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Bakground for formalisation of omplex systems

�

M.V. Korovina, O.V. Kudinov

Based on notions of omputability for operators and real-valued funtionals, a bakground for formalisation of

omplex systems is introdued. We propose a reursion sheme whih is a suitable tool for formalisation of omplex

systems, suh as hybrid systems. In this framework the trajetories of ontinuous parts of hybrid systems an be

represented by omputable funtionals.

1. Introdution

Reently more attention is paid to the problems of exat mathematial formalisation of omplex

systems suh as hybrid systems. By a hybrid system we mean a network of digital and analog devies

interating at disrete times. An important harateristi of a hybrid system is that it inorporates

ontinuous omponents, usually alled plants, as well as digital omponents, i.e. digital omputers,

sensors and atuators ontrolled by programs. These programs are designed to selet, ontrol, and

supervise behaviour of the ontinuous omponents. Modelling, design, and investigation of behaviours

of hybrid systems have reently beome areas of ative researh in omputer siene.

The main subjet of our investigation is behaviour of the ontinuous omponents. In [23℄, the set

of all possible trajetories of the plant was alled a performane spei�ation.

We propose a bakground for formalisation of hybrid systems based on Domain Theory.

Our approah di�ers from the previous ones in the following: we an haraterise the ontinuous

and disret parts, as well as interations between them in the same algebrai model, with the help

of �nite formulas. We propose a general approah to formalisation of a hybrid system based on the

theory of omputability over the reals.

At present, new appliations of Domain Theory to omputations over various spaes are being

developed. Domain Theory was independently introdued by Dana Sott [26℄ as a mathematial

theory of omputation in the semantis of programming languages and by Yu. L. Ershov [7℄ as a

theory of partial omputable funtionals of �nite type.

A domain is a partially ordered set equipped with the notions of limit and �nite approximation;

the partial order orresponds to information on the elements.

Given a omputation based on an algorithm, eah of the sets of input and output forms a domain.

The program whih arries out the omputation is represented as a funtion between these domains.

Every new step in the omputation results in an element of the domain of output whih provides more

information and better approximation to the ultimate result.

A ontinuous funtion is one whih preserves the information order (so that more input information

gives more output information) and the limits of in�nite omputations in the domain (so that the total

information obtainable as output from an in�nite sequene of input elements with re�ning information

is the sum of all information obtained from eah input element).

There are a number of ategories of domains aording to various additional properties that they

satisfy (algebrai domains [1, 29, 30℄, ontinuous domains [26, 27, 5, 6, 10, 33, 34, 35, 24℄, and so

on). Below, to onstrut omputational models for real-valued funtions and Funtionals, we will use

ontinuous domains. The ontinuous domain (more preisely, the interval domain) for the reals was

�rst proposed by Dana Sott [26℄ and later was applied to mathematis, physis and real-number

omputation in [5, 6, 34, 35, 24℄ and others.

�
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In this artile we propose ontinuous domains named funtion domains to onstrut a omputa-

tional model of operators and a real-valued funtional de�ned on the set of ontinuous real-valued

funtions.

In Setion 2, we reall basi de�nitions and tools from [6℄ and introdue new ones to onstrut our

omputational model. We introdue e�etive funtion domains whih are !-ontinuous Sott domains.

Based on the notion of omputability of mapping between two domains, we propose omputability

of operators and funtionals de�ned on ontinuous real-valued funtions. The main feature of this

approah is related to the fat that omputable operators and funtionals de�ned on ontinuous real-

valued funtions are ontinuous on their domain w.r.t. the standard topology indued by the uniform

norm. Moreover, we propose a semanti haraterisation of omputable operators and funtionals via

validity of �nite �-formulas.

Then, in Setion 3, we give haraterisations of omputable funtions and funtionals in logial

terms via the de�nability theory. Also we propose a reursion sheme whih is a suitable tool for

formalisation of omplex systems suh as hybrid systems. Modelling, design, and investigation of the

behaviour of hybrid systems have reently beome ative areas of researh in omputer siene (for

example, see [12, 13, 17, 20, 23℄).

In the framework proposed in this paper the trajetories of ontinuous parts of hybrid systems

(performane spei�ations) an be represented by omputable funtionals.

For more details we would like to refer to the full version of this paper on

http://inet.ss.nsu.ru/ rita/omplex.ps.

2. Basi notions

To propose the notions of omputability of operators and real-valued funtionals, we, following the

paper [6℄, reall the de�nitions of the ontinuous domain for the reals (the interval domain) and

omputable funtions and introdue funtional domains.

2.1. Terminology

Throughout the artile, < R; 0; 1;+; �; <> is the standard model of the reals, denoted also by R,

where + and � are regarded as prediate symbols. We use the language of stritly ordered rings, so

the prediate < positively ours in formulas.

Let R

�

denote R [ f�1g, R

+

denote R [ f+1g, N denote the set of natural numbers and Q

the set of rational numbers.

2.2. The e�etive interval domain for the reals

The interval domain for the reals was �rst proposed by Dana Sott [26, 27℄ and later was applied to

mathematis, physis and real number omputation (see, for example, [5, 6, 24, 33, 34, 35℄). By the

interval domain for the reals we mean the set of ompat intervals of R, partially ordered with the

reversed subset inlusion. The real line is obtained as the set of maximal elements in this ontinuous

domain.

We reall the de�nition of the interval domain I proposed in [6℄:

I = f[a; b℄ � R j a; b 2 R; a � bg [ f?g :

The order is the reversed subset inlusion, i.e. ? v I for all I 2 I and [a; b℄ v [; d℄ i� a �  and

d � b in the usual ordering of the reals. One an onsider the least element ? as the set R. Direted

suprema are �ltered intersetions of intervals. The way-below relation is given by I � J i� J � int(I),

where int(I) denotes the interior of I. For the relation� we have the following properties: ? � J for

all J 2 I and [a; b℄� [; d℄ if and only if a <  and b > d. The maximal elements are the intervals [a; a℄

denoted as fag. Note that I is an e�etively given !-ontinuous domain. An example for a ountable



42 M.V. Korovina, O.V. Kudinov

basis is the olletion I

0

of all intervals with rational endpoints together with the least element ?.

Similarly, we an de�ne the interval domain I

[a;b℄

for an interval [a; b℄.

De�nition 2.1. Let I

0

= fb

0

; : : : ; b

n

; : : :g be the e�etive enumerated set of all intervals with rational

endpoints endowed with the least element ?.

A ontinuous funtion f : I ! I is omputable, if the relation b

m

� f(b

n

) is omputable enumerable

in n; m, where b

m

; b

n

2 I

0

.

De�nition 2.2. A funtion f : R! R is omputable if and only if there is an enlargement g : I ! I

(i.e., g(fxg) = ff(x)g for all x 2 domf ) whih is omputable in the sense of De�nition 2.1.

Denote the lass of omputable total funtions as F and the lass of omputable funtions de�ned on

an interval [a; b℄ as F [a; b℄.

