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Simulation of a superpower shaft
hydroresonance vibrational source

V.V. Kovalevsky, G.V. Reshetova

1. Introduction

The paper presents the results of mathematical modeling of superpower
vibrational sources for the global tomography of the Earth. A hydroreso-
nance scheme of a seismovibrator is considered, in which an oscillating in
the vertical shaft liquid column with the mass of several tens thousands tons
serves a seismic waves source. A mathematical model of the shaft source has
been constructed. This model reflects the most significant features for the
considered process of seismic waves radiation. Being combined, the model
includes an elastic half-space with a vertical cylindric cavity, a column of
a compressible fluid, and the ideal gas volume at the bottom of the shaft.
The problem has been formulated in general in terms of mathematics, thus
reducing to a combination of three systems of equations - dynamic elas-
ticity theory, compressible fluid dynamics, and ideal gas dynamics. The
boundary conditions are the known stresses and velocities relations at the
interfaces between different media. For low frequencies when the wavelength
essentially exceeds the shaft diameter, it appeared possible to separate the
problem the determination of pressure distribution in the fluid from the 1D
problem of finite oscillations of the compressible fluid column on the gas vol-
ume with allowance for quasi-static elastic deformations of the shaft walls,
and, further, the solution of the dynamic problem for the elastic half-space
with determined stresses on the cylindrical cavity boundary as boundary
conditions. The results of numerical calculations of the full wave field of the
shaft source for various model of media are presented.

2. Superpowerful vibrational seismic sources

Vibrational sources of seismic waves are currently used in active seismology
for the research into the structure of the Earth’s crust and upper mantle,
monitoring of temporal variations of the stress-deformed state of the medium
as well as in industrial applications [1, 2]. Several projects on superpower
seismic vibrators with radiated power of several hundreds kilowatt in a low-
frequency band [3, 4] have been developed for the Earth’s global tomography.
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These sources are based on the hydroresonant scheme, and their construction
contains a mechanical oscillatory circuit with an oscillating inertial mass
and elastic elements. The main peculiarity of the hydroresonant scheme
of vibrators is the possibility of scaling, that is, increase in the size of the
source and, hence, of the power and force parameters. At the same time,
the developed structural scheme and technical decisions turned out to be
equally acceptable for the creation of sources of various power, including
superpowerful vibrators.

it In superpowerful seismic vibrators, the

AN A source of seismic waves is a liquid column
\\/\\> I *‘\%f\\ /\ of several tens of thousands of tons that is
‘Shaft 7| iy D2 AN resonantly oscillating in a vertical mine. To
\\A/\\/ e== _‘\/ N /\ create a vibrator with a force of 10000 tons,
\// \/ [y | '\/5/ . it is necessary to have a mine 12 m in di-
Wt NS EINVANN ameter and 100 m deep which is filed with
col L7 water (Figure 1). The oscillatory circuit is
dE - ——F| fi5!180000tns - formed in such a source by locating a com-
. = pressed air volume near the mine bottom.

Air iy S Vertical oscillations of the liquid column at
spring -1 the elastic volume lead to periodic pressure
ot variations in the compressed air volume at

% e the mine bottom and in the entire liquid col-

umn. There appear periodic vertical forces

l F.=10000 tons applied to the mine bottom and radial forces

applied to the mine walls. This causes radi-
ation of seismic waves. The frequency range
of the mine vibrator for global seismology
constitutes 0.5-5 Hz. The lower frequency
of the range is determined by the magnitude of the inertial liquid mass
and the maximal volume of the pneumatic spring. The upper operating
" frequency is determined by the elasticity of the liquid column and mine
walls. It is limited by the value when the wavelength in the liquid column is
comparable to the size of the liquid column itself in the mine (see the table).

