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Application of a mixed finite element method for
solving 2D nonlinear vorticity equation in

a variable bottom water basin

V.I. Kuzin, V.V. Kravtchenko

Abstract. Based on the splitting in terms of physical processes and with respect to
time and on a finite element method (FEM) as applied to a 2D nonlinear vorticity
equation, a scheme with two splitting steps is obtained. For constructing FEM
operators at the steps of splitting in terms of physical processes, different types
of finite elements are used. In the statement of the problem a special attention is
given to the depth of a basin. The efficiency of the scheme was tested for a uniform
bottom and for the bottom defined by a smooth function.

Introduction

The problem of determining a plane non-stationary circulation is one among
the typical ocean dynamics problems. This initial-boundary value problem
is described by a 2D nonlinear vorticity equation. In this paper, we present
a scheme for which the splitting combined with a finite element method
(FEM) is used. In this case, splitting is carried out at different steps of con-
structing a numerical model, including both splitting in terms of physical
processes allowing linearization of the initial problem, and further splitting
with respect to time of one of the FEM operators obtained. For construct-
ing FEM operators at the steps of splitting in terms of physical processes,
different types of finite elements are used. Hence, it appears possible to
essentially reduce the number of grid points in a numerical scheme when
passing from one splitting step to another. At the second step, for solving
the linear stream function equation, the conforming piecewise linear finite
elements are used. At the first step, corresponding to the vorticity advection
and diffusion, the non-conforming finite elements are used. Finite elements
of such a type were introduced by M. Crouzeix and P.A. Raviart [1] for
solving the stationary Stokes equations. Later these elements were used by
B.-L. Hua and F. Tomasset [2] to obtain a noise-free scheme for two-layer
shallow water equations. Some of their advantages are listed below. Because
of orthogonality we can avoid the lumping procedure at the splitting steps
with respect to time. Also, in comparison with the case of conforming finite
elements, a smaller number of grid points is used in the FEM scheme ob-
tained. At the same time, on a standard grid, the degrees of freedom in this
case increase by the factor of 3 that may improve the accuracy of an FEM
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solution. The equations obtained conserve transformation laws for some in-
tegral characteristics such as mass and energy with respect to time, which
is important for obtaining correct solutions in terms of physical features.
Analysis of the FEM operator obtained after using non-conforming finite el-
ements shows that it can be split into two three-point positive semi-definite
operators. As compared to the coordinate-wise splitting, the factorization
goes along the broken lines connecting mesh points. Apparently, such an
approach has not been used yet in the splitting-up theory. On the contrary,
in the case of conforming finite elements, there was a splitting into, at least,
three operators, including the diagonal direction [3].

An essential problem of using non-conforming finite elements is that
an FEM solution does not belong to the space of solvability of the initial
problem that demands an additional formal foundation.

1. Statement of the problem

In the domain Q = Ω × (−H(x, y), 0) × (0, T ), H(x, y) ≥ H0 > 0, let us
consider a quasistatic model for the barotropic ocean, i.e., all the thermody-
namic effects are neglected, vertical structure of the ocean being considered
as uniform ρ = ρ0 = const:

du

dt
− fv = − 1

ρ0
px + µ∆u+ (νuz)z, (1)

dv

dt
+ fu = − 1

ρ0
py + µ∆v + (νvz)z, (2)

ux + vy + wz = 0, (3)

pz = gρ. (4)

Here the following notations are used:

dU

dt
= Ut + (U · ∇)U + wUz, U = (u, v), ∇ =

( ∂

∂x
,
∂

∂y

)
,

∆u = uxx + uyy, ∆v = vxx + vyy,

u, v, w are components of the velocity vector along the axes x, y, and z,
respectively, f is the Coriolis parameter, p is pressure, ρ is density, ρ0 is a
representative value of density, µ is the horizontal turbulent viscosity, ν is
the vertical turbulent viscosity.
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Boundary and initial conditions for (1)–(3):

z = 0 : νuz = −
τx

ρ0
, νvz = −

τy

ρ0
, w = 0,

z = H(x, y) : νuz = −R
∫ H

0
u dz, νvz = −R

∫ H

0
v dz, w = U · ∇H,

(x, y) ∈ ∂Ω : Ū ·N = 0, Ū =
1
H

∫ H

0
U dz,

t = 0 : U = U0.