2.3. The e�etive funtion domain

In this setion we introdue e�etive funtion domains whih are !-ontinuous Sott domains. Based

on the notion of omputability of mapping between two domains, we propose omputability of opera-

tors and funtionals de�ned on ontinuous real-valued funtions. SuÆieny of this approah follows

from the fat that omputable operators and funtionals de�ned on ontinuous real-valued funtions

are ontinuous on their domain w.r.t. the standard topology indued by the uniform norm. Moreover,

we propose a semanti haraterisation of omputable operators and funtionals via validity of �nite

�-formulas.

We onsider the set of funtions f : [a; b℄ ! I de�ned on a ompat interval [a; b℄ whih are

ontinuous in the following sense.

De�nition 2.3. A funtion f : [a; b℄! I is said to be ontinuous in x

0

if

f(x

0

) = ? or f(x

0

) = [; d℄ and 8�

1

�

2

9Æ (jx� x

0

j < Æ ! f(x)� [� �

1

; d+ �

2

℄).

A funtion is ontinuous on [a; b℄ if it is ontinuous in every point of [a; b℄.

Note that a ontinuous funtion f : [a; b℄! I an be represented by the pair of a lower semiontinuous

map and an upper semiontinuous map.

De�nition 2.4. A funtion f : [a; b℄! R

�

is said to be lower semiontinuous if the set Y

f

=

fxjf(x)6=�1g is open w.r.t. the standard topology and

(8x

0

2 Y

f

) (8a < f(x

0

)) 9Æ (jx

0

� xj < Æ ! a < f(x)) :

A funtion f : [a; b℄! R

+

is said to be upper semiontinuous if the set Y

f

= fxjf(x)6= +1g is

open w.r.t. the standard topology and

(8x

0

2 Y

f

) (8a > f(x

0

)) 9Æ (jx

0

� xj < Æ ! a > f(x)) :

For the lassial theory of semiontinuous funtions the reader should onsult some textbook (e.g.

[3℄). The reader an also �nd some properties of omputability on ontinuous and semiontinuous real

funtions in [36℄. It is easy to see that a ontinuous funtion f : [a; b℄ ! I is losely related to the

pair of funtions




f

1

: [a; b℄! R

�

; f

2

: [a; b℄! R

+

�

, where f

1

(x) = inf f(x) is lower semiontinuous

and f

2

(x) = sup f(x) is upper semiontinuous (see [6, 24℄). The funtion f

1

is alled as lower bound

of f and f

2

is alled as upper bound of f .

Below we denote Y

f

= fxjf(x) 6= ?g for f : [a; b℄! I and Y

f

= fxjf(x) 6= �1g for f : [a; b℄!

�

R.

For upper and lower semiontinuous funtions these sets are open w.r.t. the standard topology by

de�nition. To introdue our notions of omputable operators and real-valued funtionals, we introdue

funtional domains whih are !-ontinuous Sott domains.
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De�nition 2.5. A funtion domain I

f

([a; b℄) is the olletion of all ontinuous funtions

f : [a; b℄ ! I with a least element ?

[a;b℄

partially ordered by the following relation: f v g i�

(8x 2 [a; b℄) (f(x) v g(x)) and ?

[a;b℄

v I for all I 2 I

f

([a; b℄).

To denote that a subset A � I

f

([a; b℄) is direted and has the least upper bound x, we write

W

"

A = x.

The way-below relation � is de�ned in the standard manner: f � g if for every direted subset

A � I

f

[a; b℄ with g v _

"

A there exists a 2 A with f v a.

Proposition 2.6. For eah ompat interval [a; b℄ the funtional domain I

f

([a; b℄) is an e�etively

given !-ontinuous Sott domain.

Proof. The existane of

W

"

A for eah direted subset A � I

f

([a; b℄) follows from the properties of

semiontinuous funtions. Indeed,

W

"

A =

D

sup

f2A

f

1

; inf

f2A

f

2

E

, where f

1

is the lower bound and

f

2

is the upper bound of f .

Let us prove that _

"

(# f) for f 2 I

f

([a; b℄), where # f denotes the set fg 2 I

f

([a; b℄)jg � fg. Let

U be open and lU =

�

U � Y

f

. The set # f ontains all funtions of the type g

n

U

= ha

n

U

; 

n

U

i, where

a

n

U

(x) =

(

�1 if x62U;

inf

z2

�

U

f

1

(z) �

1

n

if x 2 U;



n

U

(x) =

(

+1 if x62U;

sup

z2

�

U

f

2

(z) +

1

n

if x 2 U;

By the properties of semiontinuous funtions, _

"

fg

n

U

j

�

U � Y

f

; n 2 !g = f , so _

"

# f = f .

It is obvious that the funtion domain I

f

([a; b℄) is !-ontinuous. An example for a ountable basis

is the set I

f;0

([a; b℄) = fb

n

g

n2!

[ f?

[a;b℄

g, where the lower bound b

1

n

and the upper bound b

2

n

of b

n

satisfy the following onditions: there exist a = a

0

: : : � a

i

� : : : � a

n

= b suh that

1. for all x 2 (a

i

; a

i+1

) b

1

n

(x) = �1 and b

2

n

(x) = +1 or b

1

n

(x) = �

i

x+ �

i

and b

2

n

(x) = 

i

x+ �

i

;

2. if for x 2 (a

i

; a

i+1

)[(a

i+1

; a

i+2

) b

1

n

and b

2

n

are �nite then b

1

n

(a

i+1

) = �

i

a

i+1

+�

i

= �

i+1

a

i+1

+�

i+1

and b

2

n

(a

i+1

) = 

i

a

i+1

+ �

i

= 

i+1

a

i+1

+ �

i+1

;

3. if b

1

n

and b

2

n

are in�nite on (a

i

; a

i+1

) then b

1

n

(a

i

) = b

1

n

(a

i+1

) = �1 and b

2

n

(a

i

) = b

2

n

(a

i+1

) = +1,

where a

i

; �

i

; �

i

; 

i

; �

i

2 Q.

Using the standard numbering of the set of pieewise linear funtions with rational oeÆients, it is

easy to prove that I

f;0

([a; b℄) is ountable and e�etive. 2

In the same way we an onstrut an interval domain I

f

([a; b℄

n

) for n 2 !.

Corollary 2.7. For eah ompat n-ube [a; b℄

n

the interval domain I

f

([a; b℄

n

) is an e�etively given

!-ontinuous Sott domain.

Proof. It is similar to the proof of Proposition 2.6. 2

Now we onsider a useful property of the way-below relation �. Thus, f � g if and only if these

funtions are separated.

De�nition 2.8. Let f and g be lower semiontinuous funtions, lY

f

� Y

g

and f � g. The funtions

f; g are said to be separated if there exists a ontinuous on Y

g

funtion h suh that f(x) � h(x) < g(x)

for all x 2 Y

g

.

Let f and g be upper semiontinuous funtions, lY

g

� Y

f

and f � g. The funtions f and g are

said to be separated if there exists a ontinuous on Y

f

funtion h suh that f(x) < h(x) � g(x) for all

x 2 Y

f

.

Let f : R ! I and g : R ! I be ontinuous. The funtions f and g are said to be separated if

their lower bounds f

1

; g

1

and their upper bounds f

2

; g

2

are separated.



44 M.V. Korovina, O.V. Kudinov

Proposition 2.9. Let f and g be lower semiontinuous and lY

f

� Y

g

, f � g. The following assertions

are equivalent.

