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The derivation of the Saint–Venant equations

A.I. Krylova, E.A. Antipova, D.V. Perevozkin

Abstract. The water motion in real river-beds is described by the mathematical
models that under appropriate assumptions are various approximations of hydro-
dynamic equations, or the Navier–Stokes equations. The mathematical model of a
water flow, based on the laws of conservation of momentum and mass of fluid, was
proposed by Saint–Venant. The Saint–Venant equations (the shallow-water equa-
tions) are often used in theoretical and applied studies of the unsteady water motion
in free channels. In this paper, the rigorous deduction of the shallow-water equa-
tions from the Navier–Stokes equations using the recommendations and methods
proposed in [1] is presented.

The following hypotheses and assumptions are used for the derivation of
the Saint–Venant equations [2]:

1. The length of the watercourse is much greater than its depth and
width;

2. The river-bed is a straight line, i.e. the centrifugal forces are absent;

3. The pressure inside the water flow obeys the hydrostatic law: p =
ρg(ξ− z) + pa, where ξ is the excess of water level over its equilibrium
state and pa is the atmospheric pressure;

4. The cross-section of the water surface is horizontal;

5. The flow is smoothly varying, subcritical, i.e. it has a Froude number
less than one, Fr = v2/(gL) < 1, where v is the characteristic velocity
scale, g is the acceleration describing the action of external forces, and
L is the typical size of the field where the flow is considered (the length
or diameter of a tube);

6. The bottom slope I(x) is small, so that I = I(x) = tg x;

7. The water discharge Q(x, t) and the free surface level Z(x, t) are aver-
aged over the width and the depth of the flow, where Q = V F , V (x, t)
is the flow velocity and F is its sectional area.
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The Navier–Stokes equations are as follows:

du

dt
= X − 1

ρ

∂P

∂x
+ ν∇2u, X = g sinα,

dv

dt
= Y − 1

ρ

∂P

∂y
+ ν∇2v, Y = 0,

dw

dt
= Z − 1

ρ

∂P

∂z
+ ν∇2w, Z = −g cosα = −g∗.

(1)

Here (X,Y, Z) represent the acceleration vector of external forces, α is the
angle of the slope of the axis x to the horizon, g is the acceleration of gravity.

Using the continuity equation for the incompressible fluid flow

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

and bearing in mind that u = u(x(t), y(t), z(t)), v = v(x(t), y(t), z(t)), and
w = w(x(t), y(t), z(t)), we obtain

du

dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ u

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
=
∂u

∂t
+
∂(uu)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
,

dv

dt
=
∂v

∂t
+
∂(vu)

∂x
+
∂(vv)

∂y
+
∂(vw)

∂z
,

dw

dt
=
∂w

∂t
+
∂(wu)

∂x
+
∂(wv)

∂y
+
∂(ww)

∂z
.

Taking into account these formulas, the Navier–Stokes equations may be
presented in the form

∂u

∂t
+
∂(uu)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
= X − 1

ρ

∂P

∂x
+ ν∇2u,

∂v

∂t
+
∂(vu)

∂x
+
∂(vv)

∂y
+
∂(vw)

∂z
= Y − 1

ρ

∂P

∂y
+ ν∇2v,

∂w

∂t
+
∂(wu)

∂x
+
∂(wv)

∂y
+
∂(ww)

∂z
= Z − 1

ρ

∂P

∂z
+ ν∇2w.

(2)

To obtain a differential equation of the unsteady turbulent water mo-
tion, we perform averaging with respect to time of the terms of system of
equations (2). Thus,
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1

T0

T0∫
0

∂u

∂t
dt+

1

T0

T0∫
0

(
∂(uu)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

)
dt

=
1

T0

[ T0∫
0

X dt−
T0∫
0

1

ρ

∂P

∂x
dt+

T0∫
0

ν∇2u dt

]
.