Figure 1. Mine hydroresonant
source with an action of 10000
tons

Frequency, Hz 0.5 1 2 3 4 5

Air volume, m® 150 37 9 4 25 1.5
Amplitude, mm 1000 250 60 25 15 10
Energy, J 108 2.5x10"7  6x10° 3x10° 1.5x108 10°®

The scheme of mine vibrational source under consideration is a rather
complex oscillation system, in which resonant frequencies depend on elastic
characteristics of the air volume, mass, and elasticity of the liquid column
and the ground surrounding the mine. The distribution of stresses over the
mine surface, as well as the geometrical dimensions determine the radiated
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seismic power, the distribution of wave types, and the directional pattern
of the source. The main force, frequency, and power characteristics of the
mine seismic vibrator were determined by mathematical modeling.

2.1. The mathematical model

Rsiniwt)

The mathematical model of mine hydroresonant
source, which reflects the properties that are
most significant for the radiation process of seis-
mic waves under consideration, is a combined
one. '

It includes an elastic half-space with a verti-
cal cylindrical cavity, a column of compressible
liquid, and a volume of ideal gas at the mine
bottom (Figure 2). The general mathematical
statement of the problem is reduced to a com-
bination of the following three systems of equa-
tions: the dynamic theory of elasticity, the dy- Figure 2. The model of
namics of compressible liquid, and ideal gas. mine hydroresonant source

2.2. System of equations

1. For an elastic half-space, the equations of the dynamic theory of elas-
ticity have the following form in cylindrical coordinates (r, z, ), taking into
account the axial symmetry:

(A + p) grad div @ + pAgG - pii =0,

_ Ouy _ Bu, _ 2, Ou
O',-,-—Ae+2yar, a’zz-Ae'i'z#az} a'rz—#( az + 61.)! (1)
_Ou, | Ou,  u,
9_6r+8z+r’

r>rp at 0<z<H, r>0 at z> H,
where A and y are the elastic Lame constants, p is the density, u(r, z,t)
are the displacements, o, (r, 2,t), 0,(r, 2,t), or(r, 2,t) are stresses, O is the

volumetric expansion, rq is the mine radius, and H is the mine depth.

2. For the column of compressible liquid, the equations of dynamics in an
acoustic approximation are as follows:

KA(j—poI:j=0, P=_—I(gradff, r<ryat 0<z<H, (2)
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where U(r, z,t) are the displacements, P(r, z,t) is the pressure, K = pg c3 is
the coefficient of liquid compressibility, cp is the sound speed in the liquid,
and py is the density of the liquid.

3. For the compressed gas volume, the relation between the pressure and
volume is determined by the adiabatic equation

V b
p=po(;°), po = pogH, (3)

where p(t) is the pressure, V(t) is the gas volume, V; is the initial volume at
the pressure equal to the static pressure pg in the liquid at the mine bottom
at the depth H.

2.3. Boundary conditions

The boundary conditions of the problem are the well-known relation between
the stresses and velocities at the common boundaries between different me-
dia.

1. At the free surface of the half-space, there are no normal stresses:
022(r,0,t) =0 at r>rg, z=0. (4)

The periodic pressure is given at the upper boundary of the liquid column
as an excitation source of oscillations:

P(r,0,t) = Pysinwt at r<ry z=0. (5)

2. At the surface of the cylindrical cavity, at the liquid-elastic half-space
boundary, we have

a’,,(ru,z,t) = P("O:z:t): a.zz(rU!z!t) = a',.z(ro,z, t) = Oa Uy = Ur
at 0<z<H,

(6)

where op(r,2,t), 0::(r; 2,t), and o,.(r, 2,t) are the stresses, u(r,z,t) are
the displacements from (1), P(r,z,t) is the pressure, and U(r, 2,t) are the
displacements from (2).

