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Fixed points on abstrat strutures

without the equality test

M. V. Korovina

In this paper, we present a study of the de�nability properties of �xed points of

e�etive operators on abstrat strutures without the equality test. In partiular, we prove

that the Gandy theorem holds for the reals without the equality test. This provides a useful

tool for dealing with reursive de�nitions using �-formulas.

1. Introdution

The aim of the paper is to present a study of the de�nability properties of

�xed points of effetive operators on abstrat strutures without the equality

test. The question of de�nability of �xed points of �-operators on abstrat

strutures with equality was �rst studied in [1, 6, 5℄. One of the most fun-

damental theorems in the area is the Gandy theorem whih states that the

least �xed point of any positive �-operator is �-de�nable. This theorem

allows us to treat the indutive de�nitions using �-formulas. The role of

indutive de�nability as the basi priniple of general omputability is dis-

ussed in [9, 13℄. In some ases it is natural to onsider a struture in the

language without equality. For example, in all e�etive approahes to exat

real number omputation via onrete representations [7, 8, 14℄, the equality

test is undeidable. This is not surprising, beause in�nite amount of infor-

mation should be heked in order to deide that two given numbers are

equal.

Until now there has been no Gandy-type theorem known for suh stru-

tures. Let us note that in all proofs of the Gandy theorem that have been

known so far it is the ase that, even when the de�nition of a �-operator

does not involve equality, the resulting �-formula usually does. In this paper

we show that it is possible to overome this problem. In partiular, we show

that the Gandy theorem holds for the real numbers without the equality

test.

The onept of �-de�nability is losely related to the generalised om-

putability on an abstrat struture [1, 6, 12, 15℄, in partiular, on the real

numbers [10, 11, 15℄.

The notions of �-de�nable sets or relations generalise those of om-

putable enumerable sets of natural numbers and play a leading role in the
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spei�ation theory that is used in the higher order omputation theory on

abstrat strutures.

In this paper, we investigate de�nability of the least �xed points of �-

operators on abstrat strutures without the equality test. The paper is

organised as follows. In Setion 2, we introdue the basi notations and def-

initions. We provide the bakground information neessary to understand

the main results. Setion 3 presents the Gandy theorem for strutures with-

out the equality test. In Setion 4, we give an appliation of our result to

the real numbers without the equality test. We end with a disussion of our

future work.

2. Bakground

Here we introdue the basi notations and de�nitions. Let us onsider an

abstrat struture A in a �nite language �

0

without the equality test.

In order to do any kind of omputation or to develop a omputability

theory, one has to work within a struture rih enough in information to be

oded and stored. For this purpose, we extend the struture A by the set

of hereditarily �nite sets HF(A).

The idea that the hereditarily �nite sets over A form a natural domain

of omputation is quite lassial and is developed in detail in [1, 6℄.

Note that this or very similar extensions of strutures with equality are

used in the theory of abstrat state mahines [2, 3℄ and in query languages

for hierarhi databases [4℄.

We will onstrut the set of hereditarily �nite sets over the model with-

out equality. This struture permits us to de�ne the natural numbers and

to ode and store information via formulas.

We onstrut the set of hereditarily �nite sets, HF(A), as follows:

1. HF

0

(A) 
 A; HF

n+1

(A) 
 P

!

(HF

n

(A)) [HF

n

(A); where n 2 ! and

for every set B, P

!

(B) is the set of all �nite subsets of B.

2. HF(A) =

S

n2!

HF

n

(A):

We de�ne HF(A) as the following model:

HF(A)
 hHF(A); U; S; �

0

; ;;2i
 hHF(A); �i ;

where the onstant ; stands for the empty set and the binary prediate

symbol 2 has the set-theoreti interpretation. We also add the prediates

symbols U for urelements (elements from A) and S for sets. Let us denote

S(HF(A))
 HF(A) n A.
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The natural numbers 0; 1; : : : are identi�ed with the (�nite) ordinals in

HF(A), i.e. ;; f;; f;gg; : : :, so in partiular, n+ 1 = n [ fng and the set !

is a subset of HF(A).

We use variables subjet to the following onventions:

r; r

1

; : : : range over A (urelements),

x; y; z; s; w; f; g; : : : range over S(HF(A)) (sets),

n;m; l; : : : range over ! (natural numbers) and

a; b;  : : : range over HF(A).

We use the same letters to denote elements from the orresponding stru-

tures and �r to denote r

1

; : : : ; r

m

.

The notions of a term and an atomi formula are given in the standard

manner.