Then for the barotropic part of the motion Ū , after integration of equa-
tion (3) with respect to z from 0 to H(x, y), transformation of the variable
(x′, y′, z′) =

(
x, y,

z

H(x, y)

)
, and integration of equations (1), (2) with re-

spect to z′ from 0 to 1 we can obtain the following system of equations
(primes are omitted):

ūt + Ū · ∇ū− fv̄ − µ∆ū+Rū = − 1
ρ0

(∫ 1

0
pxdz − gHx

∫ 1

0
zρ dz

)
+

τx
ρ0H

, (5)

v̄t + Ū · ∇v̄ + fū− µ∆v̄ +Rv̄ = − 1
ρ0

(∫ 1

0
pydz − gHy

∫ 1

0
zρ dz

)
+

τy
ρ0H

, (6)

(Hū)x + (Hv̄)y = 0. (7)

Let us consider dimensionless variables

x′ =
x

L
, y′ =

y

L
, H ′ =

H

Hm
, t′ =

U0

L
t, U ′ =

Ū

U0
,

f ′ =
f

2Ωpl
, ρ′ =

ρ

ρ0
, p′ =

p

p0
, τ ′ =

(τx
τ0
,
τy
τ0

)
and introduce a barotropic stream function Ψ in the following way:

ū′ = − 1
H ′Ψy, v̄′ =

1
H ′Ψx.

Here L, Hm, U0, ρ0, p0, τ0 are representative values of length, depth, velocity,
density, pressure, and wind tension, respectively, Ωpl is the planetary vortex.

Then we differentiate equation (5) by y, deduct it from equation (6)
differentiated by x and obtain a 2D nonlinear vorticity equation in terms of
a stream function in the dimensionless form (dashes are omitted):

∂

∂t
(∆HΨ)− rot

(
1
H

∆HΨ∇Ψ
)
−

2ΩplL

U0
rot

(
f

H
∇Ψ

)
+

RL

U0
∆HΨ− µ

U0L
∆∆HΨ = F, (8)
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rotU = −uy + vx, ∆HΨ =
( 1
H

Ψx

)
x

+
( 1
H

Ψy

)
y
, F =

τ0L

ρ0HmU2
0

rot
τ

H
,

with boundary and initial conditions

Ψ|∂Ω = 0, ∆HΨ|∂Ω = 0, Ψ|t=0 = Ψ0(x, y).

In terms of vorticity ζ = ∆HΨ, equation (8) can be rewritten in the form

ζt − rot
( 1
H
ζ∇Ψ

)
−

2ΩplL

U0
rot

( f
H
∇Ψ

)
+
RL

U0
∆HΨ− µ

U0L
∆ζ = F, (9)

Ψ|∂Ω = 0, ζ|∂Ω = 0, ζ|t=0 = ∆HΨ0(x, y).

Let us divide the interval [0, T ] into Nt sub-intervals with a length ht.
According to a weak approximation method, problem (9) will be solved by
splitting in terms of physical processes [4]:

Step I:

(ζ1)t − rot
( 1
H
ζ1∇Ψn

2

)
− µ

U0L
∆ζ1 = 0, (10)

ζ1|∂Ω = 0, ζ1|t=tn = ∆HΨ2|t=tn ;

Step II:

(∆HΨ2)t −
2ΩplL

U0
rot

( f
H
∇Ψ2

)
+
RL

U0
∆HΨ2 = F, (11)

Ψ2|∂Ω = 0, ∆HΨ2|t=tn = ζ1|t=tn+1 ;

t ∈ [tn, tn+1], n = 0, . . . , Nt − 1.
Here the first step describes the advection and diffusion of the vorticity

and the second one is in solving the linear stream function equation with
forcing.

