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The subgrid modeling for Maxwell’s equations
with multiscale isotropic random conductivity

and permittivity

E.P. Kurochkina, O.N. Soboleva

Abstract. The effective coefficients in the Maxwell’s equations are calculated for
a multiscale isotropic medium using a subgrid modeling approach. The corre-
lated fields of conductivity and permittivity are mathematically represented by a
Kolmogorov multiplicative continuous cascades with a lognormal probability dis-
tribution. The wavelength is assumed to be large as compared with the scale of
heterogeneities of the medium.

1. Introduction

Wave propagation in complex media is a problem of great interest in many
fields, for example, in hydrodynamics and electromagnetics. In order to com-
pute the flow rate or the electromagnetic fields in an arbitrary medium, one
must solve hydrodynamic or Maxwell’s equations numerically for the given
coefficients. The large-scale medium heterogeneities as compared with wave-
length are taken into account in these models with the help of some bound-
ary conditions (see, e.g., [1,2]). The problems for a complex medium require
high the computational costs due to variations of coefficients on all the scales.
In addition, the spatial distributions of small-scale heterogeneities are not
exactly known. It has been experimentally shown that the irregularity of
electric conductivity, permeability, porosity, density increases as the scale of
measurement decreases. It is customary to assume these parameters to be
random fields characterized by the joint probability distribution functions.
The small-scale heterogeneities are taken into account by the effective pa-
rameters. Simple equations are found on the scales that can be numerically
resolved. The solution to these equations must be close to the solution of the
initial problem. This is the well-known procedure of subgrid modeling, ho-
mogenization, coarse grids [3–6]. There are some robust methods of finding
the effective coefficients in theory of steady filtration [4–7].

To apply the above-mentioned methods we need a “scale regular”
medium. It has been experimentally shown that many natural media are
“scale regular” in the sense that their parameters, for example, permeabil-
ity, porosity, density, electric conductivity can be described by fractals and
multiplicative cascades [8–10].

In the present paper, the electric conductivity and permittivity are ap-
proximated by a multiplicative continuous cascade. We obtain formulas of
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effective coefficients in the Maxwell’s equations when the following condition
σ(x)/(ωε(x)) � 1 is satisfied.

2. Governing equations and a model of coefficients

We consider the time-harmonic Maxwell’s equations for general media with
an impressed current source F in a 3D-medium, which are

rotH(x) = (−iωε(x) + σ(x))E(x) + F , rotE = iωµH, (1)

where E and H are the vectors of electric and magnetic field strengths
respectively; ε(x) is permittivity, µ is the magnetic permeability; σ(x) is
the electric conductivity; ω is the cyclic frequency; and x is the vector of
spatial coordinates. The magnetic permeability is assumed to be equal to
the magnetic permeability of vacuum. When σ(x)

ωε(x)
� 1, the conduction

current predominates over the displacement current and the permittivity of
the medium ε(x) has an weak effect on electric and magnetic field strength;
the wave amplitude and phase of the fields depend mainly on the electric
conductivity σ(x) and the permittivity may be taken no account. At high
frequencies or when resistivities of the medium are high, electric and mag-
netic field strength depend on the dielectric permittivity. In this case, we
have

σ(x)
ωε(x)

� 1. (2)

For a medium, the radiation conditions must be satisfied; that is to say,
the solution of system (1) must radiate away from the current source and
dissipate as |r| goes to infinity. The wavelength is assumed to be large as
compared with the maximum scale of heterogeneities of the medium L.

