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Thermodynamically consistent model of shale
swelling around a cylindrical wellbore∗

B. Imomnazarov, Kh. Imomnazarov, I. Haydarov

Abstract. A modified version of the linear poroelasticity theory described by
three elastic parameters is applied to shale swelling with an aqueous electrolyte.
It is assumed that the shale behaves as an isotropic, ideal ionic membrane, and
in this case, swelling depends only on the total stress and on the chemical water
potential in pores of the rock. An analysis of flat strain around the wellbore is
made.

Keywords: porous medium, saturated fluid, elastic parameters, stress tensor, par-
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1. Introduction

The presence of pore fluids can affect the deformation process and facilitate
or delay the destruction of the material [1]. The expansion of the rock under
undrained deformation causes a decrease in pore pressure and an increase in
the stress limit value [2]. On the other hand, the response causes an increase
in pore pressure and a decrease in the stress of destruction [3].

An important mechanism for the stability of wells drilled in chemically
active shale formations with water-based drilling fluids is based on the
physico-chemical interactions between a rock and a drilling fluid. Namely,
the pore pressure in the near-wellbore zone can be reduced due to the os-
motic outflow of the pore fluid from the reactive shale, which is caused by
the increased salinity of the drilling mud [4–11]. However, shales exhibit a
non-ideal semi-permeable or “leaky” membrane of characteristic water-based
solutions due to the range of the pore size, including wide pores, which lead
to a certain permeability in salt ions. Consequently, with time, the equilib-
rium chemical potentials of all types in a drilling fluid and in shale formation
result in a possible equalization of both pressure and chemical composition
between the drilling fluid and the pore fluid near the well space [12].

The theory developed in [13, 14] for the description of coupled mechani-
cal, hydraulic, and chemical interactions for porous bodies filled with liquid
is based on the modification of Biot’s poroelasticity theory [15–17]. In this
paper, a thermodynamically consistent mathematical model of the linear
theory of poroelasticity described by three elastic parameters applied to the
shale swelling with an aqueous electrolyte is proposed.
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2. Equation of state

A mathematical model describing the interaction of a fluid flow and a change
in the stress-strain state of the pore matrix was first proposed by Terza-
ghi [18, 19] to calculate the clay permeability coefficient. In these works,
K. Terzaghi has introduced the effective stress tensor σefij , depending on the
matrix deformation and fluid pressure:

σij = σefij − αepδij . (1)

In formula (1), δij are the components of the identity matrix.
Biot [17, 20] has generalized this relation to poroelastic media, where σefij

is the effective tensor of stresses (after Nur), which according to depends on
the strain tensor. Sometimes ratio (1) is called the Terzagy–Biot ratio. It is
actually the definition of a fractured porous medium. It has a skeleton and
a fluid that saturates it. The difference from the identically zero tensor σefij
means the existence of a connected skeleton. The coefficient αe shows how
many times the pore pressure reduces the effect of the total stress on the
skeleton.

The formula connecting the stress tensor with the strain tensor and the
pore pressure was obtained in [21–24]:

σij = 2Gεij + λ̃εkkδij − βpδij , (2)

p = (K − αρρs)εkk − αρρlekk, (3)
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1

2
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)
,

where (u1, u2, u3) and (U1, U2, U3) are the displacement vectors of the elastic
matrix and the saturating fluid with the corresponding partial densities
ρs = ρfs (1−d0) and ρl = ρfl d0 , ρ = ρl +ρs, d0 is the porosity, ρfs and ρfl are
the physical densities of the elastic porous body and the liquid, respectively,
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3
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, and λ, G, αρ2 are the elastic

parameters of the porous medium [25].
The elastic parameters λ, G, αρ2 are expressed in terms of the veloc-

ity of the propagation of the transverse wave cs and two velocities of the
longitudinal waves cp1 , cp2 [26, 27]:
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Note that the coefficient β, in contrast to the previously known formulas, is
a function of porosity.

From (2), we express the strain tensor εij in terms of the stress tensor
σij and the pore pressure p. Then we have

2Gεij = σij −
λ̃

3λ̃+ 2G
σkkδij +

2G

3λ̃+ 2G
βpδij , (4)

Comparing the pore pressure (3) with the pore pressure from [21–24], we
obtain an expression for determining one of the four Biot parameters R =
−αρρl. Repeating the reasoning from [28] and taking into account the ther-
modynamic identity for porous media, with allowance for (4) and involving
the fact that σij dεij+p dv is an exact differential, from (1) we obtain change
in volume of pore fluid

v − v0 =
1

3λ̃+ 2G
βσkk −

1

αρρl
p. (5)

Following [28], the mass m = ρv of the pore fluid per unit volume of a
material can be expressed from (1) in the linear approximation

m−m0 = (ρ− ρ0)v + ρ0(v − v0)