1.f and g are separated;

2.there exists a step upper semiontinuous funtion h suh that

f(x) � h(x) < g(x) for x 2 Y

g

;

3.there exists an upper semiontinuous funtion h suh that

f(x) � h(x) < g(x) for x 2 Y

g

;

4.(8x 2 Y

g

)9U

x

(9t

x

> 0)(8z; w 2 U

x

)(g(z) > f(w) + t

x

), where U

x

denotes some neighbourhood

of x.

Proof. We prove nontrivial passages.

1 ! 2: It follows from the fat that eah ontinuous funtion is approximated by a step upper

semiontinuous funtions (see [3℄ ).

2! 1: See [31℄.

2! 3: Obviously.

3! 4: Let h : [a; b℄! R

+

be upper semiontinuous and f(x) � h(x) < g(x) for x 2 Y

g

. For x 2 Y

g

put

� = g(x)�h(x) and � =

t

3

. Aording to upper semiontinuity of h and lower semiontinuity of g, there

exists a neighbourhood U

x

of x suh that for all z; w 2 U

x

: f(z) � h(z) < h(x)+� and g(w) > g(x)��:

We have g(w) > g(x) � � = h(x) +

2

3

� > h(z) +

�

3

� f(z). For t

x

=

�

3

assertion 4 holds.

4 ! 2: Let fU

x

g

x2lY

f

have the following property: for all z; w 2 U

x

g(z) > f(w) + t

x

. Sine lY

f

is

ompat, we an onstrut a �nite set f

�

U

x

i

g

i�n

suh that:

1.

�

U

x

i

is losed;

2.

�

U

x

i

\

�

U

x

j

is one-element or empty;

3. Y

f

�

S

i�n

�

U

x

i

.

Put h(x) = supfyjy � f(x) ^ (9i(x 2

�

U

x

i

) ^ (y � inf

z2

�

U

x

i

\ lY

f

g(z) � t

x

i

)g.

By the properties of lower semiontinuity of g, the funtion h is a required one. 2

Proposition 2.10. Let f and g be upper semiontinuous and lY

g

� Y

f

, f � g. The following

assertions are equivalent.

1.f and g are separated;

2.there exists a step lower semiontinuous funtion h suh that

f(x) < h(x) � g(x) for x 2 Y

f

;

3.there exists a lower semiontinuous funtion h suh that

f(x) < h(x) � g(x) for x 2 Y

f

;

4.(8x 2 Y

f

)9U

x

(9t

x

> 0)(8z; w 2 U

x

)(g(z) > f(w) + t

x

), where U

x

denotes some neighbourhood

of x.

Proof. It is similar to the proof of Proposition 2.9. 2

Lemma 2.11. Let A be a direted set of lower semiontinuous funtions and lim

a2A

a(x) = g(x). For

a ompat V and some  2 R the following assertion holds. If g(x) >  for all x 2 V , then there exists

a 2 A suh that a(x) >  for all x 2 V .

Proof. Clearly, for all x 2 V there exists a

x

2 A suh that a

x

(x) > . By the de�nition of lower

semiontinuity, there exists a neighbourhood U

x

of x with (8z 2 U

x

) (a

x

(z) > ). The set fU

x

g

x2V

overs the ompat V , so we an extrat a �nite subovering fU

x

i

g

i�n

. For all z 2 U

x

i

we have

a

x

i

(z) > . By the de�nition of a direted set, there exists a funtion a 2 A suh that a(x) > a

x

i

(x)

for all x 2 V . This is a required funtion. 2
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Theorem 2.12. Continuous funtions f : [a; b℄ ! I and g : [a; b℄ ! I are separated if and only if

f � g.

Proof. Let f and g be separated and f

1

; g

1

be their lower bounds. We show that for a direted set

A � I

f

[a; b℄ with g v _

"

A there exists a 2 A suh that f v a. It is suÆient to prove that there

exists a with the lower bound a

1

suh that a

1

(x) � f

1

(x) for x 2 [a; b℄. By Proposition 2.9 we have

lY

f

1
� Y

g

1
^ (8x 2 Y

g

1
)9U

x

(9t

x

> 0)(8z; w 2 U

x

)(g

1

(z) > f

1

(w) + t

x

), where U

x

denotes some

neighbourhood of x.

From the set fU

x

g

x2Y

g

1

whih overs lY

f

1
we an extrat a �nite set fU

x

i

g

i�n

suh that lY

f

1
�

fU

x

i

g

i�n

. Moreover, it is easy to onstrut f

�

U

x

i

g

i�m

whih overs lY

f

1
, where

�

U

x

i

is ompat. For

i � m we de�ne 

i

= supfyjy � (inf

x2

�

U

x

i

g

1

(x)� t

x

i

)g.

Clearly, g

1

(x) > 

i

� f

1

(x) for all x 2

�

U

x

i

. From Lemma 2.11 we have that there exists a

i

with

the lower bound a

1

i

suh that a

1

i

(x) > 

i

� f

1

(x) for all x 2

�

U

x

i

. Sine A is direted, there exists

a w a

i

for all i � m. This funtion is a required one.

Let f � g. We show that lY

f

1
� Y

g

1
^ (8x 2 Y

g

1
)9U

x

(9t

x

> 0)(8z; w 2 U

x

)(g

1

(z) > f

1

(w) + t

x

),

where U

x

denotes a neighbourhood of x and f

1

; g

1

denote the lower bounds of f and g. For the upper

bounds the orresponding assertion is proved by analogy. Obviously, Y

f

� Y

g

and f v g. Suppose

the ontrary. There exists x 2 Y

g

suh that 8U

x

8t

x

(9z; w 2 U

x

) g

1

(z) < f

1

(w) + t

x

. Let us de�ne

fU

n

g

n2!

by the following rule:

U

n

= (x�

1

n

; x+

1

n

) if x 2 (a; b);

U

n

= [a; a+

1

n

) if x = a;

U

n

= (b�

1

n

; b℄ if x = b:

There exists n

0

suh that for all n � n

0

we have U

n

� Y

1

g

and there exists w

n

2 U

n

with inf

z2

�

U

n

g

1

(z) <

f

1

(w

n

)+

1

n

. We onstrut an inreasing sequene of lower semiontinuous funtions suh that the limit

of this sequene is g

1

, but there is no n suh that a

n

(y) � f

1

(y) for all y 2 [a; b℄.

Put

a

1

n

(y) =

(

g

1

(y) if y 62 U

n

;

inf

z2

�

U

n

g

1

(z)�

1

n

if y 2 U

n

;

where

�

U

n

is the losure of U

n

. It is easy to see that lim

n!1

a

1

n

(y) = g

1

(y) for all y 2 [a; b℄. For y 6= x

it is obvious. We onsider the nontrivial ase when y = x. Suppose the ontrary: there exists  suh

that a

1

n

(x) <  < g

1

(x). By lower semiontinuity of g, there exists N with inf

z2

�

U

N

g

1

(z) > +

1

N

. So

inf

z2

�

U

N

g

1

(z) = a

1

N

(x) > . This is a ontradition.

On the one hand, lim

n!1

a

1

n

(y) = g

1

(y) for all y 2 [a; b℄ and, on the other hand, there is no n suh

that a

n

(y) � f

1

(x) for all y 2 [a; b℄ beause for all n a

1

n

(w

n

) < f

1

(w

n

). This is a ontradition with

the assumption f � g.