2. Construction of schemes

In Ω, we construct a rectangular grid. Then rectangles of the grid are
divided into triangles by diagonals with variable directions, either positive
or negative (Figure 1).

Let us consider two types of finite elements:

• Conforming elements ωc
pq are piecewise linear functions determined by

values at vertices of triangles in the following way:
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ωc
pq(xk, yl) =

{
1, (k, l) = (p, q),

0, (k, l) 6= (p, q).

Here (xk, yl) is a vertex of a certain triangle of the grid.

• Non-conforming elements ωnc
ij are piecewise linear functions determined

by values at midpoints of sides of triangles in the following way:

ωnc
ij (xk, yl) =

{
1, (k, l) = (i, j),

0, (k, l) 6= (i, j).

Here (xk, yl) is a midpoint of a side of a certain triangle of the grid
(Figure 2). Such functions were considered in [2, 5].

Figure 1. A fragment of the
grid. Nodes • and × are asso-
ciated with conforming and non-
conforming finite elements, re-
spectively

Figure 2. Non-conforming basis function

These functions possess some significant features: ωnc
ij are orthogonal

and each conforming element ωc
pq is a half-sum of the non-conforming ones

surrounding it.
We will approximate the stream function Ψ2 and the vorticity ζ1 with

linear combinations of conforming and nonconforming finite elements, re-
spectively:

Ψ2 ≈ ψNc
=

∑
(p,q)∈Nc

ψpq ω
c
pq(x, y),

ζ1 ≈ ϕNnc
=

∑
(i,j)∈Nnc

ϕij(t) ωnc
ij (x, y),

whereNnc is a set of mesh points including midpoints of the sides of triangles
and N c is a set of mesh points including triangles vertices; ϕij(t) and ψpq

are weight coefficients to be determined.
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Let us consider the splitting steps (10) and (11) in more detail. A weak
formulation of the problem of the first splitting step (10) is the following:

((ζ1)t, ω) + I1(ζ1, ω) = 0 ∀ω ∈
◦
W 1

2(Ω), t ∈ (tn, tn+1], (12)

(ζ1(x, y, tn), ω) = (∆Hψ
Nc
, ω) ∀ω ∈

◦
W 1

2(Ω),

where ψNc
is a conforming FEM solution of the second step (11) from the

previous time layer.

Here
◦
W 1

2(Ω) is a subspace of W 1
2 (Ω) which includes the functions van-

ishing at the boundary of the domain Ω;

I1(u, v) =
∫

Ω

(
µ

U0L
uxvx +

µ

U0L
uyvy + ψNc

( 1
H
u
)
x
vy − ψNc

( 1
H
u
)
y
vx

)
dΩ.

There arises a problem when using the Bubnov–Galerkin method for the
search for an FEM solution ϕNnc

, which is a linear combination of non-
conforming elements. The point is that when defining a weak solution, it

is required to carry out the integral relation ∀ω ∈
◦
W 1

2(Ω) but the functions
ωnc

ij (x, y) have discontinuities at the boundaries of their support. So, we
need to introduce an approximate bilinear form

Ih
1 (u, v) =

∑
k

∫
T k

(
µ

U0L
uxvx+

µ

U0L
uyvy+ψNc

( 1
H
u
)
x
vy−ψNc

( 1
H
u
)
y
vx

)
dΩ,

where T k are triangles of the domain Ω. In this case, a non-conforming FEM

solution ϕNnc
does not belong to the required space

◦
W 1

2(Ω) as well. However,
if we assume that the function H(x, y) is a step function on

⋃
k T

k, then the
efficiency of the scheme for the advection–diffusion problem similar to the
presented one was verified earlier with the help of numerical experiments [6].