The set of �

0

-formulas is the losure of the set of atomi formulas un-

der ^;_;:, and bounded quanti�ers (9a 2 s) and (8a 2 s), where (9a 2 s) 	

denotes 9a(a 2 s ^ 	) and (8a 2 s) 	 denotes 8a(a 2 s! 	).

The set of �-formulas is the losure of the set of �

0

formulas under ^,_,

(9a 2 s), (8a 2 s), and 9.

We are interested in �-de�nability of sets on A

n

whih an be on-

sidered as generalisation of reursive enumerability. The analogy between

�-de�nable and reursive enumerable sets is based on the following fat.

Consider the struture HF = hHF(;);2i with the hereditarily �nite sets

over ; as its universe and membership as its only relation. In HF the �-

de�nable sets are exatly the reursively enumerable sets.

The notion of �-de�nability has a natural meaning also in the struture

HF(A).

De�nition 1.

1. A set B � HF(A) is �-de�nable, if there exists a �-formula �(a) suh

that b 2 B $ HF(A) j= �(b):

2. A funtion f : HF(A) ! HF(A) is �-de�nable, if there exists

a �-formula �(; d) suh that f(a) = b$ HF(A) j= �(a; b):

Lemma 1.

1.The prediates R(a) 
 a 2 A, S(a) 
 a is a set, and n 2 ! are

�

0

-de�nable.

2.The following prediates are �

0

-de�nable: x = y, x = y\ z, x = y[ z,

x =< y; z >, x = y nz (reall that all variables x; y; z range over sets).

3.A funtion f : !

n

! !

m

is omputable if and only if it is �-de�nable.

4.Let Fun(g) mean that g is a �nite funtion
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g = fhx; yi j for every x there exists a unique y g:

Then the prediate Fun(g) is �

0

-de�nable.

5.If HF(A) j= Fun(g) then the domain of g, denoted by Æ

g

, is �

0

-

de�nable.

Proof. Proofs of all properties are straightforward exept (3) whih an be

found in [6℄. 2

For �nite funtions Fun(f), let us denote f(x) = y if hx; yi 2 f .

The following proposition states that we have a full olletion on HF(A).

Proposition 1. (Colletion.) For every formula � the following holds: if

HF(A) j= (8a 2 x) 9b�(a; b), then there is a set z suh that

HF(A) j= (8a 2 x) (9b 2 z)�(a; b) ^ (8b 2 z) (9a 2 x)�(a; b):

Proof. This follows from the de�nition of HF(A). Indeed, if x 2 HF(A)

onsists of k elements a

1

; : : : ; a

k

and for eah of these a

i

there is an b

i

suh

that �(a

i

; b

i

) holds. Then all b

1

; : : : ; b

k

our in HF

n

(A) for some element

n, hene fb

1

; : : : ; b

k

g 2 HF

n+1

(A). 2

3. The least �xed points of e�etive operators

Now we reall the notion of a �-operator and prove the Gandy theorem for

strutures without the equality test.

Let �(a

1

; : : : ; a

n

; P ) be a �-formula, where P ours positively in � and

the arity of P is equal to n.

We think of � as de�ning a �-operator � : P(HF(A)

n

) ! P(HF(A)

n

)

given by

� (Q) = f�aj (HF(A); Q) j= �(�a; P )g;

where for every set B, P(B) is the set of all subsets of B.

Sine the prediate symbol P ours only positively, we have that the

orresponding operator � is monotone, i.e. for any sets A � B implies

� (A) � � (B).

By monotoniity, the operator � has the least (w.r.t. inlusion) �xed

point whih an be desribed as follows.

We start from the empty set and apply the operator � until we reah

the �xed point:
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�

0

= ;; �

�+1

= � (�

�

); �



= [

�<

�

�

; (1)

where  is a limit ordinal.

One an easily hek that the sets �

�

form an inreasing hain of sets:

�

0

� �

1

� : : :. By set-theoretial reasons, there exists the least ordinal 

suh that � (�



) = �



. This �



is the least �xed point of the given operator

� .

In order to study the least �xed points of arbitrary �-operators (without

the equality test), we �rst onsider �-operators of the type

� : P(S(HF(A))

n

)! P(S(HF(A))

n

):

Then we will show how the least �xed points of arbitrary �-operators an

be onstruted using the least �xed points of suh operators. Note that,

as S(HF(A)) is losed under pairing, S(HF(A))

n

� S(HF(A)) for n > 0.

Moreover, S(HF(A))

n

is a �-de�nable subset of HF(A). So, without loss of

generality, we an onsider the ase n = 1.

Let us formulate some properties of �-operators whih we will use below.

The following proposition states that eah element from the value of a �-

operator on a �-set an be obtained as an element of the value of this

operator on a �nite subset of the set.