Let us prove that lY

f

� Y

g

. Suppose the ontrary. There exists a sequene fx

n

g

n2!

suh that for

all n x

n

2 Y

f

� Y

g

, but lim

x!1

x

n

= x 62 Y

g

, i.e. g(x) = ?. We an extrat a subsequene fx

m

n

g

n2!

suh that jx

m

n

�xj <

1

n

. We de�ne a sequene of lower semiontinuous funtions in the following way:

a

1

(x) =

(

g

1

(y) if jy � xj >

1

n

;

�1 if jy � xj �

1

n

:

On the one hand lim

n!1

a

1

n

(y) = g

1

(y) for all y 2 [a; b℄ and on the other hand �1 = a

1

n

(x

m

n

) <

f

1

(x

m

n

) 6= �1: This is a ontradition with the assumption f � g.

2

Now we introdue the notions of omputable operators and omputable funtionals de�ned on total

ontinuous real-valued funtions. Below we use the standard notion of ontinuity of a total operator

F : I

f

([a; b℄)! I

f

([; d℄) w.r.t. the Sott-topologies on I

f

([a; b℄) and I

f

([; d℄).
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De�nition 2.13. Let I

f

([a; b℄), I

f

([; d℄) be some funtion domains and I

f;0

([a; b℄) = fb

i

g

i2!

,

I

f;0

([; d℄) = f

i

g

i2!

be their e�etive bases onstruted as in Proposition 2.6. A ontinuous total

operator F : I

f

([a; b℄) ! I

f

([; d℄) is omputable, if the relation 

m

� F (b

n

) is omputable enumerable

in n and m, where b

n

2 I

f;0

([a; b℄) and 

m

2 I

f;0

([; d℄).

De�nition 2.14. An operator F : C[a; b℄ ! C[; d℄ is omputable, if dom F is open and there exists

a omputable operator F

�

: I

f

([a; b℄) ! I

f

([; d℄) suh that

F (f) = g $ F

�

(

^

f) = ĝ; where

^

f(x) = ff(x)g; ĝ(x) = fg(x)g:

De�nition 2.15. A funtional F : C[a; b℄ � [; d℄ ! R is omputable, if there exists a omputable

operator F

�

: C[a; b℄! C[; d℄) suh that

F (f; x) = y $ F

�

(f)(x) = y:

Proposition 2.16. Computable operators and funtionals de�ned on ontinuous real-valued funtions

are ontinuous w.r.t. the standard topology indued by the uniform norm.

Proof. It follows from the de�nition and ontinuity of orresponding operator

F

�

: I

f

([a; b℄) ! I

f

([; d℄). 2

To introdue omputability of a funtional of the type F : C[a; b℄ �R ! R, we use an e�etive

sequene of domains fI

f

([�n; n℄)g

n2!

with onforming bases in the following sense. We onsider a

sequene of bases fI

f;0

([�n; n℄)g

n2!

= ffb

n

i

g

i2!

g

n2!

with the homomorphisms res

m;n

: I

f

([�m;m℄)!

I

f

([�n; n℄) of restritions for m > n de�ned by the natural rules res

m;n

(b

m

i

) = b

m

i

j

[�n;n℄

= b

n

i

and

res

m;n

(?

[�m;m℄

) = ?

[�n;n℄

:

De�nition 2.17. A sequene fF

k

g

k2!

of omputable operators of the type

F

k

: I

f

[a; b℄! I

f

[�n; n℄ is uniformly omputable if fhk; n;mi jF

k

(b

k

n

)� b

k

m

g is reursively enumerable

in k; n and m.

De�nition 2.18. A sequene fF

k

g

k2!

of omputable operators of the type

F

k

: C[a; b℄ ! C[�n; n℄ is uniformly omputable, if there exists a uniformly omputable sequene of

omputable operators fF

�

k

g

k2!

of the type F

k

: I

f

[a; b℄! I

f

[�n; n℄ suh that

F

k

(f) = g $ F

�

k

(

^

f) = ĝ; where

^

f(x) = ff(x)g; ĝ(x) = fg(x)g; k 2 !:

De�nition 2.19. A funtional F : C[a; b℄ �R ! R is omputable, if there exists a uniformly om-

putable sequene fF

�

k

g

k2!

of omputable operators of the types F

�

k

: C[a; b℄! C[�k; k℄ suh that

F (f; x) = y $ 8k (x 2 [�k; k℄) ! (F

�

k

(f)(x) = y) :

Note that for m > n the ondition res

m;n

(F

�

m

(f)) = F

�

n

(f) holds by onstrution.

Proposition 2.20. A omputable funtional F : C[a; b℄ �R ! R is ontinuous w.r.t. the standard

topology indued by the uniform norm.

Proof. It follows from the de�nition and ontinuity of the orresponding operators F

�

k

: I

f

([a; b℄) !

I

f

([�k; k℄) for k 2 !. 2

In the same way we an de�ne omputability of funtionals of the type F : C[a; b℄�R

n

! R.

Corollary 2.21. A omputable funtional F : C[a; b℄�R

n

! R is ontinuous.

Proof. It follows from the de�nition and ontinuity of the orresponding operators F

�

k

: I

f

([a; b℄) !

I

f

([�k; k℄

n

) for k 2 !. 2
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3. De�nability of omputable funtions and funtionals

To semantially haraterise omputable real-valued funtions, operators and funtionals via validity of

�nite formulas, we use omparative analyses with real-valued majorant-omputable funtions proposed

in [14, 15℄ and generalised omputable operators and funtionals introdued below.

The omputation of real-valued funtion is an in�nite proess that produes approximations loser

and loser to the result. The lass of majorant-omputable real-valued funtions has lear and exat

lassi�ations in logial and topologial terms.

3.1. Majorant-omputable funtion and generalised omputable operators and

funtionals

To reall the notion of majorant-omputability and to introdue generalised omputability, let us on-

strut the set of hereditarily �nite sets HF(M) over a model M. This struture is rather well studied

in the theory of admissible sets [2℄ and permits us to de�ne the natural numbers, to ode and store

information via formulas.

Let M be a model whose language �

0

ontains no funtion symbols and whose arrier set is M .

We onstrut the set of hereditarily �nite sets, HF(M), as follows:

1. S

0

(M)

*

)

M; S

n+1

(M)

*

)

P

!

(S

n

(M)) [ S

n

(M); where n 2 ! and for every set B, P

!

(B) is

the set of all �nite subsets of B.

2. HF(M) =

S

n2!

S

n

(M):

We de�ne HF(M) as the following model:

HF(M)

*

)

D

HF(M);M; �

0

; ;

HF(M)

;2

HF(M)

E

;

where ;

HF(M)

and the binary prediate symbol 2

HF(M)

has the set-theoreti interpretation. Below

we will use the notations 2 and ;. Denote � = �

0

[ f2; ;g. The notions of a term and an atomi

formula are given in a standard manner.