As a result, with allowance for orthogonality of non-conforming finite el-
ements and their relation with the conforming ones, the following differential
equation system is obtained:

Mh(Φ)t + ΛhΦ = 0, t ∈ (tn, tn+1], Φ|t=tn = XΨ. (13)

Here Mh = diag(θij/3), [ΛhΦ]ij = Ih
1 (ϕNnc

, ωnc
ij ), [Φ]ij = ϕij , [Ψ]ij = ψij , X

is a transition matrix from the stream function to vorticity obtained from
the relation between non-conforming and conforming elements, and θij is an
area of the support of the function ωnc

ij .
In this case Λh = Sh + Kh, where Sh is a symmetric operator and Kh

is a skew-symmetric operator corresponding to the symmetric and skew-
symmetric parts of the integral operator.
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Figure 3. Direction of operators Λh
1 (—) and Λh

2 (· · · )

Analysis of the operator Λh shows that it can be presented as a sum of
two 1D positive semi-definite operators Λh

1 and Λh
2 acting along the broken

lines connecting non-conforming mesh points (Figure 3). Moreover,

Λh
1 = Sh

1 +Kh
1 , Λh

2 = Sh
2 +Kh

2 ,

where Sh = Sh
1 + Sh

2 , Kh = Kh
1 +Kh

2 , Sh
r are symmetric operators, Kh

r are
skew-symmetric ones (r = 1, 2).

Such a decomposition of the grid operator allows the use of the splitting
method with respect to time for solving problem (13). In this case, a two-
cycle splitting method is used [7].

Let us divide the interval [tn, tn+1] into sub-intervals tn + mτ1 ≤ t ≤
tn+(m+1)τ1, τ1 = ht/N1, m = 0, . . . , N1−1, N1 is the number of additional
time sub-intervals. The system of grid equations consists of a sequence of
the Crank–Nicholson schemes for the operators Λh

1 and Λh
2 constructed on

the sub-interval [tn +mτ1, tn + (m+ 1)τ1]:(
Mh +

τ1
4

Λh
1

)
Φm+1/4 =

(
Mh − τ1

4
Λh

1

)
Φm,(

Mh +
τ1
4

Λh
2

)(
Φm+1/2 − τ1

2
(Mh)−1fm+1/2

)
=

(
Mh − τ1

4
Λh

2

)
Φm+1/4,(

Mh +
τ1
4

Λh
2

)
Φm+3/4 =

(
Mh − τ1

4
Λh

2

)(
Φm+1/2 +

τ1
2

(Mh)−1fm+1/2
)
,
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(
Mh +

τ1
4

Λh
1

)
Φm+1 =

(
Mh − τ1

4
Λh

1

)
Φm+3/4.

To prove the approximation properties of the scheme with respect to
time, the Taylor expansion in series with a restriction on the time space
(14) is used:

τ1
4

∥∥(Mh)−1Λh
r

∥∥ ≤ 1. (14)

In [7], it is shown that the method is absolutely stable.
After sampling the problem (11) with respect to time we have(

1
ht

+
RL

U0

)
∆HΨn+1

2 +
2ΩplL

U0

(
f

H

(
Ψn+1

2

)
x

)
y

−

2ΩplL

U0

(
f

H

(
Ψn+1

2

)
y

)
x

= F +
1
ht

∆HΨn
2

or, with allowance for the initial conditions,(
1
ht

+
RL

U0

)
∆HΨn+1

2 +
2ΩplL

U0

(
f

H

(
Ψn+1

2

)
x

)
y

−

2ΩplL

U0

(
f

H

(
Ψn+1

2

)
y

)
x

= F +
1
ht
ζn+1
1 . (15)

After application of the Galerkin method to problem (15), a system of
linear algebraic equations is obtained:

I2
(
ψNc

, ωc
pq

)
= −

(
F, ωc

pq

)
− 1
ht

(
ϕNnc

, ωc
pq

)
, (p, q) ∈ N c, (16)

where

I2(u, v) =
∫
Ω

(( 1
ht

+
RL

U0

) 1
H
uxvx +

( 1
ht

+
RL

U0

) 1
H
uyvy +

2ΩplL

U0

f

H
uxvy −

2ΩplL

U0

f

H
uyvx

)
dΩ,

ϕNnc
is a non-conforming FEM solution to problem (10).