3. At the liguid-gas boundary, at the bottom of the cylindrical cavity,
P(r,H,t) = p(t), V() ="Vo-— _[ U,(r,H,t)dS at r<ro, z=H, (7)
S _
where P(r,z,t) is the pressure, U(r,z,t) are the displacements from (2),

p(t) is the pressure, V(t) is the gas volume from (3), and S = wrrf is the
cross-section area.
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4. At the gas-elastic half-space boundary, at the bottom of the cylindrical
cavity,
o (r,H,t) =p(t) at r<ry, z=H, (8)

where 0;,(r, z,t) are the stresses from (1), U(r, z,t) are the displacements
from (2), p(t) is the pressure, and V'(t) is the gas volume from (3).

Direct solving of the formulated problem is associated with considerable
difficulties, not only due to the complexity of the combined model, but also
because the finite amplitude of oscillations of the liquid column on the gas
volume must be taken into account, which leads to a nonlinear statement.

The problem of modeling is considerably simplified by considering the
radiation process of seismic waves at low frequencies, when the characteristic
wavelengths both in the elastic half-space and in the liquid are much greater
than the mine diameter. In this case, the problem can be divided into two
independent problems. The first one is the determination of the pressure
distribution in the liquid from a 1D problem of finite oscillations of the col-
umn of compressible liquid on a gas volume with allowance for the influence
of the elasticity of the surrounding half-space. The other one is solving the
dynamic problem for the elastic half-space with the found stresses at the
boundary of the cylindrical cavity as boundary conditions.

2.4. Resonant oscillations of the liquid column

The wave propagation problem in elastic half-space with a cylindrical cavity
of infinite length filled with a liquid was considered earlier both in the full
statement [9], and in a long-wave approximation (the classical theory of
water hammer) [10]. The solution shows that in the case of low frequencies
when the wavelength is much greater than the diameter of the cylindrical
cavity, the 1D acoustic approximation can be used. In this case, the velocity
of elastic waves propagating along the liquid column has a smaller value
than the sound speed in an unbounded liquid. This is due to the fact that
the effective coefficient of liquid compressibility decreases owing to elastic
deformations of the surrounding space. The value of velocity of elastic waves
for low frequencies is given by the following expression [9]:

2
2 Cop
o 9
¢ poc% +I»‘, ( )

where po and ¢y are the density and sound speed in the liquid from (2),
p = pV2 is the shear modulus for the elastic medium, and p and Vg are the
density and velocity of shear waves.

The resonant characteristics of the column of compressible liquid at an
adiabatic pneumatic spring are determined from the 1D equation of acoustics
with the following two boundary conditions: the equality of the pressure to
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zero at the upper boundary of the liquid at 2 = 0 and the equality of the
pressure in the liquid and gas at z = H:

PU(z,t)  18%U(2,t) _ = —p 220

57 a2 ar  — 0 Plt)=-pc—p",

'aU(Z,t) ( Vo )7

29V 50 = YV _Ii» 1\ Q
PoC 0z z=H POQH I/0 - U(zv t)S Z=H, (10)
Wb _g 4t o<z<AH,

0z z=H

where U(z,t) are the displacements, P(z,t) is the pressure, ¢ is the velocity
of elastic waves in the liquid in accordance with (9), po is the density of the
liquid, Vp is the initial gas volume, S = 7r3 is the cross-section area of the
cavity in accordance with (3), (7).

For small oscillations, the second boundary condition admits the lin-
earization:

U (z,t) N

. S?
2 =-=U(zt , N=
P | =7 U(z1) . YpogH

Vo (11)
where N is the elasticity coefficient of the gas volume at small 1D deforma-
tions.

The solution of 1D equation of acoustics (10) with boundary condition
(11) is a superposition of the eigen forms of oscillations (of standing waves)
whose frequencies are determined from the following characteristic equation:

U(z,t) = Z A; sin(w;t) cos(k;z),

P(z, t) = p0c2 ZA,‘kt sin(w,-t) sin(k,-z), (12)
wi 2w o fwHY _ N
kt:?_A_l, wttg( P ) _P(]CS,

where w;, k;, A; are the frequency, wave number, and wavelength of the i-th
eigen form of oscillations, and A; is its amplitude.