The set of �

0

-formulas is the losure of the set of atomi formulas in the language � un-

der ^;_;:; (9x 2 t) and (8x 2 t), where (9x 2 t) ' denotes 9x(x 2 t ^ ') and (8x 2 t) ' de-

notes 8x(x 2 t ! '). The set of �-formulas is the losure of the set of �

0

formulas un-

der ^;_; (9x 2 t) ; (8x 2 t) ; and 9. We de�ne �-formulas as negations of �-formulas.

De�nition 3.1. 1.A set B � HF(M) is �-de�nable , if there exists a �-formula �(x) suh that

x 2 B $ HF(M) j= �(x):

2.A funtion f : HF(M) ! HF(M) is �-de�nable, if there exists

a �-formula �(x; y) suh that f(x) = y $ HF(M) j= �(x; y):

In a similar way, we de�ne the notions of �-de�nable funtions and sets. The lass of �-de�nable

funtions (sets) is the intersetion of the lass of �-de�nable funtions (sets) and the lass of

�-de�nable funtions (sets).

Note that the sets M and M

n

are �

0

{de�nable. This fat makes HF(M) a suitable domain for

studying funtions from M

k

to M . Below, when we say about de�nability, we mean de�nability in

HF(R): To introdue the de�nition of majorant-omputability, we use a lass of �-, �-de�nable sets

as the basi lasses. So, we reall some usefull properties of �-, �-de�nable subsets of R

n

.

Proposition 3.2. Let R be the reals with the language �

0

= h0; 1;+; �; <i.

1.The set HF(;) and the prediate of equality on HF(;) are �-de�nable.

2.The set fhn; ri j n is a G�odel number of a �-formula �; r 2 R; and

HF(R) j= �(x)g is �-de�nable.
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3.A set B � R

n

is �-de�nable if and only if there exists an e�etive sequene of formulas in the lan-

guage �

0

with existential quanti�ers over the reals, f�

s

(x)g

s2!

, suh that x 2 B $ R j=

W

s2!

�

s

(x):

4.A set B � R

n

is �-de�nable if and only if there exists an e�etive sequene of formulas

in the language �

0

with universal quanti�ers over the reals, f�

s

(x)g

s2!

, suh that x 2 B $

R j=

V

s2!

�

s

(x):

Proof. The laim immediately follows from the properties of the set of hereditarily �nite sets ( see

[8, 15℄). 2

Let us reall the notion of majorant-omputability for real-valued funtions proposed and inves-

tigated in [14, 15℄. We use the lass of �- and �-de�nable sets as the basi lasses. A real-valued

funtion is said to be majorant-omputable if we an onstrut a speial kind of nonterminating proess

omputing approximations loser and loser to the result.

De�nition 3.3. A funtion f : R

n

! R is alled majorant-omputable if there exists an e�etive

sequene of �-formulas f�

s

(x; y)g

s2!

and an e�etive sequene of �-formulas fG

s

(x; y)g

s2!

suh that

the following onditions hold.

1.For all s 2 !, x 2 R

n

, the formulas �

s

and G

s

de�ne nonempty intervals < �

s

; �

s

> and

< Æ

s

; 

s

>.

2.For all x 2 R

n

, the sequenes f< �

s

; �

s

>g

s2!

and f< Æ

s

; 

s

>g

s2!

derease monotonially and < �

s

; �

s

>�< Æ

s

; 

s

> for all s 2 !.

3.For all x 2 dom(f), f(x) = y $

T

s2!

< �

s

; �

s

>= fyg and

T

s2!

< Æ

s

; 

s

>= fyg holds.

The sequene fF

s

g

s2!

in De�nition 3.3 is alled a sequene of �-approximations for f . The sequene

fG

s

g

s2!

is alled a sequene of �-approximations for f . As we an see, the proess whih arries

out the omputation is represented by two e�etive proedures. These proedures produe �-formulas

and �-formulas whih de�ne approximations loser and loser to the result.

The following theorem onnets a majorant-omputable funtion with validity of �nite formulas

in the set of hereditarily �nite sets, HF(R).

Proposition 3.4. For all funtions f : R

n

! R the following assertions are equivalent:

1.The funtion f is majorant-omputable.

2.There exist �{formulas A(x; y), B(x; y) suh that A(x; �) < B(x; �) and

f(x) = y $ (A(x; �) < y < B(x; �) ^

fz j A(x; z)g [ fz j B(x; z)g = R n fyg):

Proof. !)Let f : R

n

! R be majorant-omputable. By De�nition 3.3 , there exist a sequene fF

s

g

s2!

of �-approximations for f and a sequene fG

s

g

s2!

of �-approximations for f . Put

A(x; y)

*

)

(9s 2 !) (y 62< Æ

s

; 

s

> ^ (9z 2< �

s

; �

s

>) (y < z))

and

B(x; y)

*

)

(9s 2 !) (y 62< Æ

s

; 

s

> ^ (9z 2< �

s

; �

s

>) (y > z)) :

By onstrution, A and B are the sought formulas.

 ) Let A and B satisfy the requirements of the theorem. Let us onstrut approximations in the

following way.
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F

s

(x; y)

*

)

9z9v (A(x; z) ^B(x; v) ^ y 2 (z; v) ^ v � z < 1=s) ;

G

s

(x; y)

*

)

8z (A(x; z)! z � y < 1=s) ^ 8z (B(x; z)! y � z < 1=s) :

2

As a orollary we note that a total real-valued funtion is majorant-omputable if and only if its

epigraph and ordinate set are �-de�nable (i.e. e�etive sets). The same proposition holds for a total

funtion f : [a; b℄

n

! R for some ompat n-ube [a; b℄

n

.

De�nition 3.5. A real-valued funtion f is said to be shared by �-formulas '

1

; '

2

if

f j

[x

1

;x

2

℄

> $ HF(R) j= '

1

(x

1

; x

2

; );

f j

[x

1

;x

2

℄

< $ HF(R) j= '

2

(x

1

; x

2

; ):

Proposition 3.6. A real-valued funtion is majorant-omputable if and only if it is shared by two

�-formulas.

Proof. The laim immediate follows from Proposition 3.4. 2

Theorem 3.7. The lass of omputable real-valued funtions oinides with the lass of majorant-

omputable real-valued funtions.

Proof. Without loss of generality we onsider a funtion f : R ! [0; 1℄. Let f

�

: I ! I

[0;1℄

be

omputable and f

�

(fxg) = ff(x)g. For n 2 !, we de�ne A

n

= fx 2 R j �(f

�

(fxg)) <

1

n

g, where

� is the natural measure de�ned on I

[0;1℄

. It is easy to see that A

n

is a �-de�nable open set, and

dom(f) =

T

n2!

A

n

.

Beause eah �-de�nable subset of R is an e�etive union of open intervals, we an denote A

1

=

S

i2!

(�

i

; �

i

), where �

i

; �

i

2 Q and �

i

� �

i

.

The following formulas satisfy the onditions of Proposition 3.4 :

A(x; z)

*

)

x 2 A

1

^ (9a 2 Q) (9b 2 Q) (9y 2 Q) (x 2 (a; b) ^ y > z ^

[y; y + 1℄� f

�

([a; b℄);

B(x; z)

*

)

x 2 A

1

^ (9a 2 Q) (9b 2 Q) (9y 2 Q) (x 2 (a; b) ^ y < z ^

[y; y + 1℄� f

�

([a; b℄)

By Proposition 2.13, f is majorant-omputable.