System (16) is solved by an iterative technique.

3. Numerical experiments

The efficiency of the scheme was verified for each splitting step separately
as well as for the whole problem. A circulation stabilization problem with a
constantly acting force F = τ0L

ρ0HmU2
0

rot τ

H
, a boundary layer, and a variable

bottom is studied below.
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For problem (8) we assume

Ω = [0, 1]×
[
0, yl =

Ly

L

]
, L = 4 · 108 cm, Ly = 2 · 108 cm,

f =
f0

2Ωpl
+

βL

2Ωpl
(y − yl), f0 = 9.3 · 10−5 s−1, β = 1.88 · 10−13 (cm · s)−1,

Ωpl = 7.3 · 10−5 s−1, ρ0 = 1
g

cm3
, F = − πτ0L

ρ0HmU2
0 yl

1
H

sin
πy

yl
, Ψ0 = 0.

Relative errors

erel,1 =
max

(p,q)∈Nc
|(ψpq)n+1 − (ψpq)n|

max
(p,q)∈Nc

|(ψpq)n+1|
,

erel,100 =
max

(p,q)∈Nc
|(ψpq)n+1 − (ψpq)n−99|

max
(p,q)∈Nc

|(ψpq)n+1|
,

a maximum of the FEM solution MAX = max
(p,q)∈Nc

|(ψpq)n+1| and its form

are the results of the tests with the parameters specified below.

Test 1. For the flat bottom H = 1, ht = 10−4:

a) τ0 = 1.0 dyne/cm2, U0 = 0.27 cm/s, µ = 1.2·109 cm2/s, R = 5·10−7 s−1.
One can observe a predominance of the west boundary layer which is
typical of the Stommel model.

b) τ0 = 1.0 dyne/cm2, U0 = 0.27 cm/s, µ = 1.2·108 cm2/s, R = 5·10−8 s−1.
In this case a weak influence of nonlinearity can be observed.

c) τ0 = 1.0 dyne/cm2, U0 = 0.27 cm/s, µ = 1.2·107 cm2/s, R = 5·10−8 s−1.
A predominance of the nonlinear part of the equation results in clearly
defined inertial boundary layer.

The results of the tests are shown in Table 1 and Figure 4.
At a fixed moment T , the results for schemes with different time steps

ht coincide with one another except for a minor difference in maxima of
solutions, which is also in favor of convergence of the method. It is worth
to note that the kind of the result corresponds fairly well to the current
numerical solution of the problem in question.
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Table 1. Velocity of stabilization and a maximum of FEM solution with respect
to the number of time steps

The number of
time steps

(corresponding
time, years)

Test 1a Test 1b Test 1c

erel,1
(erel,100)

MAX
erel,1

(erel,100)
MAX

erel,1
(erel,100)