Proposition 2. If Q is a �-de�nable subset of S(HF(A)) and w 2 � (Q),

then there exists p 2 S(HF(A)) suh that p � Q and w 2 � (p).

Proof. We prove the proposition for the more general ase where we allow

parameters from S(HF(A)) to our into the formula de�ning our operator.

Let �(

�

b; x; P ) be a�-formula de�ning our operator � , where

�

b = b

1

; : : : ; b

n

are parameters from S(HF (A)). And let Q be a �-de�nable subset of

S(HF (A)) and w 2 � (Q). We need to prove that there exists p 2 S(HF (A))

suh that p � Q and w 2 � (p).

We prove the laim by indution on the struture of �.

If �(

�

b; x; P ) 
 P (x) and (HF(A); Q) j= P (w), then the set p 
 fwg is

a required one.

If � is an atomi formula whih does not ontain P , then the set p
 ;

is a required one.

For the indution step, let us onsider all possible ases.

1. Suppose �(

�

b; x; P )
 (8a 2 b

j

)	(a;

�

b; x; P ) and

(HF(A); Q) j= (8a 2 b

j

)	(a;

�

b; w; P ):

By indution hypothesis,
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(HF(A); Q) j= (8a 2 b

j

)9s

�

	(a;

�

b; w; P )

�

P (t)

t2s

^ s � Q:

Using Proposition 1, we �nd an element q suh that

(HF(A); Q) j= (8a 2 b

j

) (9s 2 q)

�

�

	(a;

�

b; w; P )

�

P (t)

t2s

^ s � Q

�

^

(8s 2 q) (9a 2 b

j

)

�

�

	(a;

�

b; w; P )

�

P (t)

t2s

^ s � Q

�

:

Let p
 [q.

By de�nition, for all a 2 b

j

there exists s � p suh that

(HF(A); s) j=

�

	(a;

�

b; w; P )

�

P (t)

t2s

:

So we have

(HF(A); p) j= 	(a;

�

b; w; P ) for all a 2 b

j

:

In other words,

(HF(A); p) j= (8a 2 b

j

)	(a;

�

b; x; P ):

By onstrution, the set p is a required one.

2. The ase �(

�

b; x; P ) 
 (9a 2 b

j

)	(a;

�

b; x; P ) is similar to the ase

above.

3. Suppose �(

�

b; x; P )
 9a	(a;

�

b; x; P ) and

(HF(A); Q) j= 	(b

0

;

�

b; w; P ):

By indution hypothesis, there exists p

0

� Q suh that p

0

2 S(HF(A))

and

(HF(A); p

0

) j= 	(b

0

;

�

b; w; P ):

The set p
 p

0

is a required one.

4. Suppose �(

�

b; x; P )
 	

1

(

�

b; x; P ) ^ 	

2

(

�

b; x; P ) and

(HF(A); Q) j= 	

1

(

�

b; w; P ) ^ 	

2

(

�

b; w; P ):

By indution hypothesis, there exist p

1

� Q and p

2

� Q suh that

p

1

2 S(HF(A)), p

2

2 S(HF(A)) and

(HF(A); p

1

) j= 	

1

(

�

b; w; P )

and

(HF(A); p

2

) j= 	

2

(

�

b; w; P ):

The set p
 p

1

[ p

2

is a required one.

5. The ase �(

�

b; x; P ) 
 	

1

(

�

b; x; P ) _ 	

2

(

�

b; x; P ) is similar to the ase

above. 2
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Proposition 3. Let � : P(S(HF(A))) ! P(S(HF(A))) be a �-operator.

The relation x 2 � (y) is �-de�nable.

Proof. Let �(z; P ) be a �-formula whih de�nes the operator � . Suppose

x 2 � (y). By de�nition,

x 2 fzj (HF(A); y) j= �(z; P )g:

It means that

(HF(A); y) j= �(x; P ):

So we have

(HF(A)) j= (�(x; P ))

P (t)

t2y

:

It is easy to see that the relation x 2 � (y) is de�ned by�-formula �(x; P )

P (t)

t2y

.

2

Now we are ready to prove the Gandy theorem for �-operators of the

type

� : P(S(HF(A)))! P(S(HF(A))):

Theorem 1. Let � : P(S(HF(A)))! P(S(HF(A))) be a �-de�nable oper-

ator. Then the least �xed-point of � is �-de�nable.

Proof. We will prove that the least �xed point of the operator � is �

!

,

where �

!

is de�ned as follows: �

0

= ;, �

n

= � (�

n�1

) for a �nite ordinal

n, and �

!

=

S

m<!

�

m

.