For modeling the coefficients σ(x), ε(x), we use approach described
in [11]. Let, for example, the field of electric conductivity be known. This
means that the field is measured on a small scale l0 at each point x, σ(x)l0 =
σ(x). To pass to a coarser scale grid, it is not sufficient to smooth the field
σ(x)l0 on a scale l, l > l0. The field thus smoothed is not a physical parame-
ter that can describe the physical process, governed by equations (1), on the
scales (l, L), where L is the maximum scale of heterogeneities. This is due
to the fact that the fluctuations of electric conductivity on the scale interval
(l0, l) correlate with the fluctuations of the electric field strength E induced
by the electric conductivity. In this paper, to find an electric conductivity
that can describe the physical process on the scales (l, L), system (1) will
be used. Following Kolmogorov [12], consider a dimensionless field ψ, which
is equal to the ratio of two fields obtained by smoothing the field σ(x)l0 on
two different scales l′, l. Let σ(x)l denote the parameter σ(x)l0 smoothed
on the scale l. Then ψ(x, l, l′) = σ(x)l′/σ(x)l, l′ < l. We expand the field ψ
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into a power series in l− l′, and retaining the first order terms of the series,
at l′ → l, obtain the following equation:

∂ lnσ(x)l

∂ ln l
= ϕ(x, l), (3)

where ϕ(x, l′) = (∂ψ(x, l′, l′y)/∂y)|y=1. Actually the small-scale fluctua-
tions of the field ϕ can be observed on some finite interval of scales l0 < l <
L. The solution of equation (3) is as follows

σl0(x) = σ0 exp
(
−

∫ L

l0

ϕ(x, l1)
dl1
l1

)
, (4)

where σ0 is a constant. The field ϕ determines the statistical properties of
the electric conductivity. According to the limit theorem for sums of inde-
pendent random variables [13] if the variance of ϕ(x, l) is finite, the integral
in (4) tends to a field with a normal distribution as the ratio L/l0 increases.
If the variance of ϕ(x, l) is infinite and there exists a non-degenerate limit of
the integral in (4), the integral tends to a field with a stable distribution. In
the this paper it is assumed that the field ϕ(x, l) is isotropic with a normal
distribution and a statistically homogeneous correlation function:

〈ϕ(x, l) ϕ(y, l′)〉 − 〈ϕ(x, l)〉〈ϕ(y, l′)〉 = Φϕϕ(|x− y|, l, l′) δ(ln l − ln l′). (5)

Here the angle brackets denote ensemble averaging. It follows from (5)
that the fluctuations of ϕ(x, l) on different scales do not correlate. This
assumption is standard in the scaling models [12]. This is due to the fact that
the statistical dependence is small if the scales of fluctuations are different.
To derive subgrid formulas to calculate effective coefficients, this assumption
may be ignored. However, this assumption is important for the numerical
simulation of the field σ.

For a scale-invariant medium, the following relation holds for any posi-
tive K

Φϕϕ(|x− y|, l, l′) = Φϕϕ(K|x− y|,Kl,Kl′).
In a scale invariant medium, the correlation function does not depend on
the scale at x = y, and the following estimation is obtained [11]:

〈σl0(x)σl0(x + r)〉 ∼ C
( r
L

)−Φϕϕ
0
, l0 < lε < r < L, (6)

where C = σ2
0e

−Φ0γ/2, γ is the Euler constant. For r � L, we have

〈σl0(x)σ(x + r, l0)〉 → σ2
0. (7)

If for any l the equality 〈σl(x)〉 = σ0 is valid, then it follows from (4),
(5) that

Φϕϕ
0 (l) = 2〈ϕ〉, (8)
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where Φϕϕ
0 (l) = Φϕϕ(0, l). As the minimum scale l0 tends to zero, the electric

conductivity field described by (4) becomes a multifractal. We obtain an
irregular field on a Cantor-type set to be nonzero.

The permittivity coefficient ε(x) is constructed by analogy to the con-
ductivity coefficient:

εl0(x) = ε0 exp
(
−

∫ L

l0

χ(x, l1)
dl1
l1

)
. (9)

The function χ(x, l) is assumed to have the normal distribution and to be
delta-correlated in the logarithm of the scale. We can write

Φχχ(x,x,l, l′) = 〈χ(x, l)χ(x, l′)〉 − 〈χ(x, l)〉〈χ(x, l′)〉
= Φχχ

0 δ(ln l − ln l′). (10)

The permittivity field satisfies the equality 〈χl(x)〉 = χ0 for any l. Then it
follows from (9), (10) that

