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The domain decomposition parallel
algorithm for multi-dimensional
parabolic equations*

V.D. Korneev and S.A. Litvinenko

In the present paper, one of the methods of parallel solution to the multidimen-
sional parabolic equations on the multiprocessor computing systems of the MIMD
type is proposed. Much attention is given to the domain decomposition method and
to distribution of subdomains among computers. As a computing system, on which
the parallel solution to the considered problem was carried out and the results of
numerical experiments were obtained, the multiprocessor system PowerXplorer was
used. :

Introduction

In the present paper, one of the methods of parallel solution to the multi-
dimensional parabolic equations on the multiprocessor computing system of
the MIMD type is proposed.

The main purpose, when solving a problem on parallel computing sys-
tems, is to attain efficiency. The efficiency (with respect to time) depends on
the relationship between the time of calculations and the time of communi-
cations between nodes (in data exchange). The less time needed for commu-
nications, the higher the efficiency. For the MIMD systems with distributed
memory, the optimal relationship between calculations and communications
is provided by the methods of the coarse-grained parallelization, when par-
allel algorithms are constructed of large and rarely interacting blocks [1-3].
Problems solved by the grid methods, problems of linear algebra and many
other problems, are effectively parallelized by the coarse-grained methods.
The MIMD systems have different architectures, therefore those problems
will be most effectively solved, whose structure of parallel algorithms are
best suited to the architecture of a parallel computer system.

The algorithms considered here are paralielized by the domain decompo-
sition method. Briefly, the essence of this method consists in the following.
The basic data of a problem are distributed among nodes (branches of a
parallel algorithm), and the algorithm is the same in all the nodes, but op-
erations of this algorithm are distributed according to the data, available in
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these nodes. The distribution of operations of an algorithm consists, for ex-
ample, either in assignment of different values to a variable of the same cycle
in different branches, or in execution of the different number of the same
loops in different nodes, etc. The equal distribution of data among nodes
serves a basis for the balance between the time needed for calcuvlation, and
the time needed for interactions of nodes.

When parallelizing the proposed algorithm, the following problems are
solved: domain decomposition and .optimal distribution of subdomains
among processors.

As computer system, on which the parallel solution to the corsidered
problem was carried out, and the results of numerical experiments were
obtained, the multiprocessor system PowerXplorer [4] was used. In the first
section, the statement of the problem is given. In the second section, the
metkod of paralielization of the algorithm of the problem is described, in
which much attention is given to the domain decomposition and distribution
method of subdomains among computers. Finally, in the third section, the
results of numerical experiments are given. '

1. Statement of the problem

In the present paper, a parallel algorithm of solution to the multi-dimen-
sional parabolic equation in a connected polygon is considered. For this
puipose the solution to the following two problems is considered:

1. Domain decomposition with allowance for the balanced computing
load on processors. '

2. Optimal distribution of subdomains among processoré.

- In [4], for a solution to parabolic problems the domain decomposition
method with splitting in subdomains was proposed. If the initial domain
can be represented as a set of non-intersecting subdomains, the process
cf calculation can be performed in parallel. Let © be a bounded, open,
connected polygon in R? which is a union of non-intersecting rectangles

{Qp};=1, i.e.,
—_— 8 —
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where t € [to,t.] is a real parameter, # = (z1,...,2m) is a point in R™.
L.et us formulate a Neumann parabolic problem with conditions of nonideal
contact in the component-wise form. Let up € L2(R) and f € Ly((to, t);
A-1(Q)). 1t is required to find the function u” € La((to, t.); HY(R)), such

p N .
that %ut— € La((to, ta); H™1(Q)) and Yv € HY(R) for almost all ¢ € (to,ts)
the following equalities hold: '
>

duf, : 1
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(b (t) — ul(t))vp do
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(uP(to),v) = (uo,v), (3)

where p > 0, ap(tg; 2y, Up) = Y f=q ag,k)_(t; Up, Up), P=1,...,8.