MAX

10 (0.47) 2.3 · 10−2 5.09 5.1 · 10−2 6.84 9.5 · 10−2 6.82

50 (2.38) 5.5 · 10−6 5.403 5.8 · 10−5 7.05 1.8 · 10−2 12.7

300 (14.3)
2.0 · 10−9

(2.2 · 10−7)
5.403

4.9 · 10−9

(8.7 · 10−7)
7.05

1.2 · 10−6

(1.4 · 10−4)
13.04

500 (23.84)
6.2 · 10−10

(9.8 · 10−8)
5.403

3.1 · 10−9

(3.9 · 10−7)
7.05

3.5 · 10−8

(1.2 · 10−6)
13.04

1000 (47.69)
1.9 · 10−11

(3.0 · 10−9)
5.403

7.4 · 10−11

(1.4 · 10−8)
7.05

7.4 · 10−10

(5.6 · 10−8)
13.04

1500 (71.53)
1.0 · 10−12

(8.7 · 10−11)
5.403

1.0 · 10−12

(1.3 · 10−10)
7.05

1.2 · 10−10

(1.1 · 10−8)
13.04

2000 (95.38)
1.0 · 10−14

(2.0 · 10−12)
5.403

1.0 · 10−14

(1.0 · 10−12)
7.05

3.3 · 10−11

(3.7 · 10−8)
13.04

Test 1a Test 1b Test 1c

Figure 4. Stabilization of the FEM solution for the flat bottom with respect to
the number of time steps [100× 50×Nt]. From top to bottom Nt = 10, 20, 30, 300
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Test 2. For the variable bottom with parameters τ0 = 1.0 dyne/cm2, U0 =
0.27 cm/s, µ = 1.2 · 109 cm2/s, R = 5 · 10−7 s−1, ht = 10−4, the results
fit well with the theory that claims the dependence between a sign of the
derivative ∂

∂y

(
f

H

)
and the intensification zone [8] (Figure 5). In the tests:

a) H = exp1.3y

exp1.3yl
. The negative sign implies eastward intensification.

b) H = 1

Hm

(
(x − 1/2)2

2p
− (y − yl/2)2

2q
− Hm

10
m

)
, p = 1

8(Hm/10 − H0)
, q =

y2
l

8(Hm − Hm/10)
, H0 = 4 · 102. The derivative changes a sign that results

in two intensification zones.

The results of the tests are shown in Table 2.

Test 2a Test 2b

Figure 5. The dependence between a sign of the derivative ∂(f/H)/∂y and the
intensification zone. From top to bottom: relief of the bottom, function f/H,
derivative ∂(f/H)/∂y, FEM solution for the variable bottom at the moment of
time corresponding Nt = 500
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Table 2. Velocity of stabilization and a maximum of FEM solution with respect
to the number of time steps

The number of
time steps

(corresponding
time, years)

Test 2a Test 2b

erel,1
(erel,100)

MAX
erel,1

(erel,100)
MAX

10 (0.47) 6.5 · 10−2 6.906 5.0 · 10−4 0.5

50 (2.38) 5.5 · 10−5 10.66 4.2 · 10−7 0.5

300 (14.3)
6.3 · 10−9

(7.0 · 10−7)
10.66

9.0 · 10−13

(1.2 · 10−10)
0.5

500 (23.84)
4.3 · 10−9

(4.7 · 10−7)
10.66

< 10−13

( < 10−12)
0.5

1000 (47.69)
1.8 · 10−9

(2.0 · 10−7)
10.66

< 10−13

( < 10−12)
0.5

1500 (71.53)
8.0 · 10−10

(8.6 · 10−8)
10.66

< 10−13

( < 10−12)
0.5

2000 (95.38)
3.5 · 10−10

(3.5 · 10−8)
10.66

< 10−13

( < 10−12)
0.5

Conclusion

Based on the splitting in terms of physical processes and with respect to time
and on a finite element method as applied to a 2D nonlinear vorticity equa-
tion in a rectangular basin with variable depth, a scheme with two splitting
steps was obtained. At the first splitting step, for solving the linear stream
function equation, conforming piecewise-linear finite elements are used. At
the second step, corresponding to the vorticity advection and diffusion, non-
conforming finite elements are used. Such elements allow the reduction of
the number of grid points in a numerical scheme and presentation of a grid
operator as two 1D positive semi-definite operators thus reducing the time
needed for successive splitting with respect to time. The efficiency of the
scheme was tested for each splitting step separately as well as on the problem
as a whole.
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