Let us show �-de�nability of �

n

for every �nite ordinal n.

For this purpose, we introdue the following family of �nite funtions:

X

0

= f< ;; ; >g;

X

n

= ff jFun(f) and Æ

f

= n+ 1; f(0) = ;; f is monotoni

and for any m � n the following is true:f(m) �

[

l<m

� (f(l)g

where n > 0, and S

j

is the domain of the funtion.

From the de�nitions X

n

and � , it follows that X

n

is �-de�nable for all

n 2 !, moreover there exists a �-formula  (n; x) suh that

HF(A) j=  (n; x)$ x 2 X

n

:

Below we will use the following useful properties of the families X

n

:

1. Let w be a �nite subset of X

n

. Let us de�ne f

�

(m) 
 [

f2w

f(m) for

all m � n. Then f

�

2 X

n

.
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2. If f 2 X

n

and m � n. Then f � (m+ 1) 2 X

m

.

3. Let f 2 X

m

and m � n.

De�ne a funtion

f

�

(l) =

�

f(l); if l � m

f(m); if m < l � n:

Then f

�

2 X

n

.

4. Let f 2 X

n

and b 2 � (f(m)), where m � n.

De�ne a funtion

f

�

(l) =

�

f(l); if l � n

fbg; if l = n+ 1:

Then f

�

2 X

n+1

.

Using these properties, let us show that:

x 2 �

n

i� HF(A) j= 9f (f 2 X

n

^ x 2 f(n)) (2)

by indution on n. For n = 0 we have �

n

= ; and therefore (2) holds.

Assume that (2) holds for n. Let us prove that (2) holds for n+ 1.

To prove from left to right, let us onsider x 2 �

n+1

= � (�

n

). By

indution hypothesis, we have that x

1

2 �

n

i� 9g (g 2 X

n

^ x

1

2 g(n)) : So

the set �

n

is �-de�nable. By Proposition 2, it follows that there exists

y 2 S(HF(A)) suh that y � �

n

and x 2 � (y).

By indution hypothesis and the ondition y � �

n

,

HF(A) j= (8z 2 y)9g (g 2 X

n

^ z 2 g(n)) :

Using Proposition 1, we �nd an element w suh that

HF(A) j= (8z 2 y) (9g 2 w) (g 2 X

n

^ z 2 g(n)) ^

(8g 2 w) (9z 2 y) (g 2 X

n

^ z 2 g(n)) :

Starting from the �nite subset w � X

n

, we de�ne the funtion g

0

as follows:

g

0

(l) = [

g2w

g(l); l � n:

By Property (1) of X

n

whih is mentioned above, g

0

2 X

n

. It is easy to

hek the following inlusion: y � g

0

(n). Indeed, if z 2 y, then there exists

g 2 w suh that z 2 g(n) � g

0

(n).

De�ne a funtion
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f(l) =

�

g

0

(l); if l � n

fxg; if l = n+ 1:

From Property (4) of X

n

, it follows that f 2 X

n+1

and, moreover, x 2

f(n+ 1) holds by the de�nition of f . So f is a required one.

To prove from right to left, let us suppose that there exists f suh that

(f 2 X

n+1

^ x 2 f(n+ 1)) : By the de�nition of X

n+1

, x 2 � (f(m)) for

some m � n.

Let us hek the inlusion : f(m) � �

m

. For this purpose we onsider

f

1

= f � (m+1). From Property (2) of X

m

, it follows that f

1

2 X

m

. So, for

all y 2 f

1

(m) we have HF(A) j= 9f (f 2 X

m

^ y 2 f(m)) : By indution, it

means that f

1

(m) = f(m) � �

m

.

The operator � is monotone, so we have

x 2 � (f(m)) � � (�

m

) �

[

m<n+1

� (�

m

) = �

n+1

:

Thus we have proven that �

n

is �-de�nable for all n 2 !. Consequently,

x 2 �

!

$ 9n9f (f 2 X

n

^ x 2 f(n)) (3)

is �-de�nable.

To hek that �

!

is a �xed point, i.e. � (�

!

) � �

!

let us onsider

x 2 � (�

!

). From (3) it follows that �

!

is �-de�nable. From Proposition 2

it follows that there exists y 2 S(HF(A)) suh that y � �

!

and x 2 � (y).

It is easy to hek that y � �

m

for some m 2 !. From this we have that

x 2 � (�

m

) � �

!

. By monotoniity of � , the set �

!

is the least �xed point.

So the least �xed point of the operator � is �-de�nable. 2

Now we onsider arbitrary �-operators on the struture A without the

equality test.