Φχχ
0 (l) = 2〈χ〉. (11)

The correlation between the permittivity and conductivity fields is deter-
mined by the correlation of the fields χ(x, l′) and (ϕ(x, l′):

Φϕχ(x,y,l, l′) = 〈ϕ(x, l)χ(y, l′)〉 − 〈ϕ(x, l)〉〈χ(y, l′)〉
= Φϕχ(|x− y|, l, l′)δ(ln l − ln l′). (12)

3. Subgrid model

The electric conductivity and permittivity functions σ(x) = σ(x)l0 , ε(x) =
ε(x)l0 are divided into two components with respect to the scale l. The
large-scale (ongrid) components σ(x, l), ε(x, l) are obtained, respectively, by
statistical averaging over all ϕ(x, l1) and χ(x, l1) with l0 < l1 < l, l − l0 =
dl, where dl is small. The small-scale (subgrid) components are equal to
σ′(x) = σ(x)− σ(x, l), ε′(x) = ε(x)− ε(x, l):

ε(x, l) = ε0 exp
(
−

∫ L

l
χ(x, l1)

dl1
l1

) 〈
exp

(
−

∫ l

l0

χ(x, l1)
dl1
l1

)〉

ε′(x) = ε(x, l)

 exp
(
−

∫ l
l0
χ(x, l1)dl1

l1

)
〈
exp

(
−

∫ l
l0
χ(x, l1)dl1

l1

)〉 − 1

 , 〈ε′(x)〉 = 0,

σ(x, l) = σ0 exp
(
−

∫ L

l
ϕ(x, l1)

dl1
l1

) 〈
exp

(
−

∫ l

l0

ϕ(x, l1)
dl1
l1

)〉

σ′(x) = σ(x, l)

 exp
(
−

∫ l
l0
ϕ(x, l1)dl1

l1

)
〈
exp

(
−

∫ l
l0
ϕ(x, l1)dl1

l1

)〉 − 1

 , 〈σ′(x)〉 = 0.

(13)
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Hence

ε(x, l) '
(
1− 〈χ〉dl

l
+

1
2
Φχχ

0 (l)
dl

l

)
εl(x),

σ(x, l) '
(
1− 〈ϕ〉dl

l
+

1
2
Φ0(l)

dl

l

)
σl(x).

(14)

The large-scale (ongrid) components of electric and magnetic field strengths
E(x, l),H(x, l) are obtained by averaging the solutions to system (1), in
which the large-scale component of conductivity σ(x, l) is fixed and the
small component σ′(x) is a random variable. The subgrid components of the
electric and magnetic field strengths are equal to H ′(x) = H(x)−H(x, l),
E′(x) = E(x) − E(x, l). Substituting the relations for E(x),H(x) and
σ(x) into system (1) and averaging over small-scale components, we have

rotH(x, l) = (−iωε(x, l) + σ(x, l))E(x, l) + 〈(−iωε′ + σ′)E′〉+ F ,

rotE(x, l) = µiωH(x, l).
(15)

The subgrid term 〈(−iωε′ + σ′)E′〉 in system (15) is unknown. This term
cannot be neglected without some preliminary estimation, since the correla-
tion between the electric conductivity and the electric field strength may be
significant. The form of this term in (15) determines a subgrid model. The
subgrid term is estimated using perturbation theory. Subtracting system
(15) from system (1) and taking into account only the first order terms, we
obtain the subgrid equations:

rotH ′ = (−iωε(x, l) + σ(x, l))E′ + (−iωε′(x) + σ′(x))E(x, l),

rotE′ = µiωH ′.
(16)

The variable E(x, l) on the right-hand side of (16) is assumed to be known.
Solving system (16) for the components of the electric field strength, we
have [14]:

E′
α(x) =

1
4π
iωµ

∫
1
r
eikr(−iωε′(x′) + σ′(x′))Eα(x′, l)dx′ +

1
4π(−iωε(x, l) + σ(x, l))