= ρ0
v0
Kf
p+ ρ0

[
1

3λ̃+ 2G
βσkk −

1

αρρl
p

]
, (6)

where the zero index denotes the equilibrium value of the corresponding
variables. In this case, the dependence of density on pressure is taken in the
form [29]:

ρ

ρ0
= 1 +

p− p0
Kf

,

where Kf is the compressibility factor of the fluid.
Further, by “dry deformation” we mean ∆̃m ≡ m−m0 = 0. In this

case, from relation (6), we obtain an analogue of the Skempton formula [30]
for the initial induced pore pressure and the total hydrostatic stress

∆̃p = −B ∆̃σkk
3

, (7)

B =
(

1− K

αρ2

)(
λ̃+

2

3
G
)−1( v0

Kf
− 1

αρρl

)−1
.

The expression for the “dry Poisson’s ratio νu” can be obtained by replacing
for ∆p from (7) in (4) and comparing the coefficients obtained with the
definition of the stress tensor for an elastic body

2G∆̃εij = ∆̃σij −
νu

1 + νu
∆̃σkkδij ,
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which leads to the following expression

νu =
ν + B

2 β(1− 2ν)

1− B
2 β(1 + 2ν)

.

In deriving this formula, we used the following formulas connecting the
Poisson ratio and the elastic parameters of a porous medium

ν =
λ̃

2(λ̃+G)
,

λ̃

3λ̃+ 2G
=

ν

1 + ν
,

2G

3λ̃+ 2G
=

1− 2ν

1 + ν
.

Sometimes it is convenient to use B and νu instead of α, K, and
v0
Kf

, since

they are convenient for the physical interpretation. In fact, we can either
calculate B and νu using other parameters, or simply take them directly
from the experiment, in which the Poisson ratio and the pore pressure are
measured. In terms of these coefficients, formulas (4) and (6) can be repre-
sented as

2Gεij = σij −
ν

1 + ν
σkkδij +

3(νu − ν)

B(1 + ν)(1 + νu)
pδij , (8)

m−m0 =
3ρ0(νu − ν)

2GB(1 + ν)(1 + νu)

[
σkk +

3

B
p
]
. (9)

Note that these formulas are similar in their form to [28], but there is a signif-
icant difference, namely, the Poisson ratio for a porous medium is expressed
in terms of three elastic parameters of the medium. This, in turn, leads to
the dependence of the Skempton coefficient B on the three parameters of a
porous medium.

3. Poroelasticity theory

Further, as in [13], we consider a quasi-stationary elastic deformation, the
stress tensor satisfying the equilibrium equations

∆
[
σkk +

6(νu − ν)

B(1− ν)(1 + νu)
p
]

= 0, (10)

where ∆ is the Laplace operator, the repeated indices being summed from
1 to 3.

From the law of conservation of mass based on Darcy’s law [24, 25], we
obtain

∂
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D =
1

χρ(ρfl,0)
2d0

2µ(1− ν)

1− 2ν

B2(1 + νu)2(1− 2ν)

9(1− νu)(νu − ν)
,

where χ is the friction coefficient.
If a porous material acts as a membrane perfect, only the chemical po-

tential µw of water plays a role [13] (Sherwood 1993). Let us write down

µw = pVw +RT lnaw + µ0w +Mwgz,

where Vw is the partial molar volume of water, R is the gas constant, T is
the temperature, and aw is the water activity, µ0w is the chemical potential
in the reference state. Only differences in the chemical potential will be of
interest to us, and we set µ0w = 0. Mw = ρwVw as the mass of 1 mole of
water, and the gravitational potential Mwgz, respectively. Clearly, µw/Vw
plays a role of a modified pressure. We will assume that Vw insignificant
varies with pressure: this is inappropriate if Vw changes significantly over
the pressure range of interest.

The material coefficients in the constitutive relations will be determined
by the standard drained and undrained tests, and it is therefore natural
to express these coefficients using the symbols G, ν, νu and B (or some
equivalent coefficients). Thus, equations (8) and (9) become

2Gεij = σij −
ν

1 + ν
σkkδij +

3(νu − ν)

B(1 + ν)(1 + νu)

µw
Vw

δij , (11)

m−m0 =
3ρ0(νu − ν)

2GB(1 + ν)(1 + νu)

[
σkk +

3

B

µw
Vw

]
. (12)

The diffusion equation takes the form

∂

∂t

(
σkk +

3

B

µw
Vw

)
= D∆

(
σkk +

3

B

µw
Vw

)
. (13)

We see from (12) that the parameter B now relates a change in µw/Vw to
a change in the stress σkk in an undrained deformation, and therefore a
Skempton simple extension B, which gives a change in the pore pressure p
in an undrained deformation of a chemically inert system. The equation of
stress equilibrium (10) becomes