Let f be majorant-omputable and A and B satisfy the properties from Proposition 3.4. We

onstrut a omputable funtion f

�

: I ! I suh that f

�

(fxg) = ff(x)g:

Put f

�

([a; b℄) =

S

x2[a;b℄

f

��

(x), where the auxiliary funtion f

��

is de�ned in the following way:

f

�

([a; b℄) =

(

\f[u; v℄ j u; v 2 Q; < x; u >2 A; < x; v >2 Bg if suh u and v exist

? otherwise

It is easy to see that f is ontinuous and the set E =< a; b; ; d >j a; b; ; d 2 Q; [; d℄ � f

�

([a; b℄) is

�-de�nable by the following �-formula

9x 2 (a; b) (< x;  >2 A^ < x; d >2 B) :

So the funtion f is omputable.

2
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To introdue generalised omputability of operators and funtionals, we extend the language � by

two 3-ary prediates U

1

and U

2

.

De�nition 3.8. A total operator F

�

: I

f

[a; b℄ ! I

f

[; d℄ is said to be shared by two �-formulas '

1

and '

2

if the following assertions hold. If F

�

(




u

1

; u

2

�

) =




h

1

; h

2

�

then

h

1

j

[x

1

;x

2

℄

> z $ HF(R) j= '

1

(U

1

; U

2

; x

1

; x

2

; z);

h

2

j

[x

1

;x

2

℄

< z $ HF(R) j= '

2

(U

1

; U

2

; x

1

; x

2

; z);

where U

1

(x

1

; x

2

; )

*

)

u

1

j

[x

1

;x

2

℄

> ;U

2

(x

1

; x

2

; )

*

)

u

2

j

[x

1

;x

2

℄

<  and the prediates U

1

and U

2

posi-

tively our in '

1

; '

2

.

De�nition 3.9. An operator F : C[a; b℄ ! C[; d℄ is said to be generalised omputable, if there

exists an operator F

�

: I

f

[a; b℄ ! I

f

[; d℄ whih is shared by two �-formulas and F (f) =

F

�

(

^

f); where

^

f(x) = ff(x)g.

De�nition 3.10. A funtional F : C[a; b℄ � [; d℄ ! R is said to be generalised omputable, if there

exists a omputable operator F

�

: C[a; b℄! C[; d℄ suh that F (f; x) = F

�

(f)(x):

De�nition 3.11. A funtional F : C[a; b℄�R! R is said to be generalised omputable, if there exists

an e�etive sequene of omputable operators fF

�

n

g

n2!

of the types F

�

: C[a; b℄! C[�n; n℄ suh that

F (f; x) = y $ 8n (�n � x � n! F

�

n

(f)(x)) :

Theorem 3.12. An operator F : C[a; b℄ ! C[; d℄ is omputable if and only if it is generalised om-

putable.

Proof. Let F : C[a; b℄! C[; d℄ be omputable. To show generalised omputability of its orresponding

operator F

�

: I

f

[a; b℄ ! I

f

[; d℄, we onstrut two �-formulas '

1

; '

2

satisfying the onditions of

De�nition 17. Let I

f;0

([a; b℄) = fb

i

g

i2!

and I

f;0

([; d℄) = f

i

g

i2!

be e�etive bases onstruted as in

Proposition 2.6 for I

f

([a; b℄) and I

f;0

([; d℄).

Suppose F

�

(u) = h. By Proposition 3.4 and Corollary 3.6 the relation b

n

� u is de�nable by

�-formulas with positive ourrenes of U

1

and U

2

, where U

1

(r

1

; r

2

; )

*

)

u

1

j

[r

1

;r

2

℄

> ; U

2

(r

1

; r

2

; )

*

)

u

2

j

[r

1

;r

2

℄

< . Therefore the set f(n;m)ju � 

n

^ F

�

(b

n

) � b

m

g is de�nable by some �-formula

�(n;m;U

1

; U

2

). Then F

�

(u)� 

m

$ HF(R) j= 9n�(n;m;U

1

; U

2

).

Put

'

1

(U

1

; U

2

; x

1

; x

2

; z)

*

)

9m9n

�

b

1

m

j

[x

1

;x

2

℄

> z

�

^�(n;m;U

1

; U

2

);

'

2

(U

1

; U

2

; x

1

; x

2

; z)

*

)

9m9n

�

b

2

m

j

[x

1

;x

2

℄

< z

�

^�(n;m;U

1

; U

2

):

Clearly, '

1

; '

2

are required formulas.

Let F : C[a; b℄ ! C[; d℄ be generalised omputable. We prove omputability of its orresponding

operator F

�

: I

f

[a; b℄ ! I

f

[; d℄. Monotoniity of F

�

follows from positive ourrenes of U

1

and U

2

in the formulas '

1

and '

2

.

Beause I

f

[a; b℄ and I

f

[; d℄ are !-ontinuous domains, it is enough to prove that F

�

preserves

suprema of a ountable direted set.

Let A = f< u

1

n

; u

2

n

>g

n2!

and

W

"

A =< u

1

; u

2

>. Put U

1n

(x

1

; x

2

; )

*

)

u

1

n

j

[x

1

;x

2

℄

>  and

U

2n

(x

1

; x

2

; )

*

)

u

2

n

j

[x

1

;x

2

℄

<  for n 2 ! and U

1

(x

1

; x

2

; )

*

)

u

1

j

[x

1

;x

2

℄

> , U

2

(x

1

; x

2

; )

*

)

u

2

j

[x

1

;x

2

℄

< .

By Lemma 11, if u

1

j

[x

1

;x

2

℄

>  then there exists n suh that u

1

n

j

[x

1

;x

2

℄

> , and if u

2

j

[x

1

;x

2

℄

>  then

there exists n suh that u

2

n

j

[x

1

;x

2

℄

< .

So U

1

(x

1

; x

2

; ) =

W

n2!

U

1n

(x

1

; x

2

; ) and U

2

(x

1

; x

2

; ) =

W

n2!

U

2n

(x

1

; x

2

; ).

By the properties of �-formulas and positive ourrenes of U

1

and U

2

in '

1

and '

2

,
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'

1

(U

1

; U

2

; x

1

; x

2

; )$

W

n2!

'

1n

(U

1

; U

2

; x

1

; x

2

; );

'

2

(U

1

; U

2

; x

1

; x

2

; )$

W

n2!

'

2n

(U

1

; U

2

; x

1

; x

2

; ):

Hene it is lear that F

�

(

W

"

A) =

W

"

F

�

(A).

Now we show that the set f(n;m)jF

�

(b

n

) � 

m

g is �-de�nable and, as a onsequene, is om-

putable enumerable in n and m. Let F

�

(< b

1

n

; b

2

n

>) =< h

1

; h

2

>. Sine b

1

n

; b

2

n

; 

1

m

and 

2

m

are

pieewise linear, it is obvious that the sets b

1

n

j

[x

1

;x

2

℄

> , b

2

n

j

[x

1

;x

2

℄

<  and 

1

m

j

[x

1

;x

2

℄

> , 

2

m

j

[x

1

;x

2

℄

< 

are �-de�nable. As is evident from the de�nition of F

�

, the sets h

1

j

[x

1

;x

2

℄

> , h

2

j

[x

1

;x

2

℄

<  are

�-de�nable too. By Proposition 2.9, there exist step upper semiontinuous funtions s

1

and s

2

suh

that 

1

m

(x) < s

1

(x) < h

1

(x) and 

2

m

(x) > s

2

(x) > h

2

(x) for x 2 [; d℄.