×

∂

∂xα

∂

∂xβ

∫
1
r
eikr(−iωε′(x′) + σ′(x′))Eβ(x′, l)dx′, (17)

where r = |x − x′|, k2 = ωµ(ωε(x, l) + iσ(x, l)). We take the square root
such that Re k > 0, Im k > 0.
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Using (17) the subgrid term can be written down as

〈(−iωε′(x) + σ′(x))E′
α(x)〉 =

1
4π
iωµ

∫∫
1
r
eikr〈(−iωε′(x) + σ′(x))(−iωε′(x′) + σ′(x′))〉Eα(x′, l)dx′+〈

−iωε′(x) + σ′(x)
4π(−iωε(x, l) + σ(x, l))

×

∂

∂xα

∂

∂xβ

∫∫
1
r
eikr(−iωε′(x′) + σ′(x′))Eβ(x′, l)dx′

〉
. (18)

Since a small change in the scale of σ produces considerable fluctuations in
the field (which is typical of fractal fields), the field σ(x, l) and its derivatives
are believed to change slower than σ′ and its derivatives. Similar assump-
tions are made for E(x, l) and H(x, l). Therefore E(x, l), σ(x, l) and their
derivatives can be factored outside the integral sign in (18). Integrating (18)
by parts we have〈

(−iωε′(x) + σ′(x))E′
α(x)

〉
= (19)

1
4π
iωµ

∫
1
r
eikr ×

(
−ω2〈ε′(x)ε′(x′)〉−2iω〈ε′(x′)σ′(x)〉+〈σ′(x)σ′(x′)〉)dx′Eα(x, l) +

1
4π(−iωε(x, l) + σ(x, l))

∫
∂

∂x′α

∂

∂x′β

1
r
eikr ×

(
−ω2〈ε′(x)ε′(x′)〉−2iω〈ε′(x′)σ′(x)〉+〈σ′(x)σ′(x′)〉

)
dx′Eβ(x, l).

Here the summation of repeated indices is implied. As follows from formulas
(6),( 12), (13) for a lognormal probability distribution of σ and ε at small
dl we have 〈

σ′(x)σ′(x′)
〉
≈ σ2(x, l)Φσσ(r)

dl1
l1
,〈

ε′(x)ε′(x′)
〉
≈ ε2(x, l)Φχχ(r)

dl1
l1
, (20)〈

σ′(x)ε′(x′)
〉
≈ ε(x, l)σ(x, l)Φχσ(r)

dl1
l1
,〈

(−iωε′(x) + σ′(x))(−iωε′(x′) + σ′(x′))
〉
≈

− ω2ε2(x, l)
[
Φχχ(r)− 2i

σ(x, l)
ωε(x, l)

Φχϕ(r)− σ2(x, l)
ω2ε2(x, l)

Φσσ(r)
]
dl1
l1
. (21)

Using formula 1/ [4π(−iωε(x, l) + σ(x, l))] ≈ −(1 − iσ(x,l)
ωε(x,l))/(4πiωε(x, l))

since σ(x)
ωε(x) � 1, we obtain
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〈
(−iωε′(x) + σ′(x))E′

α(x)
〉
≈

− 1
4π
iω3µε(x, l)

∫
1
r
eikrΦχχ(r)dx′dl

l
ε(x, l)Ei(x, l) +

1
2π
ω2ε(x, l)µ

∫
1
r
eikrΦχϕ(r)dx′dl

l
σ(x, l)Ei(x, l) +

1
4π
iωµσ(x, l)

∫
1
r
eikrΦϕϕ(r)dx′dl

l
σ(x, l)Ei(x, l)−

iωε(x, l)
4π

∫
∂

∂x′α

∂

∂x′β

1
r
eikr(1− iσ(x, l)

ωε(x, l)
)×

(
Φχχ(r) + 2i

σ(x, l)
ωε(x, l)

Φχϕ(r)− σ2(x, l)Φϕϕ(r)
ω2ε2(x, l)

)
dx′dl

l
Eβ(x, l). (22)

In formula (22), the Cartesian coordinates are changed for spherical coordi-
nates. Integrating njnm, where nm = xm/r, over the complete solid angle,
we arrive at the formula