∆

[
σkk +

6(νu − ν)µw
BVw(1− ν)(1 + νu)

]
= 0. (14)

4. Statement of the problem for a well in an infinite shale

We adopt the cylindrical coordinates, and assume that a circular wellbore of
radius b is drilled through the shale along the axis z at the time instant t = 0.
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It is assumed that the stress within the shale before drilling is uniform with
the components σzz = σ∞zz and σrr = σθθ = σ∞rr , and the initial chemical
potential of water within the shale is µw = µ∞w everywhere. After drilling,
the boundary conditions at the wellbore will be the following:

σrr = −pmud, µw = µmud
w , r = b,

where pmud is the mud pressure, and

µmud
w = Vwpmud +RT ln amud

w +Mwgz

is the chemical potential of water within the mud. The boundary conditions
at infinity are σrr → σ∞rr , σθθ → σ∞rr , σzz → σ∞zz , µw → µ∞w , as r →∞.

We take as our initial state the reference state of the rock before the well
is drilled. Thus, all the stresses will be relative to the stress at infinity, and
the chemical potential µw will be measured relative to µ∞w . The stress and
chemical potential at the wellbore wall r = b become the following:

σbrr = −pmud − σ∞rr , µbw = µmud
w − µ∞w .

Any variation of µbw with depth z is assumed to be negligibly small, and
deformation of the rock around the wellbore is assumed to be plane strain,
with ezz = 0. An immediate (undrained) change in the stress due to the
creation of the wellbore is

σrr = −σθθ =
b2

r2
σbrr.

The subsequent deformation is controlled by the diffusion of water into the
shale. Setting

Φ = σrr + σθθ + σzz +
3µw
BVw

(15)

and taking the Fourier transform v̂ =
∫
R e

iωtv dt to both parts of (13) we
obtain

D∇2Φ̂ = iωΦ̂, (16)

The bounded solution of equation (16) is of the form

Φ̂ = B̃(ω)H
(1)
0 (qr), (17)

where q =
√
i
ω

D
, i2 = −1 and H

(1)
0 (r) is the Hankel function.

As is shown in [13], from the equilibrium equation (14) it follows that

∂

∂r

[
σrr + σθθ + σzz +

6(νu − ν)µw
BVw(1− ν)(1 + νu)

]
= 0. (18)
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By using equations (16) and (19), we obtain

3(1− νu)(1 + ν)µ̄w
BVw(1− ν)(1 + νu)

= B̃(ω)H
(1)
0 (qr),

and the boundary condition µw = µbw at r = b implies

B̃(ω) =
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(1)
0 (qb)

.

Equations (11), (15), (18) and the relations ur = u(r, t), err =
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, eθθ =

u

r
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,

where

η =
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2B(1 + νu)(1− ν)

and C2(s) is a constant of integration. The radial stress is determined by
the expression
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,

where, to satisfy the stress boundary condition at the wellbore, we have set
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− b2σ̂brr.

The tangential stress σθθ is given by the formula
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the axial stress is

σzz =
ν

1 + ν
Φ− 3νuµw

BVw(1 + νu)
, σ̂zz =

2ηµ̂bwH
(1)
0 (qr)

VwH
(1)
0 (qb)

.
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5. Numerical results

The displacement and stress due to the constant σbrr do not change with
time:

u = − b2

2Gr
σbrr, σrr = −σθθ =

b2

r2
σbrr

and the deviatoric stress is

σrr − σθθ =
2b2

r2
σbrr.

This is the load of mode 1 in the notation from [16].
The fluid invasion occurs if µbw > 0 and draining occurs if µbw < 0. Setting

σbrr = 0, we obtain the load of mode 2 [16].
Figures 1–3 show the numerical results of modeling the dimensionless

components of the stress tensor σ̃ij = σij/(ηµ
b
w/Vw) due to the load of

mode 2 (σbrr = 0) for test models of media. As a model, a uniform porous

medium was set. Physical characteristics were set as follows: ρfs = 1.5 g/cm3,

ρfs = 0.9 g/cm3, G = 60 · 109 din/cm2, χ = 105 cm3/(g·s), d0 = 0.2, ν = 0.2,
νu = 0.33, B = 0.62 [28], b = 10 cm.

a b

Figure 1. The dimensionless stress σ̃rr as a function of radius at the frequency
f = 2Hz: a) the real part, b) the imaginary part

a b

Figure 2. The dimensionless stress σ̃θθ as a function of radius at the frequency
f = 2Hz: a) the real part, b) the imaginary part
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a b

Figure 3. The dimensionless stress σ̃zz as a function of radius at the frequency
f = 2Hz: a) the real part, b) the imaginary part

Conclusion

A modified version of the linear poroelasticity theory described by three
elastic parameters for studying the shale swelling with an aqueous electrolyte
is proposed. The analysis of a flat strain around the wellbore has been made.
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