The form of the solution for the displacements and pressure, as well
as characteristic equation for frequencies (12) show that for any value of
elasticity of the gas volume there exists an infinite number of eigen forms,
with arbitrarily high frequency values. We are interested in the first form
of oscillations with the least frequency value and in the dependence of this
frequency on the parameters of the gas volume. The least values of os-
cillation frequency admitting of the analytical estimate (because tgz ~ z)
correspond to small values of N (i.e., large gas volumes). At maximally high
values of N (i.e., when the mine has no bottom), the frequency is determined
from the condition that the argument of the tangent tends to /2:



Simulation of a superpower shaft hydroresonance vibrational source 51

N —=0: U(z,t) = Unax sin(wt) cos(wz/c),
~ (W) Z Wa N
P(z,t) = Ppaysin(wt)—, w’= oSH
2 (13)
N — o00: U(z,t) = Unax sin(wt) cos (27rm) )

R|=Z

P(z,t) ~ Prax sin(wt) sin (2«{5), % ~ g; A~ 4H,
where M is the total mass of the liquid column.

Thus, in the case of small rigidity of the elastic gas volume, the liquid
column oscillates as one mass and has a linear distribution of pressure with
height. Here the influence of the liquid compressibility is insignificant. In
the second limiting case, in the absence of gas in the pneumatic spring, an
elastic standing wave is excited. The length of this wave is by a factor of
4 greater than the mine depth, and the pressure distribution is described
by one fourth of the period of sinusoid with the maximal value at the mine
bottom.

The solution of the equation of acoustics with nonlinear boundary con-
dition (10) for finite oscillations of the liquid leads to the appearance of
periodic solution. The solution contains harmonics with frequencies that
are multiples of the fundamental frequency, and their own forms of natural
oscillations correspond to them. A simple representation of the solution in
the form of series of multiple frequencies similarly to (12) does not give a
direct result, because the problem is reduced to nonlinear equations for co-
efficients of the infinite series. Therefore, the solution is found numerically
with the use of a finite difference approximation of equation (10). The result
of the calculation is the sought-for pressure distribution P(z,t), which is in
qualitative agreement with (12), i.e., it is a superposition of eigen forms
of oscillations, from the first one and higher. This pressure distribution is
boundary condition (6) for the dynamic problem of elasticity theory (1) and
determines all characteristics of the mine vibrator as a source of seismic
waves.

3. The dynamic problem for elastic half-space

After the determination of the pressure distribution at the walls of the cylin-
drical cavity, the problem of modeling of the full wave field of the mine source
is reduced to the dynamic problem of elasticity theory for a half-space with
complex boundary (1) and specified stresses at it as boundary conditions (4)
and (6). In the case of low frequencies under consideration, when the lengths
of elastic waves in the half-space and the mine depth are much greater than
its diameter, the stresses at the boundary of the cylindrical cavity can be
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approximated by the stresses from a system of point sources of the “pressure
center” and “vertical force” types, linearly distributed along the z- axis from
the surface to the depth H in a homogeneous elastic half-space.

If the source is considered in the form of a sphere with a uniform radial
pressure on the surface (a “pressure center” of finite size), in a cylindrical
system of coordinates, it can be represented as a superposition of sources of
two types: a source of circular horizontal force F, and a source of vertical
force F,. The values of these forces are determined by the integration of the
corresponding projections of forces over the sphere surface.

n/2 2r
F, = [peostas=p [ cos?9dt [ dp=pn'r},
5 —/2 0
14
n/2 2n ( )
Fz =

:l:/psinﬂd3= +p f sinﬂcosddﬂfdga= +prrd,
S 0 0

where p is the pressure at the sphere surface, (r,9,¢) are the spherical
coordinates, dS = 72 cos ¥ d di is the differential of area on the sphere.