∫
njnmdϑ = 4π

3 δjm. Using this formula, neglecting
terms of second order of smallness of σ(x, l)/ωε(x, l) and integrating (22)
by parts, we have〈

(−iωε′(x) + σ′(x))E′
α(x)

〉
≈

− 1
3
(2µω2ε(x, l)− iωµσ(x, l))

∞∫
0

reikrΦχχ(r)dr
dl

l
iωε(x, l)Eα(x, l) +

2
3
(2µω2ε(x, l)− iωµσ(x, l))

∞∫
0

reikrΦχσ(r)dr
dl

l
σ(x, l)Eα(x, l) +

iωµσ(x, l)

∞∫
0

reikrΦσσ(r)dr
dl

l
σ(x, l)Eα(x, l) +

1
3
Φχχ

0

dl

l
iωε(x, l)Ei(x, l) +

(1
3
Φχχ

0 − 2
3
Φχσ

0

)dl
l
σ(x, l)Ei(x, l). (23)

If ωµL2|(iωε(x, l) + σ(x, l))| � 1, the integrals in (23) are small [15]. This
inequality is not restrictive for the problems of electromagnetic logging if L
is much smaller than the wavelength. Hence, the integrals in (23) can be
neglected. We have〈

(−iωε′(x) + σ′(x))E′
α(x)

〉
≈

− 1
3
Φχχ

0 (−iωε(x, l)Eα(x, l))
dl

l
−

(2
3
Φχσ

0 − 1
3
Φχχ

0

)dl
l
σ(x, l)Eα(x, l).

(24)
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Substituting (24) into (15), we derive

rotH(x, l) = −iωεl0 exp
(
−

∫ L

l
χ(x, l1)

dl1
l1

)
E(x, l) +

σl0 exp
(
−

∫ L

l
ϕ(x, l1)

dl1
l1

)
E(x, l), (25)

rotE(x, l) = iωµH(x, l),

εl0 =
[
1− Φχχ

0

3
dl

l

][
1 +

(
Φχχ

0

2
− 〈χ〉

)
dl

l

]
ε0,

σl0 =
[
1−

(2
3
Φχϕ

0 − 1
3
Φχχ

0

)dl
l

][
1 +

(Φϕϕ
0

2
− 〈ϕ〉

)dl
l

]
σ0.

It follows from (25) that the new coefficients σl0 and εl0 are equal to

εl0 = ε0 +
(1

6
Φχχ

0 − 〈χ〉
)
ε0
dl

l
,

σl0 = σ0 +
(
−2

3
Φχϕ

0 +
1
3
Φχχ

0 +
1
2
Φϕϕ

0 − 〈ϕ〉
)
σ0
dl

l

with second order of accuracy in dl/l. As dl→ 0 we obtain the equation

d ln ε0l

d ln l
=

1
6
Φχχ

0 − 〈χ〉 ,

d lnσ0l

d ln l
= −2

3
Φχϕ

0 +
1
3
Φχχ

0 +
1
2
Φϕϕ

0 − 〈ϕ〉 .
(26)

For a scale-invariant medium, effective equations have the following simple
form

rotH(x, l) = −iω
( l
L

)〈χ〉− 1
6
Φχχ

0
εl(x)E(x, l) +( l

L

)〈ϕ〉+ 2
3
Φχϕ

0 − 1
3
Φχχ

0 − 1
2
Φϕϕ

0
σl(x)E(x, l), (27)

rotE(x, l) = iωµH(x, l).

4. Conclusion

We have presented the effective coefficients for the Maxwell’s equations if
parameters in equations are described by extremely irregular fields which
are close to multifractals. We obtain multifractals if the minimum scale l0
in formulas (4), (9) tend to zero. As the minimum scale is finite, any singu-
larities are absent, therefore we use only the theory of differential equations
and the theory of stochastic processes. For a scale-invariant medium, ef-
fective coefficients have power dependence on the scale of smoothing. The
exponents of power dependencies have been calculated.
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