For the solution to the third boundary value problem in a subdomain
the splitting scheme is used. Let us introduce some notations. Let 7, and
£* be orthonormals to I'y and to the k-th coordinate axis. Let

I'®) = {£ € T | cos?(7ip, 3¥) = 1}.
Let us introduce a set of numbers

JI(’k) ={9€hp|Tpq C F;k)}-
In this case, as §, is a rectangle, U}c"=lJ,gk) = Jp. And, finally, let Jg‘i =
I 0y s
Let us formulate a grid Neumann problem in the component-wise form.
Let N be a certain integer, 7 = (¢, —ty)/N and t, =g +nr,n=1,...,N.
[t is required to find a sequence {uf*"‘/m,n =1..,.N-1;k=1,...,m},
such, that «"+*/™ ¢ V, and Vv* € V), the following equalities hold:
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res)
up = Ih o p, (5)

where fiF = 0, k < m—1and ™ = f,(tns1), up' ™" = 2, dap(tp, vp) =
(Phptp, Phpvp), Php is an operator making the mass matrices diagonal.
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2. Method of problem parallelization

From formulas (4), (5) one can see that the solution to the problem in the
complicated domain 2 is reduced to the solution to several problems in the
rectangles ,, p = 1,...,s, and these problems can be solved in parallel,
but .only in such rectangles that have no common edges. In the present
paper, the whole domain  is represented as a “red-black” partition to rect-
angles. The solution to the problem can be carried out in two half-steps. At
the first half-step the problem is solved in “red” subdomains, at the second
half-step — in the “black” subdomains. The data obtained at the previous
iteration are necessary to solve the problem in the “red” subdomains and
the data obtained at the same iteration in the “red” subdomains are nec-
essary for solving in the “black” subdomains. The execution the problem
in each subdomain is a process, and the solution to the whole problem is
a set of interacting processes. At the first half-step the processes in the
“red” subdomains are executed in parallel, then the obtained values of the
boundaries of subdomains are passed to the adjacent processes performed
at the second half-step in the “black” subdomains. Further the subdomains
will be referred to as macroelements (m/e). '
The program for the solution to the problem consists of the following:

1. Partition of the domain € into macroelements ;.
2. Distribution of the macroelements {2, among processors.
3. Construction of a grid in macroelements.

4. Realization of the splitting algorithm.

Note that the first two stages are common for all the processors.
Let us consider each step in detail.

2.1. Partition of the domain 2 into macroelements 2,

Actually, partition of the domain into m/e means a transformation of the
data structure ‘of the initial domain Q to the data structure of m/e €.
The data structure of the initial domain includes geometric and physical
parameters of the problem. The geometric parameters are the number of
subdomains (since { can be multiply connected), the number of vertices in
each subdomain and the coordinates of the vertices. The physical parame-
ters include the right-hand side of the equation, the thermal conductivity,
the boundary conditions of the problem. With the help of the function ge-
ometry (struct macro *me, int *numelem) the “red-black” partition of the
initial domain € into m/e is done, where me is the array of structures m/e,
numelem [2] is the number of the “black” and “red” m/e.
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Let us describe the data structure of one m/e:

gr[NUMGR]

jeo[NUMGR] - the array.of a “state” of the boundaries of m/e, its element
is equal either to the number of the adjacent m/es, or to
—2, if the third kind boundary condition is given, or to —1
if the Dirichlet condition is given;

the array of coordinates of vertices of m/e;

alfa[ NUMGR] — the array containing either a penalty parameter, or a value
of the factor « from the boundary condition;

f -- the right-hand side;

lamda - the thermal conductivity;

nPros — the number of the processor calculating the given m/e;

LogLinld[NUMGR) - the array containing either the number of a logic data
link, or —1 (if there is no neighbour).

Here NUMGR is the number of the m/e boundaries. At this stage the two
latter elements of the structure are set equal to —1.

2.2. Distribution of macroelements {2, among processors

For an effective solution to the problem, the correspondence of a structure of
parallel algorithm of a problem and the topology of the computer system is
necessary. In this case, such topology is the torus with the dimension equal
to the problem dimension. For this problem, it is a two-dimensional torus.
The torus of the necessary size is set as a virtual topology. (The optimum
map of virtual topology on concrete physical one is made by the software).
The number of the processors T'P is calculated as a maximum between the
number of “red” and “black” m/e. However, if this number is odd and there
is an m/e with four neighbours, it is necessary to increase TP by 1.

For each processor we introduce the structure process including:

kme[2] — the amount of “red” and “black” m/e in the processor;

nme{MAXME] - the number of an m/e in the array of structures macroelem.

In this case, the function fprosess (int TP, struct macro *me, int *ne) re-
alizes the automatic distribution only in the case, when  is a rectangle,
the amounts of “red” and “black” m/e are the same and even. After the
distribution is made, the function ProsFunc (int TP, int *dimz, int *dimy,
struct *macro me, int *ne, struct process xpros) determines the logic data
links on the boundaries of m/e.
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2.3. Construction of a grid in macroelements

The use of the lumping operators on the boundaries m/e allows us to solve
problem (4), (5) on the non-matched grids. For the description of a grid, we
introduce the structure setgrid, including such efements as:.

numps|[DIMEN] ~ the number of nodes along each coordinate;
h[DIMEN] — a step of the grid on each coordinate.

