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The generator of RK-scheme
GRKSCHEM*

Yu.l. Kuznetsov

The generator of M-stage modified RK-scheme, 2 < M < 21, for solving the
ODE y' = f(t,y) with initial conditions and the Volterra integral equation (by the
RK-method of advanced accuracy) is proposed. Modified and classical RK-methods
differ for a triangular matrix B only are used.

1. Generator

call GRKSCHEM(A, B1, B, M, MB, METHOD, L, Um, Const)

Arguments:

A - the array of nodes in the interval [0,1]. It is an input only at MB = M.
in this case its elements must be different. In other cases A is also
output.

Bl - the weights of RK-method (output).

B - the quasi-weights of the quasi-solution (output).

M - the number of stages (input); 2 < M < 21.

MB - the approximation order; MB = M, M + 1 if METHOD > 1 and MB = 2N,

2M — 1, 2M — 2 if METHOD = 0, 1 (input).
METHOD - determines the RK-method parameter (input):

e If METHOD = 0 or 1, the RK-scheme of order MB of the RK-method
of advanced accuracy is formed; in this case the matrix B is non-
singular (METHOD = 0) or singular (METHOD = 1);

e If METHOD > 1, the nilpotent RK-scheme is formed. In this case
Um is M-multiple eigenvalue for the matrix B. If MB = M + 1, the
subroutine gives Um = Um*. If MB = M, then Um is input. If
¢ = Um/Um* is outside the interval [a,1.5], then Um is corrected;
a = 0.1 except the case of METHOD = 2, where a = 0;

e METHOD = 2: the RK-scheme of order MB of the modified DIRK-
method (the MDIRK-method) is formed; for the MDIRK-method
Um = Ay; in this case the condition C(1) holds; the array A is input
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only if MB = M; Um = A; and if Um = 0, then the MDIRK-method
is explicit;

METHOD = 3: RK-scheme of order MB of the collocation method is
formed; the condition C'(M) holds;

METHOD = 4: RK-scheme of order MB of the transformed method
is formed; the condition C(M — 1) holds;

METHOD = 5: RK-scheme of order MB of the new transformed
method is formed; the condition C(M — 1) holds;

METHOD = 6: SIRK-scheme of order MB with arbitrary nodes is
formed; in this case the condition C'(M — 1) holds; the array A is
input.

L - the parameter of singularity in the RK-scheme of advanced accuracy:

if L = 0, then the nodes matrix diag(4) is nonsingular and it is singular
if L = 1 (input only if METHOD = 0 or 1).

Um — M-multiple eigenvalue for the matrix B of the nilpotent RK-method

(METHOD > 1); Um is input for MB = M.

" Const — the parameter of the transformed and the new transformed meth-

ods (METHOD = 4 or 5); by choosing this parameter one can form
RK-scheme with Aps > 1 for a forward-jump strategy.

Remarks. Subroutine GRKSCHEM writes into the file SCHEME the data about
the generated RK-scheme and some control data also:

2.

1. The string “Approximation error = Ejps41” for METHOD =0 or 1;

. The string “Error of condition C(1) = ¢” if the difference of the sum
of the elements of the i-th row of the matrix B and X;, i = 1(1)m, is

computed with error > 1073%;

. The string “Error of weights = 4" if the difference § of the sum of the

elements of array B1 and 1 is computed with error > 1078,

Algorithms

In this section, we rename M to m and MB to M, respectively.

A discretization of an ordinary differential equation

d
5 =fty), 0St<T, y(0)=w,

is the system of nonlinear algebraic equations

m
MN=Yn W=Yn+7Y Bijfi i=1m+1, Ynt1="2mn
j=1
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with the notations: f; = f(£;,n;),
i = ta+ N7, i=0(1)m +1,
A =0, Imsy1=1, Aj<Ajy,
which can be presented in the vector form
n=yne+TBf, Ynt1=yn+ Tomu1f,
Bii Bz ... DPim
g=| B Bz ... Bom
Bm1 ﬁm2 ﬁmm,
bi = (Bi1y. -+, fim), t=1(1)m+1,
A = diag(A\1, ..., Am), k= diag(1,1/2,...,1/m),
1= mm)’y f= (e fm)T
g=(91,---,9m)F, e=(1,...,1)T.

The modified RK-method generates M-stage RK-scheme of order > M,
because it is based on the relation of weak approximation:

., di7Y (dn .
bm+1 B ldtj'"l (Et“ - ) , J=H1)N -1,
n n

where the number N is the weak approximation order.

1. Approximation order of the nilpotent RK-method is determined by the
choice of the parameter u: if the index of nilpotent matrix B — pE equals
m, then the condition . _

1

Sn)+1 ( #) =0

is necessary and sufficient for the approximation order M =m + 1.
For the triangular matrix B, the author has proposed the following al-
gorithm [1-5]. At first it is necessary to define the values 6;;:

J .
> 0;F =g,

i=1
k=0(1)7 — 1, 7 = 1(1)m, where
K (m —3)! e (etD) (1)
= AN -
gi (m—J+k + 1)'# m—j+k+1 u ’
with the (k+1)-th derivative of the Laguerre polynomials of order m—j+k+1

in the right-hand side. For a fixed j, these relations define a system of
equations with the Vandermonde matrix V; of order j,
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1 A .. N7
v, = 1 A ... N7
j—1

1 A Aj-

In notations
cio=1 ¢ji=j-1i—Ajcj-15-1, 1=11)j, ¢j-1;=0,

the relation . 1 i1
j—
_ il S-19i0
= i1 T
Y=o CJ—1,19§—1—1

j =1(1)m — 1, is critical for the choice of ;.