Since ρ = const and ν = const for an incompressible fluid, then

1

T0

T0∫
0

X dt = X,
1

T0

T0∫
0

1

ρ

∂P

∂x
dt =

1

ρ

∂P

∂x
,

1

T0

T0∫
0

∂u

∂t
dt =

∂u

∂t
,

1

T0

T0∫
0

ν∇2u dt = ν∇2u,

where X is the averaged value, [0, T0] is averaging segment, ∇2 is Laplace
operator. If we suppose that u′, v′, w′ are oscillatory components of the
velocity vector, then u′ = u − u, v′ = v − v, w′ = w − w, uu = (u + u′)2 =
uu+ 2uu′ + u′u′, . . .

Let us recall the averaging rules

• f + g = f + g,

• fg = fg,

• f = f , f ′ = f − f = 0,

• fg = fg, f · g′ = f g′ = 0.

Thus, uu = uu+u′u′, uv = u v+u′v′, uw = uw+u′w′. Taking into account
these expressions,

1

T0

T0∫
0

(
∂(uu)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

)
dt

=
∂(u2)

∂x
+
∂(u′u′)

∂x
+
∂(u v)

∂y
+
∂(u′v′)

∂y
+
∂(uw)

∂z
+
∂(u′w′)

∂z
.

Carrying out analogous averaging for other equations, we transform the
Navier–Stokes equations to the following form:

∂u

∂t
+
∂u2

∂x
+
∂(u v)

∂y
+
∂(uw)

∂z
= X − 1

ρ

∂P

∂x
−Rx,

∂v

∂t
+
∂(v u)

∂x
+
∂v2

∂y
+
∂(v w)

∂z
= Y − 1

ρ

∂P

∂y
−Ry,

∂w

∂t
+
∂(w u)

∂x
+
∂(w v)

∂y
+
∂w2

∂z
= Z − 1

ρ

∂P

∂z
−Rz,

(3)
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where

Rx =
∂(u′u′)

∂x
+
∂(u′v′)

∂y
+
∂(u′w′)

∂z
− ν∇2u,

Ry =
∂(u′v′)

∂x
+
∂(v′v′)

∂y
+
∂(v′w′)

∂z
− ν∇2v,

Rz =
∂(u′w′)

∂x
+
∂(v′w′)

∂y
+
∂(w′w′)

∂z
− ν∇2w.

The arrangement of the axes x, y, z in the flow is shown in the figure.

Let us integrate the third equation of system (3) over z. With allowance
for X = g sinα, Y = 0, and Z = −g∗, we obtain

P

ρ
=
PH
ρ

+ g∗(H − z) +

H∫
z

Rz dξ +

H∫
z

∂w

∂t
dξ +

H∫
z

∂(w u)

∂x
dξ +

H∫
z

∂(w v)

∂y
dξ + w2

H − w2. (4)

Here the subscript H denotes a value at z = H, i.e. at the free flow surface.
In equation (4), we assume that the intersection of the free surface and the
plane normal to the axis x is a straight line. It is evident that

wH = uH
∂H

∂x
+
∂H

∂t
. (5)

Here the first summand appears due to the fact that x is not parallel to the
free surface and the second one is due to the free surface movement.

Using the formula of differentiation under the integral

β∫
α

∂

∂µ
Φ(λ, µ) dλ =

d

dµ

β∫
α

Φ(λ, µ) dλ− Φ(β, µ)
dβ

dµ
+ Φ(α, µ)

dα

dµ
(6)

with α = z and β = H(x, t), we transform some summands in (4) to the
following form:
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H∫
z

∂w

∂t
dξ =

∂

∂t

H∫
z

w dξ − wH
∂H

∂t
,

H∫
z

∂(w u)

∂x
dξ =

∂

∂x

H∫
z

w udξ − wHuH
∂H

∂x
,

H∫
z

∂(w v)

∂y
dξ =

∂

∂y

H∫
z

w v dξ.