On each processor, the memory is distributed for an array of structures
setgrid, the amount of array cells being equal to the number m/e in the
given processor. The construction of a grid is realized in the function grid
(struct setgrid *set, struct macro *me, struct process *Prosld). With the
help of the given function, the construction of three types of a grid is possible:
a non-matched uniform grid, a matched uniform grid, an arbitrary grid. The
parameters of a grid are read out from a disk file. All the processors will call
to the same file. At the given stage, the calculation on all the processors is
done independently of one another, and the information exchange does not
take place.

2.4. Realization of the component-wise'splitting algorithm

The algorithm of splitting (1.4), (1.5) reduces the solution to problem (1.2),
(1.3) to the solution to a system of algebraic equations. As we deal with
the rectangular domains, the partition into triangles is correct, hence the
matrix of the system will be three-diagonal. The solution to such a system
of equations is sought for with the help of the sweep method. The algorithm
is implemented in the function method (struct macro xme, struct process
* Prosld, struct process xpros, struct setgrid *set, struct timestep *ts, int
TP, int Topld), where Topld is the name of topology, ts is the structure of
iterative parameters such as the number of iterations and a time step. First,
the memory for arrays is selected: u is solution to the problem, g is the right-
hand side of the boundary conditions, a are factors of the sweep method.
Then, with the help of the function kprog (int n, int dim, struct macro
xme, double r, double *a, int ifin, int ind) the sweep factors are calculated.
Further, immediately follows an iterative cycle. Note that we first do the
calculations for the “red” m/e, and then for the “black” ones. In the iterative
cycle the function prog (int n, struct macro xme, struct setgrid *set, double
+r, double *u, double xg, double *a, int nmaz, struct process * ProsId, int
Topld) (n is the number of m/e in an array of structures me), implementing
the sweep method, is called. An important part of the program is the
function ps (struct process * ProsId, int dim, struct macro *me, struct setgrid
xset, int n, double xu, double *g, int Topld). It calculates the right-hand side
of the system of equations (4), (5) for the sweep method which includes the
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integrals on the boundaries m/e of the non-matching grids. The parameter
dim specifies the part of the boundary on which the integration takes place:
1 - integration over the horizontal boundary, 2 - integration over the vertical
one. In this function, communications among the processors take place, as
the integrals in it are calculated for the adjacent m/e.

3. Numerical experiments

Numerical experiments were carried out on a test example for checking the
program. In the square = (0, 1) x (0, 1), we consider a heat equation with
the homogeneous Dirichlet conditions:

du/dt = M\gAu, (t,z:l,a:z) € (0, 1) x Q,
u(t1xlam2) = 0, (t,$1,$2) € (0, ].) X P,
u(0, z1, z2) = sin w2y sin rzy, (z1,22) € Q..

The exact solution to the given problem is the function
2
u(t, 1, 29) = e 2™ tgin ey sin rz,.

In the calculation, we set Ay = 0.05. For such Q4 Q2
a value of the parameter A Ly(2)-norm of the
solution, is decreased, approximately, by e~1/2
times at ¢ = 1. The partition of the domain is
shown in the figure.

In the figure, we used the following nota-
tion:

?=(0,5/8)x(0,5/8), Q2=(5/8,1)x(5/8,1),
Q2=(5/8,1)x(0,5/8), 4=(0,5/8)x(5/8,1).

O Q3
In the domain Q, the square grid with a step h is introduced. For the
- discrete L,(2)-norm of an error, we use the notation:

s ' 1/2
Ek = {Z YN (@10, w2,) — u(1, 21 3’2,:’)]2} h,

p=1liel,

where £ = 1,2,3, N7 = 1. The error € corresponds to the calculation with
the parameter p, for which an error is minimal for A and 7. The table shows
the results of computations by the method (4), (5) setting h = 7.
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log, h -3 —4 -5 —6 -7 - -8 -9
p 025  0.14286 0.09524 0.06452 0.04545 0.03117 0.02222
e | 005109 003140 0.02058 0.01397 0.00966 0.00674 0.00474
t 036  0.36 0.44 0.92 457 3696  380.17
ta 0.64 066  0.73 115 376 2637  245.86

In the table, the computational time for the solution to the problem with
one processor (t;) and two processors (t2) is presented. The behaviour of
the magnitudes p and ¢ corresponding to evaluations of errors of the given
method is considered in detail in work [1]. As it is seen from the table,
with magnification of the number of steps the relation of t; to ¢, increases.
Thus, for the problems with a large number of nodes of a grid, the use of
the proposed method is highly effective.
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