As one an see, the following �-formula

9x

0

: : : 9x

n

9y

1

: : : 9y

n

9z

1

: : : 9z

n

V

i�n

�

(

1

m

j

[x

i

;x

i+1

℄

< y

i

�

^

�

h

1

j

[x

i

;x

i+1

℄

> y

i

�

^

�



2

m

j

[x

i

;x

i+1

℄

> z

i

�

^

�

h

2

j

[x

i

;x

i+1

℄

< z

i

�

de�nes the set f(n;m)jF

�

(b

n

) � 

m

g. As a onsequene this set is omputable enumerable in n

and m. 2

Note that using the previous theorem one an elegantly prove omputability of suh funtions as

sup

x2[x

1

;x

2

℄

f(x), inf

x2[x

1

;x

2

℄

f(x) and Riemann integral on [x

1

; x

2

℄.

Corollary 3.13. A funtional F : C[a; b℄ � [; d℄ ! R is omputable if and only if it is generalised

omputable.

Proof. The laim follows from generalised omputability of its orresponding operators. 2

Corollary 3.14. A funtional F : C[a; b℄ � R ! R is omputable if and only if it is generalised

omputable.

Proof. The laim follows from the property of �- formulas: an e�etive sequene of �-formulas is

equivalent to a �-formula. 2

3.2. Semanti haraterisation of omputable funtions and funtionals

After the mentions of the main properties of majorant-omputable real-valued funtions and gener-

alised omputable operators and real-valued funtionals, we pass to omputable ones.

Corollary 3.15. For a funtion f : R

n

! R the following assertions are equivalent:.

1.The funtion f is omputable.

2.There exist �{formulas A(x; y) and B(x; y) suh that A(x; �) < B(x; �) and

f(x) = y $ (A(x; �) < y < B(x; �) ^ fz j A(x; z)g [ fz j B(x; z)g = R n fyg):

Proof. The laim follows from Proposition 3.4 and Theorem 3.7. 2

Corollary 3.16. A real-valued funtion is omputable if and only if it is shared by two �-formulas.

Proof. The laim follows from Proposition 3.6 and Theorem 3.7. 2

Proposition 3.17. Let f be a omputable funtion suh that [a; b℄ � domf and g be a omputable

funtion suh that [b; ℄ � domg and f(b) = g(b). Then the funtion h(x) =

(

f(x) if x � b;

g(x) if x � b

is

omputable.
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Proof. From Theorem 26 in [6℄ (f. [16℄ ) it follows that there exists an e�etive modulus of ontinuity

w

f

for f and an e�etive modulus of ontinuity w

g

for g. In other words, for every s 2 ! for all

x

1

; x

2

2 [a; b℄ and x

3

; x

4

2 [; d℄ we have

jx

1

� x

2

j < w

f

(

1

s

)! jf(x

1

)� f(x

2

)j <

1

s

and

jx

3

� x

4

j < w

g

(

1

s

)! jg(x

3

)� g(x

4

)j <

1

s

:

Put w

h

(�) = minfw

f

(�); w

g

(�)g. The following �-formula de�nes the epigraph of the funtion h.

y > h(x)$ (x < b ^ y > f(x)) _ (x > b ^ y > g(x)) _

��

9� 2 Q

+

�

(jx� bj < w

h

(�) ^ ([9t < b℄ jx� tj < w

h

(�) ^ y > f(t) + �)

�

Analogously, the ordinate set of h is �{de�nable. By Corollary 3.16, the funtion h is omputable. 2

Corollary 3.18. A funtional F : C[a; b℄ � [; d℄ ! R is omputable if and only if there exists an

operator F

�

: I

f

[a; b℄ ! I

f

[; d℄ whih is shared by two �-formulas and F (f; x) = y $ F

�

(

^

f)(x) =

fyg; where

^

f(x) = ff(x)g.

Proof. It follows from Theorem 3.12. 2

Corollary 3.19. If a omputable operator F : C[a; b℄! C[; d℄ is de�ned in a omputable funtion f ,

then the funtion F (f) is omputable.

Proof. We only note that if a funtion u is omputable, then the following relations u

1

j

[x

1

;x

2

℄

> z and

u

2

j

[x

1

;x

2

℄

< z are �-de�nable. This follows from Proposition 3.6. 2

Corollary 3.20. A total omputable operator F : C[a; b℄ ! C[; d℄ maps omputable funtions to

omputable funtions.

Proof. It follows from Corollary 3.19. 2

Corollary 3.21. The omposition of omputable operators is omputable.

Proof. The laim follows from the properties of �-formulas and Theorem 3.12. 2

Now we introdue a useful reursion sheme whih permits us to desribe the behaviour of omplex

systems suh as hybrid systems.

Let F : C[a; b℄ � C[0; 1℄ �R ! R and G : C[a; b℄ � [0; 1℄ ! R be omputable funtionals. Then

F : C[a; b℄� [0;+1)! R is de�ned by the following sheme:

(

F (f; t)j

t2[0;1℄

= G(f; t);

F (f; t)j

t2(n;n+1℄

= F(f; t; F (f; y + n� 1)):

Proposition 3.22. If F is ontinuous then F is omputable, with F de�ned above.

Proof. We prove that there exists an e�etive sequene of generalised omputable operators F

�

n

:

C[a; b℄ ! C[0; n℄. For this we state that for eah k there exist two �-formulas �

1

and �

2

whih share

F

�

k

. Clearly, on the m-th step of omputation via the reursion sheme, we obtain a omputable

funtional where t ranges over the interval [m;m+1℄. Hene, there exist two e�etive sequenes of �-

formulas f�

m

1

g

m2!

and f�

m

2

g

m2!

suh that for m � x

1

� x

2

� m+1 and F

�

(< u

1

; u

2

>) =< h

1

; h

2

>

we have
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h

1

j

[

x

1

; x

2

℄ > $ �

m

1

(U

1

; U

2

; x

1

; x

2

; );

h

2

j

[

x

1

; x

2

℄ < $ �

m

2

(U

1

; U

2

; x

1

; x

2

; );

where U

1

(x

1

; x

2

; )

*

)

u

1

j

[x

1

;x

2

℄

> ; U

2

(x

1

; x

2

; )

*

)

u

2

j

[x

1

;x

2

℄

<  and the prediate U

1

and U

2

positively our in '

1

and '

2

. The required formula �

1

an be de�ned as follows:

�

1

(U

1

; U

2

; x

1

; x

2

; )

*

)

(9i; j 2 N(i < x

1

< i+ 1)) ^ (j < x

2

< j + 1) ^

(�

i

n

(U

1

; U

2

; x

1

; i+ 1; ) ^

^

i+1�m�j�1

�

m

1

(U

1

; U

2

;m;m+ 1; ) ^ �

j

1

(U

1

; U

2

; j; x

2

; )) _

(9j 2 N(j < x

2

< j + 1) ^

^

0�m�j�1

�

m

1

(U

1

; U

2

;m;m+ 1; ) ^

�

j

1

(U

1

; U

2

; j; x

2

; )) _ (9i 2 N(i < x

1

< i+ 1) ^ �

i

1

(U

1

; U

2

; i; x

1

; ) ^

^

i�m�n�1

�

m

1

(U

1

; U

2

;m;m+ 1; ) _

^

0�m�n�1

�

m

1

(U

1

; U

2

;m;m+ 1; ):

The required formula �

2

an be de�ned in the similar way. 2

We would like to note that the reursion sheme is a useful tool for formalisation of hybrid systems.