Using (5) and the previous calculations, we rewrite (4) as follows:

P

ρ
=
PH
ρ

+ g∗(H − z) +

H∫
z

Rz dξ +

∂

∂t

H∫
z

w dξ +
∂

∂x

H∫
z

w udξ +
∂

∂y

H∫
z

w v dξ − w2. (7)

It is supposed that the surface tension forces affect the stability of the
flow, therefore we take them into account. Then PH should be treated as
a difference between the pressure under the surface of a thin film and the
atmospheric pressure, that is

PH = −C
L
, L =

[
1 +

(
∂H

∂x

)2]3/2 / ∂2H

∂x2
,

where L is the curvature radius of the free surface and C is the capillary
constant.

Let us substitute P from (4) into the first equation of system (3). The
resulting equation is averaged over the cross-section area of the flow F .
In the future, the value of the cross-section area of the flow will be denoted
by F instead of |F |. We will restrict our consideration to the case of the
river-bed that is symmetric with respect to the plane xOz. Hence, all the
integrals over F containing y-derivative are equal to zero. Thus, we have

1

F

∫
F

(
∂u

∂t
+
∂u2

∂x
+
∂(u v)

∂y
+
∂(uw)

∂z
+Rx −X

)
dF

= − 1

F

∫
F

[
∂

∂x

(
PH
ρ

+ g∗(H − z) +

H∫
z

Rz dξ +

∂

∂t

H∫
z

w dξ +
∂

∂x

H∫
z

w udξ +
∂

∂y

H∫
z

w v dξ − w2

)]
dF,
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or

1

F

∫
F

(
∂u

∂t
+
∂u2

∂x
+
∂(u v)

∂y
+
∂(uw)

∂z
+Rx +

∂

∂x

H∫
z

Rz dξ +

∂2

∂x∂t

H∫
z

w dξ +
∂2

∂x2

H∫
z

w udξ +
∂2

∂x∂y

H∫
z

w v dξ − ∂w2

∂x

)
dF

=
1

F

∫
F

(
X − 1

ρ

∂PH
∂x
− g∗

∂

∂x
(H − z)

)
dF

=
g∗
F

∫
F

(
g sinα

g∗
+

C

ρg∗

∂L−1

∂x
− ∂H

∂x
+
∂z

∂x

)
dF

= g∗

(
i+ σ

∂L−1

∂x
− ∂H

∂x

)
.

For the sake of simplicity we introduced i = tgα and σ =
C

ρg∗
. Thus,

i+ σ
∂L−1

∂x
− ∂H

∂x
=

1

g∗F

∫
F

(
∂u

∂t
+
∂u2

∂x
+
∂(uw)

∂z
+Rx +

∂

∂x

H∫
z

Rz dξ +

∂2

∂x∂t

H∫
z

w dξ +
∂2

∂x2

H∫
z

w udξ − ∂w2

∂x

)
dF. (8)

Equation (8) should be transformed so that differentiation operation be
placed outside the integral sign. To this end, we need to derive some formulas
that are based on equation (6).

Bearing in mind that z0 = z0(x, y) is the equation of the wet river-bed
surface and H = H(x, t), B = B(x,H) is the width of the free surface, we
have ∫

F

∂

∂x
φ(x, y, z, t) dF =

B/2∫
−B/2

dy

H∫
z0

∂

∂x
φ(x, y, z, t) dz.

Using formula (6), we obtain

H∫
z0

∂

∂x
φ(x, y, z, t) dz =

∂

∂x

H∫
z0

φ(x, y, z, t) dz −

φ(x, y,H, t)
∂H

∂x
+ φ(x, y, z0, t)

∂z0
∂x

.
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Taking into consideration the fact that z0(x,B/2) = z0(x,−B/2) = H
and (6), the following can be derived:∫
F

∂

∂x
φ(x, y, z, t) dF =

∂

∂x

∫
F

φ(x, y, z, t) dF −

∂H

∂x

B/2∫
−B/2

φ(x, y,H, t) dy +

B/2∫
−B/2

φ(x, y, z0, t)
∂z0
∂x

dy.