Theorem 2. Let � : P(HF(A)

n

)! P(HF(A)

n

) be an arbitrary �-operator.

Then the least �xed-point of � is �-de�nable.

Proof.

Without loss of generality, let us onsider the ase n = 1. For simpliity

of notation, we will give the onstrution only for that ase, sine the main

ideas are already ontained here. Let �(r; P ) de�ne the operator � . We

onstrut a new �-operator F : P(S(HF(A)))! P(S(HF(A))) suh that

r 2 �

n

 ! 9x (x 2 F

n

^ r 2 x) :

For this purpose we de�ne the following formula with a new unary pred-

iate symbol Q:
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	(x;Q) = (8r 2 x) (�(r; P ))

P (t)

9yQ(y)^t2y

:

It is easy to see that 	 indues a �-operator F given by

F (D) = fxj(HF(A);D) j= 	(x;Q)g:

Let us show that

r 2 �

n

$ 9x(x 2 F

n

^ r 2 x) (4)

by indution on n. For n = 0 we have �

n

= F

n

= ; and therefore (4) holds.

Assume that (4) holds for n. Let us prove that (4) holds for n + 1. In

other words, we need to prove that

(HF(A); �

n

) j= �(r; P ) $

(HF(A); F

n

) j= 9x

�

r 2 x ^ (8r

0

2 x) (�(r

0

; P ))

P (t)

9yQ(y)^t2y

�

:

Sine the �rst formula does not ontain Q and the seond formula does

not ontain P , it is suÆient to onsider one struture (HF(A); �

n

; F

n

) and

prove that

(HF(A); �

n

; F

n

) j= �(r; P ) $

(HF(A); �

n

; F

n

) j= 9x

�

r 2 x ^ (8r

0

2 x) (�(r

0

; P ))

P (t)

9yQ(y)^t2y

�

:

To prove from left to right, let us onsider r 2 HF(A) suh that

(HF(A); �

n

; F

n

) j= �(r; P ):

Consider the formula (�(r; P ))

P (t)

9yQ(y)^t2y

. Then by indution hypothesis we

have that

(HF(A); �

n

; F

n

) j= 8r

0

�

P (r

0

)$ 9x(x 2 Q ^ r

0

2 x)

�

(5)

and therefore (by replaement lemma) we have

(HF(A); �

n

; F

n

) j= (�(r; P ))

P (t)

9yQ(y)^t2y

:

Now it is easy to hek that

(HF(A); �

n

; F

n

) j= 9x

�

r 2 x ^ (8r

0

2 x)

�

�(r

0

; P )

�

P (t)

9yQ(y)^t2y

�

taking x = frg.

To prove from right to left, let us onsider r 2 HF(A) suh that

(HF(A); �

n

; F

n

) j= 9x

�

r 2 x ^ (8r

0

2 x)

�

�(r

0

; P )

�

P (t)

9yQ(y)^t2y

�

:

From this we have that
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(HF(A); �

n

; F

n

) j= (�(r; P ))

P (t)

9yQ(y)^t2y

and from (5) (by the replaement lemma) we obtain that

(HF(A); �

n

; F

n

) j= �(r; P ):

Now, from Theorem 1, it follows that the least �xed point of the operator

F is �-de�nable and therefore the least �xed point of the operator � is also

�-de�nable.

2

4. The least �xed points of e�etive operators on

the real numbers without the equality test

In this setion, we onsider the standard model of the real numbers hIR; 0; 1;+;

�;�; <i, denoted also by IR, where +, � and � are regarded as the usual arith-

meti operations on the reals. We use the language of stritly ordered rings,

so the prediate < ours positively in formulas. This allows us to onsider

�-de�nability as generalisation of omputable enumerability. Indeed, in all

e�etive approahes to exat real number omputation via onrete repre-

sentations, we need only �nite amount of information in order to show that

one number is less than another. The following is an immediate orollary of

Theorem 2.

Corollary 1. Let � : P(HF(IR)

n

) ! P(HF(IR)

n

) be an arbitrary �{operator.

Then the least �xed-point of � is �-de�nable.

5. Future work

One of the appliations of the Gandy theorem in the ase of strutures with

equality is that it allows us to de�ne universal �-prediates. It leads to a

topologial haraterisation of �-relations on IR. Thus the sets B � IR

n

that

are �-de�nable in HF(IR) with equality are exatly the e�etive unions of

semialgebrai sets.

We think that the Gandy theorem an be used in this way for the stru-

tures without equality, but for this we need more evolved arguments. Also we

think that it is possible to show that the sets B � IR

n

that are �-de�nable

in HF(IR) without equality are exatly the e�etive unions of open semial-

gebrai sets.
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