Indeed, in this framework the trajetories of the ontinuous omponent of hybrid systems (the perfor-

mane spei�ations) an be represented by omputable funtionals whih an be onstruted by the

spei�ations SHS of hybrid systems proposed in [17℄.

Also we pay attention to the following property. Every ontinuous total operator F : C[a; b℄ !

C[a; b℄ has a ontinuous extension to the funtional domain. This means that there is a ontinuous

operator F

�

: I

f

([a; b℄) ! I

f

([a; b℄) suh that

F (f) = g $ F

�

(

^

f) = ĝ; where

^

f(x) = ff(x)g; ĝ(x) = fg(x)g:

To prove this fat, we will use the following notion.

De�nition 3.23. Let f be a lower semiontinuous funtion de�ned on [a; b℄ and g be an upper on-

tinuous funtion de�ned on [a; b℄. A sequene fh

s

g

s2!

of ontinuous funtions de�ned on [a; b℄ is said

to be losely approximating to hf; gi 2 I

f

([a; b℄) if

8" > 09N8n � N (h

n

2 hf � "; g + "i) :

Theorem 3.24. Every ontinuous total operator F : C[a; b℄ ! C[a; b℄ has a ontinuous extension to

the funtional domain.

Proof. It is enough to de�ne the operator F

�

: I

0

f

([a; b℄) ! I

f

([a; b℄), where I

0

f

([a; b℄) denotes the set

fh 2 (I )

f

([a; b℄)jh : [a; b℄ ! I n ?g whih is an !-ontinuous Sott domain. Indeed, the operator F

�

an be extended to F

��

: I

f

([a; b℄) ! I

f

([a; b℄) by the rule:

F

��

(h) =

(

F

�

(h) if h 2 I

0

f

([a; b℄);

?

[a;b℄

otherwise;

Note that the set I

0

f;0

([a; b℄) = fhf; gi jf; g 2 C[a; b℄g an be onsidered as a basis for I

0

f

([a; b℄).

Let us denote U

�

F (f)

= f(x; t)jF (f)(x) > tg and U

+

F (f)

= f(x; t)jF (f)(x) < tg for a ontinuous

funtion f .

We �rst de�ne an auxiliary operator F de�ned on the set I

0

f;0

([a; b℄) of strips with ontinuous

bounds and then extend it to an operator de�ned on I

0

f

([a; b℄).

For




f

1

; f

2

�

2 I

f

([a; b℄), where f

1

and f

2

are ontinuous, we de�ne two open sets U

�

< U

+

by the

following rules.

We de�ne (x; t) 2 U

�

if and only if there exists " > 0 suh that for eah sequene fh

n

g

n2!

whih is

losely approximating to




f

1

; f

2

�

we have:
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9N (8n � N)B((x; t); ") � U

�

F (h

n

)

;

where B((x; t); ") is the ball of the radius " entered at (x; t).

By analogy, (x; t) 2 U

+

if and only if there exists " > 0 suh that for eah sequene fh

n

g

n2!

whih is

losely approximating to




f

1

; f

2

�

we have:

9N (8n � N)B((x; t); ") � U

+

F (h

n

)

;

where B((x; t); ") is the ball of the radius " entered at (x; t).

Let us de�ne g

1

(x) = supU

�

(x) and g

2

(x) = inf U

+

(x).

Put F(




f

1

; f

2

�

) =




g

1

; g

2

�

. Sine g

1

is lower semiontinuous and g

2

is upper semiontinuous, the

operator F is well-de�ned. For F we denote U

�

as U

�

F(hf

1

;f

2

i)

and U

+

as U

+

F(hf

1

;f

2

i)

.

We show that F(hf; fi) = hF (f); F (f)i. Indeed, a sequene fh

n

g

n2!

, whih is losely approximat-

ing to hf; fi, uniformly onverges to f . By ontinuity of the operator F , the sequene fF (h

n

)g

n2!

uniformly onverges to F (f). So U

�

F(hf;fi)

= U

�

F (f)

and U

+

F(hf;fi)

= U

+

F (f)

.

Monotoniity of the operator F follows from the de�nitions of U

�

F(hf

1

;f

2

i)

and U

+

F(hf

1

;f

2

i)

. Let

A = f




u

1

n

; u

2

n

�

g

n2!

be a monotoni direted set and

W

"

A =< u

1

; u

2

>. We hek that if

u

1

n

; u

2

n

, u

1

and u

2

are ontinuous, then

W

"

F(




u

1

n

; u

2

n

�

) = F(




u

1

; u

2

�

). By monotoniity of F ,

F(




u

1

; u

2

�

) w F(




u

1

n

; u

2

n

�

) for all n 2 !. Hene F(




u

1

; u

2

�

) w

W

"

F(




u

1

n

; u

2

n

�

). To prove the inlusion

W

"

F(




u

1

n

; u

2

n

�

) w F(




u

1

; u

2

�

), it is enough to hek that for (x; t) suh that (x; t) 2 U

�

F(hu

1

;u

2

i)

there

exists n 2 ! with (x; t) 2 U

�

F(hu

1

n

;u

2

n

i)

. Suppose the ontrary. For some (x; t), (x; t) 2 U

�

F(hu

1

;u

2

i)

, but for

all n 2 ! we have (x; t)62U

�

F(hu

1

n

;u

2

n

i)

. Let us �nd � > 0 suh that the ondition (x; t) 2 U

�

F(hu

1

;u

2

i)

. For

all n we have a sequene fh

n

m

g

m2!

whih is losely approximating to




u

1

n

; u

2

n

�

and B((x; t); �)6�U

�

F (h

n

m

)

for in�nitely great m. From the set fh

n

m

g

n2!;m2!

we an extrat a sequene f�

n

g

n2!

whih is losely

approximating to




u

1

; u

2

�

and B((x; t); �)6�U

�

F (�

n

)

for n 2 !. This is a ontradition with the hoie

of �.

Now we de�ne F

�

for




f

1

; f

2

�

2 I

0

f

([a; b℄) by the following rule: F

�

(




f

1

; f

2

�

) =

W

"

F(




f

1

n

; f

2

n

�

),

where

W

"




f

1

n

; f

2

n

�

=




f

1

; f

2

�

and f

1

n

, f

2

n

are ontinuous, n 2 !. Let us prove orretness of

this de�nition. Suppose

W

"




f

1

n

; f

2

n

�

=

W

"




u

1

n

; u

2

n

�

=




f

1

; f

2

�

. For a �x n we have




u

1

; u

2

�

v

W

"




f

1

n

; f

2

n

�

and
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