Replacing x-differentiation by t-differentiation yields

∫
F

∂

∂t
φ(x, y, z, t) dF =

∂

∂t

∫
F

φ(x, y, z, t) dF − ∂H

∂t

B/2∫
−B/2

φ(x, y,H, t) dy.

If φ is an even function by y, that is φ(x, y, z, t) = φ(x,−y, z, t), it is
evident that∫

F

∂2

∂x2
φ(x, y, z, t) dF =

∂2

∂x2

∫
F

φ(x, y, z, t) dF −

2
∂H

∂x

[
∂

∂x

B/2∫
−B/2

φ(x, y,H, t) dy − 2φ(x,B/2, H, t)
∂B

∂x

]
−

∂2H

∂x2

B/2∫
−B/2

φ(x, y,H, t) dy + 2

B/2∫
−B/2

∂

∂x
φ(x, y, z0, t)

∂z0
∂x

dy +

B/2∫
−B/2

φ(x, y, z0, t)
∂2z0
∂x2

dy;

∫
F

∂2

∂x∂t
φ(x, y, z, t) dF =

∂2

∂x∂t

∫
F

φ(x, y, z, t) dF −

∂H

∂x

[
∂

∂t

B/2∫
−B/2

φ(x, y,H, t) dy − 2φ(x,B/2, H, t)
∂B

∂t

]
−

∂H

∂t

[
∂

∂x

B/2∫
−B/2

φ(x, y,H, t) dy − 2φ(x,B/2, H, t)
∂B

∂x

]
+

B/2∫
−B/2

∂

∂t
φ(x, y, z0, t)

∂z0
∂x

dy.
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Using the previous calculations, we can rewrite the integrals from (8):

∫
F

∂u

∂t
dF =

∂

∂t

∫
F

u dF − ∂H

∂t

B/2∫
−B/2

uH dy =
∂

∂t

∫
F

u dF − uHB
∂H

∂t
,

∫
F

∂u2

∂x
dF =

∂

∂x

∫
F

u2 dF − ∂H

∂x

B/2∫
−B/2

u2H dy +

B/2∫
−B/2

u2z0
∂z0
∂x

dy,

∫
F

∂(uw)

∂z
dF =

B/2∫
−B/2

dy

H∫
z0

∂(uw)

