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Realization and testing a wave analog
of the common depth point method
on synthetic and field data*

A N. Kremlev, V1. Priimenko, S.A.M. Oliveira, R.M. Missagia

Realization of the Wave Analog of the Common Depth Point Method (WCDP)
is described. This method is one of numerous employed in seismic data processing
and is based on the “rigorous” mathematical solution of the inverse scattering
problem in linear approximation by multiple overlapping data. The WCDP method
is tested on synthetic data corresponding to typical geological objects (inclined
reflecting areas, point reflectors, salt-dome model) and field data (profile with a
wave field anomaly in the Deryugin basin in the Okhotsk See). The results have
shown a high quality of the WCDP profiles and stability of this method to the
choice of a wave velocity model.

1. Introduction

Presently, the Common Depth Point (CDP) method [1, 2] and different mod-
ifications of the wave migration method are the basic ones for multichannel
seismic data processing [3, 4. The WCDP method differs from other mi-
gration methods by the fact that it is based on the rigorous mathematical
solution of the inverse scattering problem of acoustic waves in linear ap-
proximation by multichannel overlapping data. Such an approach enables
us to take into account all wave processes of reflection and diffraction of
seismic waves. Using the multifold input data in the algorithm increases the
signal/noise ratio in the resulting stack and allows, like the CDP method,
making wave velocity analysis of a medium.

In our work, we describe the realization of the WCDP method and
present some results of its testing on synthetic and field data.

2. Statement of the problem and summation
formula ‘

The inverse problem of acoustic waves diffraction consists in determination
of the function a(z, z), describing heterogeneities of a medium by the wave
field u(x,z9,t), recorded for different positions of the source (zy) and the
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receiver (z) located on the surface. This wave field satisfies the Cauchy
problem [5]

&u
at?
where ¢ is the background velocity of acoustic waves, (7,7,t) € R? x R% x

R, ¥ = (z,2), 7o = (0,2). The result of the problem solution in linear
approximation is the following focusing operator [6-8]
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which allows us to calculate the visualization function a(7) being the local
average of the required function a(f") over the domain with the size on the or-
der of a sounding signal wavelength. In formula (2), the function i(x, xo,w)
is the spectrum of a recorded field,
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is the kernel of the focusing operator. Here ©(:) is the Heavyside function
and v is a priori stacking velocity, the symbol “c.c.” means the complex
conjugated term to the previous one. The exponential factor in formula
(3) provides a phase shift corresponding to the wave propagation time and
similar to the phase shift in coordinates of a source and receiver in migration
by Gazdag [9] and Stolt [10], but at the same time their multipliers are the
result of exact problem solution.
The focusing operator (2)—(3) is a basis of the WCDP method.

3. Summation formula in CMP-offset
coordinates

In order to realize the WCDP method in stacking formula (2)—(3), let us
turn to the “Common Mid-Point offset” coordinates:

m = (z + 20)/2, l=z—-z¢. (4)

Let us denote by p and v the frequency variables corresponding to m and
l. Because of invariance of the wave phase we have xz + xoxo = pm + vi.
Using relations (4) we obtain
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X =p/2+v, X0 = p/2 —v. (5)

Let U(m,1,t) be a wave field in (m, [)-coordinates and U(u,v,w) be its
spectrum. From the obvious equality u(z,zo,t) = U(m,l,t) and formulas
(4) we arrive at

u(z,zo,t) = U((z + 20)/2,z — x0,1),

(6)
Ulm,1,1) = u(m +1/2,m — 1/2,1). |

From the Fourier integral
ﬁ'(Xa Xo,w) = fd@' d‘UD e_i(xz+xoza) ) u(z: I{},W) (7)
and using formulas (4), (6) we come to

ﬁEX’ XO')W) = {}(X + Xo, (X - XO)/2)""): (8)
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By introducing the new variable

(GG e

and using formulas (8), it is possible to obtain the final variant of the sum-
mation formula (2)—(3):
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Here the kernel &, is defined by the formula

@, (m,t, u,v,q) = &(vt, x, x0,w), (1)

where x = u/2 + v, xo = p/2 — v, and w = w(g) is a solution to equation
(9). For the numerical construction of the WCDP profile by formulas (2), (3)
or (10), (11), the corresponding integrals are changed by the integral sums
with finite summation limits both with respect to the time variable and with
respect to the spatial coordinates. There are two important advantages of
formulas (10), (11).

First, summations with respect to the time frequency ¢ and the spatial
frequency p have the forms of Fourier sums, and we can use the efficient fast
Fourier transform (FFT) for their calculations.