The source of circular horizontal force approximates an element of the
cylindrical cavity with normal stresses. Two sources of vertical source, from
the upper and lower hemisphere, respectively, determine the forces along
the z-axis. At a linear location of sources of the “pressure center” type
with different intensities along the cavity axis, for the compensation of the
vertical component of force, it is necessary to introduce a linear system of
sources of the “vertical force” type, with the intensity of each of them equal
to the difference of vertical components of the forces from the neighboring
sources of the “pressure center” type. Therefore, the system of point sources
approximating the cylindrical cavity with the distribution of normal stresses
P(z,t) has the following form:

OP(z,t) B

-flﬂ(t) = P(Z‘Jt)lz:nhi fzﬂ(t) = B2 3 h’

n=1,...,N, (15)

where f1,(t) is the intensity of the n-th source of the “pressure center” type,
fon(t) is the intensity of the n-th source of the “vertical force” type, h is the
distance between the sources, and N = H/h is the number of sources.

For a system of distributed point sources, the dynamic problem of elas-
ticity theory for elastic half-space has the following form:

pii = (A + p) grad div @ + pAd + F, 15)
F(z,r,t) = F.&, + F,é.
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The right-hand part of equation (16) describes the action of a system of
sources localized in time and space.
For a system of sources of the “pressure center” type,

F = Fy(z,nt,) = E ad[a( )J(z —nh ]flﬂ(t). (17)
n=1

For a system of sources of the “vertical force” type,

§(r)

F = Fy(z,n,t,) = 2 J(z — nh) fan(t) ;. (18)

The initial and boundary conditions of the problem are as follows:

g = tilimg = Tral,cg = Tral,g = 0. (19)
Let us use the integral Hunkel transform with respect to the variable r [11]:

R(z,k;,t) = /ruz(z,r,t)Jo(k.-r)dr,

’ (20)
S(z, ki, t) = f rup (2,7, )01 (Kir) dr,
0
with the following inverse formulas:
Jo(k;r
u,(z,nt) = 2 ZR( Y ki t) [JO((:;G))]Z’
7 (k (21)
ur(zar: t) 2 ZS(Z k‘l t)[Jl((k::))]g:

where k; are the roots of the Bessel equation J;(k;a) = 0. The system of

the 1D equations obtained after the transformations contains terms LT I

Uz|,—,- Let us introduce new boundary conditions at the right-hand side:
ug (2,7, 8)], = uz(2,m,t)|,_, =0 (22)

r=a

and consider the wave field to the time ¢ < T', where T is the minimal time
of propagation of the wave leading edge to the reflecting surface r = a. We
can do this by virtue of the hyperbolicity of the problem.

The new boundary value problem of smaller dimensionality obtained as
a result of using the finite integral Hunkel transform with respect to r has
the following form:
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s %S OR OR

Ly kA —kiu— — k2 3
Patz ”’822 k’A 8z k,,[.l Oz ki (A+2F’)S+Fn (23)
O*R *R s as ., _
pﬁ = (/\ + 2#)@ + k;Aa‘ + k,ﬂr'a'z- —kipR+ F;,.
The initial conditions are
oS OR
S(z k)| _, = Rz, k,-,t)‘tzo =0l =FlL =0 @
The boundary conditions are
OR as
; 2u)— =0, — — kiR =0. 2
NS+ A+ 25| w(5 -k )z=0 0. (25
The right-hand part of the equations has the following components:
a) in the case of sources of the “pressure center” type
_ N . _ N 14
Fr = —'?:_:1 55(3 —nh)fin(t), F:;= nz=:1 ‘2';&;(5(2 —nh)) fia(t);  (26)
b) in the case of sources of the “vertical force” type
_ _ N ok
F.=0; F,=-3 -=(z—nh)fan(z). (27)
n=1

To solve the reduced problem, one can use the finite difference approxi-
mation over time and the space coordinate z. At this approach, each time
when the number of sources, their location, or intensity is changed, calcula-
tions have to be carried out again. At a series of computational experiments
on the modeling of wave fields generated by a set of sources, this approach
is not economical.