∂z
dz =

B/2∫
−B/2

[
(uw)H − (uw)z0

]
dy,

∫
F

∂2

∂x∂t

H∫
z0

w dξ dF =
∂2

∂x∂t

∫
F

H∫
z0

w dξ dF −

∂H

∂x

[
∂

∂t

B/2∫
−B/2

H∫
z0

wH dξ dy − 2

H∫
z0

wH,B/2 dξ
∂B

∂t

]
−

∂H

∂t

[
∂

∂x

B/2∫
−B/2

H∫
z0

wH dξ dy − 2

H∫
z0

wH,B/2 dξ
∂B

∂x

]
+

B/2∫
−B/2

∂

∂t

H∫
z0

wz0
∂z0
∂x

dξ dy

=
∂2

∂x∂t

∫
F

H∫
z0

w dξ dF +

B/2∫
−B/2

∂

∂t

H∫
z0

wz0
∂z0
∂x

dξ dy,

∫
F

Rx dF =

∫
F

[
∂

∂x
(u′u′) +

∂

∂y
(u′v′) +

∂

∂z
(u′w′)− ν∇2u

]
dF

=

∫
F

∂

∂x
(u′u′) dF +

∫
F

(
∂

∂z
(u′w′)− ν∇2u

)
dF,

∫
F

∂w2

∂x
dF =

∂

∂x

∫
F

w2 dF − ∂H

∂x

B/2∫
−B/2

w2
H dy +

B/2∫
−B/2

w2
z0

∂z0
∂x

dy,
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∫
F

∂2

∂x2

H∫
z0

w udξ dF =
∂2

∂x2

∫
F

H∫
z0

w udξ dF −

2
∂H

∂x

[
∂

∂x

B/2∫
−B/2

H∫
z0

(w u)H dξ dy − 2

H∫
z0

(w u)H,B/2 dξ
∂B

∂x

]
−

∂2H

∂x2

B/2∫
−B/2

H∫
z0

(w u)Hdξdy +

2

B/2∫
−B/2

∂

∂x

H∫
z0

(w u)z0
∂z0
∂x

dξ dy +

B/2∫
−B/2

H∫
z0

(w u)z0
∂2z0
∂x2

dξ dy

=
∂2

∂x2

∫
F

H∫
z0

w udξ dF + 2

B/2∫
−B/2

∂

∂x

H∫
z0

(w u)z0
∂z0
∂x

dξ dy +

B/2∫
−B/2

H∫
z0

(w u)z0
∂2z0
∂x2

dξdy,

∫
F

∂

∂x

H∫
z0

Rz dξ dF

=

∫
F

∂

∂x

[ H∫
z0

(
∂(u′w′)

∂x
+
∂(w′v′)

∂y
+
∂(w′w′)

∂z
− ν∇2w

)
dξ

]
dF

=

∫
F

∂

∂x

[ H∫
z0

(
∂(u′w′)

∂x
− ν∇2w

)
dξ + (w′w′)H − (w′w′)z0

]
dF

=

∫
F

∂

∂x

H∫
z0

(
∂(u′w′)

∂x
− ν∇2w

)
dξ dF +

∫
F

∂

∂x

(
(w′w′)H − (w′w′)z0

)
dF.

Substituting the values of the above integrals into (8), we obtain
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i+ σ
∂L−1

∂x
− ∂H

∂x
= j1 + j2 +

1

g∗F

[
∂

∂t

∫
F

u dF − ∂H

∂t

B/2∫
−B/2

uHdy +

∂

∂x

∫
F

u2 dF − ∂H

∂x

B/2∫
−B/2

u2H dy +

B/2∫
−B/2

u2z0
∂z0
∂x

dy +

B/2∫
−B/2

(
(uw)H − (uw)z0

)
dy +

∂2

∂x∂t

∫
F

H∫
z0

w dξ dF +

2

B/2∫
−B/2

∂

∂x

H∫
z0

(uw)z0
∂z0
∂x

dξ dy +

B/2∫
−B/2

∂

∂t

H∫
z0

wz0
∂z0
∂x

dξ dy +

∂2

∂x2

∫
F

H∫
z0

uw dξ dF +

B/2∫
−B/2

H∫
z0

(uw)z0
∂2z0
∂x2

dξ dy − ∂

∂x

∫
F

w2 dF +

∂H

∂x

B/2∫
−B/2

w2
H dy −

B/2∫
−B/2

w2
z0

∂z0
∂x

dy −
∫
F

∂

∂x
(w′w′)z0) dF

]
, (9)

where

j1 =
1

g∗F

∫
F

[
∂

∂z
(u′w′)− ν∇2u+

∂

∂x

H∫
z0

∂

∂x
(u′w′ − ν∇2w) dξ

]
dF,

j2 =
1

g∗F

∫
F

∂

∂x

(
u′u′ + (w′w′)H

)
dF.

Here j1 is the dissipative term and j2 is the term accounting the momentum
related to the velocity oscillations in the flow.