The second difference is associated with the choice of aperture summa-
tion. Figure 1 represents a generalized seismic plane.
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4 B, AX Each seismic trace of a 2D
profile is characterized by the
coordinates (z,zg) or (m,l),
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ture in (z, zg)-coordinates, its
Figure 1. The WCDP aperture diagonal AC forming a sum-
mation basis. The choice of
a summation basis is determined by depth of disposition and inclination
-of reconstructed boundaries. The size of this basis is also constrained by
the volume of computer memory, which is connected with a possibility of
efficient reconstruction of a spatial spectrum of a wave field with the help
of the FFT algorithm.

Increasing the summation basis in (z, zg)-coordinates results in appear-
ance in the aperture of the domains (the triangles BB;K and DD, L), hav-
ing no real seismic traces. For using the FFT algorithm we need to fill in
these domains with zero traces. This brings about an increase in the volume
of calculations but does not increase the volume of information about the
profile under study.

In the “CMP-offset” coordinates, the aperture of summation is a rectan-
gle, whose summation basis is parallel to Om-axes. The rectangle A'B'C'D’
corresponds to the same basis of summation AC3, shown in Figure 1. Such a
rectangle has only real recorded seismic traces or traces to be reconstructed
from them by the reciprocity theorem.

4. Testing the WCDP method on synthetic data

Inclined reflected areas and point diffractors are typical subjects in seismic
prospecting and their reconstruction determinates the efficiency of seismic
data processing.

In Figure 2, the reconstruction results of inclined reflected surfaces un-
der different inclination angles for the cases when (a) the migration velocity
v coincides with the background velocity and when (b) these velocities are
differ by 25% are presented. It is necessary to mark that in spite of consid-
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Figure 2. Dipped reflectors reconstruction (angles of 0, 15, 30, 45, and 60 degrees):
(2) Vinedia = Vmigration = 2000 m/s; (b) Vinedia = 2000 m/s, Vinigration = 1500 m/s

erable difference between these velocities in the case (b) we have a stable
reconstruction of inclined boundaries but with some displacement from their
real position corresponding to such a difference.

Figure 3 presents the re-
sults of reconstruction of
point reflectors located at
different depths and differ-
ent positions with respect to
the summation basis. The
high quality of reconstruc-
tion of such subjects should
be noted, their reconstruc-
tion precision being close to
a theoretical limit defined
by the sounding wavelength.

The model of a salt-
dome structure shown in
Figure 4 is typical for many
coastal sea-bed areas of the
Atlantic Ocean. Synthetic
data for such a model were
calculated for 521 explosion
points by solution to the
acoustic equation with vari-
able velocity and medium
density with the help of the
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Figure 3. Diffractors reconstruction
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Figure 5. The WCDP reconstruction:
Vinigration = 1500 m/s (left), Vinigration = 1600 m/s (right)
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finite difference approach described in [11]. The distance between explosion
points and receivers was equal to 30 m, the number of sources being equal to
96. The results of data processing are shown in Figure 5 for the summation
velocities of 1500 and 1600 m/s. All the reflecting surfaces including inclined
and subsalt reflectors are well reconstructed. It is necessary to mark that
dislocation of a subsalt reflector with respect to its real disposition is con-
nected with a strong literal velocity variation in the upper layers that does
not taken into account in time migration. In addition, a strong multiple
reflection is observed near to this boundary indicating to the necessity of
preliminary data processing for its removal.

5. Testing the WCDP method on real data

There are shown fragments of the WCDP and the CDP time profiles situated
in the southern part of the Deryugin cavity. The wave field on the CDP"
profile (Figure 6(a), the upper part) is one of the noise-type kind called
“gaping zone” [12].

Processing of such a profile by the WCDP method enables us to under-
stand the structure of offshore sediments in that area and to discover the
nature of the CDP wave field anomaly. It is shown in Figure 6(b) that the
reflecting boundaries in the upper part of profile are divided into the ele-
ments having different orientation and separated one from another by depth
dislocations. Such an acoustic heterogeneity of the medium brings about the
multiple seismic waves diffraction. Diffracted waves are “spread” in summa-
tion by the CDP method resulting in the noise-type profile. Processing by
the WCDP method focuses such waves ensuring that we can obtain more
information about the profile under study. The attention should be given to
the system of faults in the upper part of the WCDP profile and to the faults
located on the time 3.2 s in its left part being absent on the CDP profile.

6. Conclusion

The use of the strict solution of the inverse acoustic problem in linear ap-
proximation with multifold data enables us (1) to take into account all wave
singularities of seismic waves reflections and diffractions in the most use-
ful way, and (2) to ensure useful signal accumulation. The realization of
the WCDP method and its testing on synthetic and field data show a high
quality of reconstructed stacking sections and good stability of the method
of choosing a priori velocity model. Conservation of real amplitudes and
undistorted wavelets on the WCDP stacks holds the greatest promise for
their use in investigation of dissipating properties of geological media.
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(b)

Figure 6. The Deryugin Basin of the Okhotsk Sea:
(a) the CDP stack and (b) the WCDP stack
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