A combination of the method of straight lines and the method of matrix
decomposition is more effective [12]. This numerical-analytical approach for
specific models of media makes it possible to model wave fields at any time

of interest for an arbitrary combination of sources of various types, various
’ intensity, and localization without great computational expenditures.

To solve problem (23)—(27), let us use the method of straight lines, which
in contrast to the method of grids, approximates the operation of differentia-
tion only with respect to the space variable z. For this purpose, we introduce
a uniform grid on the interval z € (0,b) as follows:

w={zj=jh; j=1,...,M; h(M +1)=b}. (28)

The derivation of differential-difference equations to find the functions
S(z;, ki, t) and R(zj,k;,t) at the straight lines z = z; was performed in
accordance with the scheme proposed in [13]. The differential-difference
problem obtained can be written in the vector form:
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d’X L dX
AX = = —

=0, (29)

where X’(t) = (S(zl’ ki: t): R(zlyki:t)’ ] S(ZM: kl'1 t): R(sz kl': t))Ti Ais

the symmetric positive-definite band matrix, the width of which depends

on the order of approximation over the variable z; ¢ is the vector of the

right-hand side approximating (26) or (27) on the grid w, f(t) is assumed

to be equal to fi(t) or f2(t), depending on the type of sources considered.
With the help of orthonormal expansion [14]:

A = Qdiag{)\y,..., \n}Q™! (30)

and change of the variables ¥ () = Q-1X (t), system (29) breaks down into
N independent Cauchy problems for each ¥; component of the vector Y (t):

d?y; dy;
T +AYi=0, U= (Q)f(t), Yileo= e AL Y
The solution to this problem is written in the following form:
f 1
Y--—-/‘Ii,-'r——-sin Ai(t — 7)) dr. : 32
o= [ u g (VA=) (32)

Depending on the type of function of the signal f(t), the values of Y;(t)
can be obtained either in the analytical form or numerically by computing
the integral in the right-hand part of (32) with the use of an approximate
method. For the vibrational source radiating a harmonic sugna.l the function
f(t) has the following form:

f(t) = sinwpt, (33)

where wy is the radiation frequency. Then formula (32) admits of the fol-
lowing analytical representation:

1 ‘
Y; = (Q‘ﬁ)im(w() sin v/ gt — \/z\_,-sinwnt) at wd # X\,
' (34)
Y; = (Qy‘:’)gﬁ(sinwot — wot cos wyt) at wi =\
0

After the vector ?(t) is determined, it is sufficient to return to the variable
X(t) = @Y(t) and then find the solution u(z;, 1, 1) to the initial problem
(16)—(19) by formulas (21)

Notice that the main computational time of the algorithm is devoted to
the construction of orthonormal expansion (30) for matrix A4, the coefficients
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Figure 3. The wave field of
the mine source (top) and
the low-velocity layer (bot-
tom) in a homogeneous half-
space
of which depend only on the structure of the medium and do not depend on
the parameters and location of the sources. After the expansion (30) for a
specific model of the medium is obtained, the modeling of the wave field for
an arbitrary combination of sources-receivers is realized only in accordance
with formulas (32) and (35), which are analytical formulas for certain types
of sources, as it was shown.

The algorithm developed was used for mathematical modeling of a full
wave field of the mine vibrator for various models of the medium. The wave
field of a mine source in a homogeneous elastic half-space for successive times
is presented in Figure 3. The cylindrical longitudinal wave from the mine
walls and a spherical wave from its bottom are clearly seen. Figure 3 also
represents the wave field of the source for the mine location in a layer with
velocities of elastic waves that are lower than those in the underlying half-
space. The leading propagation of the longitudinal wave in the high-velocity
part of the cross-section and the penetration of the conical wave into the
low-velocity layer is clearly seen.
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