In order to reduce equation (9), we assume that the velocity vector is
equal to zero on the wet surface. According to [1, 3], the 12th and 13th terms
in the parentheses in equation (9) are high-order infinitesimal quantities and
do not affect the water flow motion. After using (5), the 2nd, 4th, and 6th
terms are canceled. Now equation (9) can be rewritten in the form
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i+ σ
∂L−1

∂x
− ∂H

∂x
= j1 + j2 +

1

g∗F

[
∂

∂t

∫
F

u dF +
∂

∂x

∫
F

u2 dF +

∂2

∂x∂t

∫
F

H∫
z0

w dξ dF +
∂2

∂x2

∫
F

H∫
z0

uw dξ dF

]
, (10)

Let us integrate the continuity equation
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 over F :

∫
F

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dF =

∫
F

∂u

∂x
dF +

∫
F

∂v

∂y
dF +

∫
F

∂w

∂z
dF

=

∫
F

∂u

∂x
dF +

∫
F

∂w

∂z
dF,

The integrals in the right-hand side are transformed as follows:

∫
F

∂u

∂x
dF =

∂

∂x

∫
F

u dF − ∂H

∂x

B/2∫
−B/2

u(x, y,H, t) dy +

B/2∫
−B/2

u(x, y, z0, t)
∂z0
∂x

dy

=
∂

∂x

∫
F

u dF =
∂

∂x
(UF ),

where U =
1

F

∫
F

u dF is the average velocity of the flow,

∫
F

∂w

∂z
dF =

B/2∫
−B/2

H∫
z0

∂w

∂z
dξ dy =

B/2∫
−B/2

(wH − wz0) dy

=

B/2∫
−B/2

wH dy =

B/2∫
−B/2

(
uH

∂H

∂x
+
∂H

∂t

)
dy

=
∂H

∂x

B/2∫
−B/2

u(x, y,H, t) dy +
∂H

∂t
B = B

∂H

∂t
=
∂F

∂t
.

Thus,
∂(UF )

∂x
+
∂F

∂t
= 0.
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To turn to the hydraulic idealization, we need to make some assumptions
that would allow us to express all the terms in equation (9) in terms of the
variables that characterize the flow as a whole.

We have w = w1+w2, where w1 is due to the fact that the velocity vector
trajectories are not parallel to each other, and w2 is due to the movement of
these trajectories in space, and with allowance for formula (5), we can write
down

u = δU, w1 = εuH
∂H

∂x
, w2 = η

∂H

∂t
, (11)

where δ, ε, η are some functions of x, y, z and t. Therefore,

w = εuH
∂H

∂x
+ η

∂H

∂t
, uH = δ(x, y,H, t)U,∫

F

H∫
z0

w dξ dF =

∫
F

H∫
z0

(
εuH

∂H

∂x
+ η

∂H

∂t

)
dξ dF =

F 2

B

(
β1U

∂H

∂x
+ β2

∂H

∂t

)
,

∫
F

u2dF =

∫
F

δ2(x, y, z, t)U2 dF = α′FU2,

where

α′ =
1

F

∫
F

δ2(x, y, z, t) dF,

β1 =
B

F 2

∫
F

δ(x, y,H, t)

H∫
z0

ε(x, y, ξ, t) dξ dF,

β2 =
B

F 2

∫
F

H∫
z0

η(x, y, ξ, t) dξ dF.

Using the similar transformations gives

∫
F

H∫
z0

w udξ dF =
F 2

B

(
β3U

2∂H

∂x
+ β4U

∂H

∂t

)
,

where

β3 =
B

F 2

∫
F

δ(x, y,H, t)

H∫
z0

ε(x, y, ξ, t)δ(x, ξ, t) dξ dF,

β4 =
B

F 2

∫
F

H∫
z0

δ(x, y, ξ, t)η(x, y, ξ, t) dξ dF.
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In hydraulics, the dissipative term is taken as j1 =
Q2

K2 , where Q = UF is

the flow discharge and K is the discharge capacity. It is natural to consider
that j2 may be represented as

j2 =
1

g∗F

∂

∂x
(Fα′′U2),

where α′′ = α′′(x, t) is the coefficient of momentum of oscillations.
However, there is a difference between this expression for j2 and the

similar expressions (11): the latter are quite accurate while there are no
assumptions regarding the functions δ, ε, η α′, β1, β2, β3, β4. And the
former one is a hypothesis regardless of the value of α′′. Then we consider
that the full coefficient of momentum α = α′ + α′′ is constant, as it is
commonly accepted in hydraulics. Using the continuity equation we can
easy obtain

j2 +
1

g∗F

(
∂

∂t

∫
F

u dF +
∂

∂x

∫
F

u2 dF

)

