−k̃z + B̃ek̃z

)2
,

Q̃(x, y, t) = −2ÃB̃(α̃2 + β̃2)e−2ν̃λ̃k̃
2t sin2(α̃x+ β̃y).

Solution II:

Φ(x, y, z, t) = eνλk
2t
(
Ae−(αx+βy) +Beαx+βy

)
sin kz,

Φ̃(x, y, z, t) = eν̃λ̃k̃
2t
(
Ãe−(α̃x+β̃y) + B̃eα̃x+β̃y

)
sin k̃z.

This solution is valid if −1 < λ < 0, −1 < λ̃ < 0, α2 + β2 = (1 + λ)k2,
α̃2 + β̃2 = (1 + λ̃)k̃2, and

R(z, t) = −2λAB(α2 + β2)e2νλk
2t cos2 kz,

Q(x, y, t) =
1

2
(α2 + β2)e2νλk

2t
(
Ae−(αx+βy) +Beαx+βy

)2
,

R̃(z, t) = −2λ̃ÃB̃(α̃2 + β̃2)e2ν̃λ̃k̃
2t cos2 k̃z,

Q̃(x, y, t) =
1

2
(α̃2 + β̃2)e2ν̃λ̃k̃

2t
(
Ãe−(α̃x+β̃y) + B̃eα̃x+β̃y

)2
,

Solution III:

Φ(x, y, z, t) = Aeνλk
2t sin(αx+ βy) sin kz,

Φ̃(x, y, z, t) = Ãeν̃λ̃k̃
2t sin(α̃x+ β̃y) sin k̃z.

This solution is valid if λ < −1, λ̃ < −1, α2 + β2 = −(1 + λ)k2, α̃2 + β̃2 =
−(1 + λ̃)k̃2, and

R(z, t) = −λ
2
A2(α2 + β2)e2νλk

2t sin2 kz,

Q(x, y, t) = −A
2

2
(α2 + β2)e2νλk

2t sin2(αx+ βy),

R̃(z, t) = − λ̃
2
Ã2(α̃2 + β̃2)e2ν̃λ̃k̃

2t sin2 k̃z,

Q̃(x, y, t) = −Ã
2

2
(α̃2 + β̃2)e2ν̃λ̃k̃

2t sin2(α̃x+ β̃y).

Solution III can be considered a doubly periodic Kolmogorov flow [9].
By turning around the system of coordinates about the axis z in the plane
x, y, the solution can be made dependent only on x. Therefore, without loss
of generality it can be assumed that β = 0. In this case, the velocity fields
contain the two components, x and z:
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v = αAe2νλk
2t

[
cosαx sin kz i +

1√
−(1 + λ)

sinαx cos kz k

]
,

ṽ = α̃Ãe2ν̃λ̃k̃
2t

[
cos α̃x sin k̃z i +

1√
−(1 + λ̃)

sin α̃x cos k̃z k

]
,

and the vorticity fields contain only one component y:

Ω = −λαAe2νλk2t cosαx sin kz j,

Ω̃ = −λ̃α̃Ãe2ν̃λ̃k̃2t cos α̃x sin k̃z j.

Then we find pressure from equation (16) ignoring the external forces
and assuming that F (x, y, z, t) ≡ 0:

p = ρ
(αA)2

2
e2νλk

2t
[
sin2 αx− (1 + λ) sin2 kz

]
+

ρ̃
(α̃Ã)2

2
e2ν̃λ̃k̃

2t
[
sin2 α̃x− (1 + λ̃) sin2 k̃z

]
.

The figure presents the flow fields for the
viscous case at ν = 0, λ = −1.25. The
opposite flow fields are shown black and
white in color. Since the solution is pe-
riodic in the plane x, z, one can identify
an elementary cell whose lateral bound-
aries can be considered to be solid walls.
In the absence of viscosity on these walls,
only normal velocity components must be
zero, which is satisfied by virtue of Solu-
tion III.

More complicated examples of flows
can be constructed from Solutions I–III,

for example, by combining doubly periodic Solutions III with Solutions I
and II, which are periodic with respect to one coordinate and exponentially
decaying with respect to the other coordinate. Even more complex classes
of flows can be constructed with an appropriate choice of the nonlinear
functions H(Φz) and H̃(Φ̃z).

4. Conclusion

Two scalar functions were used to describe the three-dimensional vortex
flows of an incompressible two-velocity continuum with pressure equilib-
rium of phases at constant saturation of substances. A system of differential
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equations for these functions has been derived. Systems of differential equa-
tions for the quasipotentials and generalized Bernoulli integrals have been
obtained.
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