=
1

g∗F

∂

∂x
(Fα′′U2) +

1

g∗F

(
∂

∂t
(UF ) +

∂

∂x
(α′FU2)

)
=

1

g∗F

[
α
∂

∂x
(FU2) +

∂

∂t
(UF )

]
=

1

g∗F

[
α

(
∂U

∂x
FU + U

∂FU

∂x

)
+

(
F
∂U

∂t
+ U

∂F

∂t

)]
=

1

g∗F

(
αFU

∂U

∂x
− αU ∂F

∂t
+ F

∂U

∂t
+ U

∂F

∂t

)
=

1

g∗

(
∂U

∂t
+ αU

∂U

∂x
− α− 1

F
U
∂F

∂t

)
.

Using the previous calculations, we can write down equation (10) in the
final form

i+ σ
∂L−1

∂x
− ∂H

∂x
=
Q2

K2
+

1

g∗

(
∂U

∂t
+ αU

∂U

∂x
− α− 1

F
U
∂F

∂t

)
+

1

g∗F

[
∂2

∂t∂x

F 2

B

(
β1U

∂H

∂x
+ β2

∂H

∂t

)
+

∂2

∂x2
F 2

B

(
β3U

2∂H

∂x
+ β4U

∂H

∂t

)]
, (12)

Equation (12) is obtained under the constraint that the flow has a vertical
plane of symmetry. This restriction is not essential as equation (12) is also
valid for the flows, that do not have a plane of symmetry [1].
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Equation (12) is used only to analyze the stability of a steady state
flow. According to the analysis of wave motions presented in [1, 3], we can

neglect the terms that account for the surface tension σ
∂L−1

∂x
, the influence

of the flow curvature and the vertical flow acceleration. In addition, due
to the small factor α − 1 we can not take into account the last term in the
parentheses. Then, we obtain the Saint–Venant equation in the form

i− ∂H

∂x
=
Q2

K2
+

1

g∗

∂U

∂t
+
α

g∗
U
∂U

∂x
,

∂Q

∂x
+
∂F

∂t
= 0,

(13)

or, taking into account U = Q/F , equation (13) can be rewritten in another
form (via discharge):

1

g∗F

∂Q

∂t
+

2Q

g∗F

∂Q

∂x
+
Q|Q|
K2

+
∂Z

∂x
− I = 0,

∂Q

∂x
+B

∂Z

∂t
= 0.

(14)

These Saint–Venant equations are a hyperbolic system of partial differ-
ential equations. For the solution of problems with this system we need to
establish two initial and two boundary conditions, for example:

Z(x, 0) = Z0(x), Z(0, t) = Z0(t), x ∈ [0, L],

Q(x, 0) = Q0(x), Z(L, t) = ZL(t), t ∈ [0, T ].
(15)

In some cases, for a slowly changing unsteady water motion it is possible
with allowance for the error of the input data, not usually exceeding 10−3 to
use a simplified version of the Saint–Venant equations. It can be obtained
by dropping the inertial equation terms, which are within the measurement
error accuracy:

Q|Q| = K2
(
I − ∂t

∂x

)
,

∂Q

∂x
+B

∂Z

∂t
= d.

This system is of the parabolic type. For this system to be uniquely solvable,
we need to add one initial and two boundary conditions.

Thus, mathematical modeling of an unsteady smoothly changing water
flow in open channels requires solving the following boundary value problem.
We need to find the solution Z(x, t) and Q(x, t) to system (14) in the domain
x ∈ [0, L], t ∈ [0, T ] satisfying conditions (15).
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