Aj (1)

Theorem 1. For the triangular nilpotent matriz B — pE with single XA;,
i = 1(1)m, to have the approzimation order M > m, it is necessary and
sufficient that

1) condition (1) be violated for all j;
2) L&) (1/p) #0.
So,

m—1
— i mun 2
W= (ej—i,j -3 ﬂm+1,zw1_j_ﬁ)ﬁm+1,m,

I=m—i

j=i+1(1)m -1,

m—-1-2
w,",::f::?_‘- = (wﬁj{;i,- - Y Bm-tawiili l"1) / Bm—1m—1-1,
k=m—i—I-1

j=i+11)m—1-2,1=001)m —i -3, i = 0(1)m — 2, where, usually, it
is assumed that the sum is equal to zero if the upper limit is less than the
lower one.

Here w}, is an element at the intersection of the k-th row and the I-th
column of the matrix (B — pE)’.

The solution is attained stage by stage. At first, the stage i = 0 is carried
out:

wm,;J = J'J'/ﬂm+1,m, J = 1(1)m —_ 1,
m—j—I-1 _

Woi; = wz'_'f;l/ﬂm_;,m_l_l, i=11ym—-1-2,1=0(1)m 3.

Meanwhile the k-th diagonals of the matrices (B — uE)*, k = 1(1)m — 1 are
consecutively calculated. Therefore, at zero stage we have already calculated
elements B ;_1, j = m+ 1(-1)2.
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Consider the i-th stage, i = 1(1)m—2. At the preceding stages, the values
ur,’k are determined. At the i-th stage, the elements ur"k should be calculated,
i.e., the elements of the (j + i)-th diagonal of the matrix (B — pE)/,j =
i(l)m —t¢— 1. In particular, the (i + 1)-th diagonal of the matrix B — uE
is calculated. Therefore, after i stages the first i + 1 diagonals of the matrix
B — pE, which differ from B by the main diagonal uE only, are determined.

Note, also, that bm11 = (Bim,- - - ,0mm)-

The RK-method with the triangular matrix B has the bad approximation
in the nodes A; < 1, only C(1).

2. In the SIRK-method, the matrix B is not triangular. This nilpotent
method approximates the solution of the ODE in the nodes )\; # 1 much
better, than the condition C(m — 1) or C(m):

ﬂ,A"‘l —)\k i=1(1)m, k=m-1 or k=m,
j
J-..l

hold in this case. Hence, the solution of the ODE in the nodes \; # 1 is
approximated with the order m — 1 or m.

In the SIRK-method, the matrices A and V must be nonsingular. The
SIRK-method is determined by the polynomial

Tm(A) = m!u™ L (A/B) + cLm-1(A/V), (2)

with the parameters u, nu, and ¢, where mu is m-multiple eigenvalue of the
matrix B.
The nodes A;, ¢ = 1(1)m, are the roots of the polynomial 7()). Let

m
L a(Av) =3 zaH1
i=1

and z = (21,...,Zm)7. Then
BV = (AV + Vzel)h,
€ém is the last column of the identity matrix, and
bmi1V = eTh.

This general case is proved by the author [2, 4-5]. If ¢ = 0, then we have
the collocation RK-method. The condition v = p gives the transformed
RK-method [6].

The approximation order M is equal to m+1 if and only if the condition

LEha(1/w) = L (1/v) = (3)
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holds. Hence for the transformed RK-methods M = m, as the orthogonal

polynomials L,(,:Ll(l /u) and Lg)(l/,u) have no common roots.

In the new transformed RK-method, v # p and conditions (3) hold at
¢ # 0. In this case M =m + 1.

In the collocation RK-method (¢ = 0) A\; = pp;, where p; are defined,
the condition

Lim(pi) =0, i=1(1)m. (4)

For the transformed and the new transformed RK-methods we can use the
following conclusion [5, 7):

Theorem 2. Let two polynomials Ppy()), Pr_1()), of orders m and m — 1,
respectively, with real single roots p;, i = 1(1)m, v;, i = 1(1)m — 1 ordered
by ascendance be specified, i.e., p; < piiq, & = 1(1ym -1, v; < yjyq, 1 =
1(1)m — 2. Assume in addition that the roots v; separate the roots i, i.e.,

B <V < pigr.
Then the polynomial Ry, ()) of order m,
Rm(A) = P(X) + cPp_y(3)

where ¢ is an arbitrary real constant, has real single roots \;, i = 1(1)m,
separated by the roots v;, i.e., A; < v < Ajyq.

In the transformed RK-method (v = u), the value ); satisfies, by Theo-
rem 2, the inequalities

Ai < ppi < Ay, i=1(1)m —1.
For the orthogonal polynomials we have

i <y < piyy, i=1(1m-1,
if together with (4) Ly—1(14) = 0, i = 1(1)m — 1.

However, the choice of v must be careful. For the new transformed
RK-method let us put

Pm-1(A/K) = Im1(Av) = Lm1(EX ).

If Pn_1(p:) = 0, i = 1(1)m — 1, then vy; = pup;.
Hence, according to Theorem 2,

Bi < %Pi =v; < pig1, i=1(1)m -1,

for any values v, u > 0. But we must choose v/u so that the correlation
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v .
pi < pi = PO T 1(1)m -1,
holds. In this case, by Theorem 2, we have
N<on <, i=10m-1, (5)

i.e., real and single nodes A;.
Let, also, L), , (") = 0, LY ") = 0. 1t

pO =1/u8), O =179 (6)

then the relation »(?/u(") for 1 < m < 31 can be calculated. The numerical
experiment confirms relation (5).

The choice of (6) is very good, as that the accuracy order equals to m+1.
Taking v = v/, we may generate the new transformed RK-method of
order m.

Now let us consider the changing range of the parameter c. From (2) it
follows that A,, =1 for

e __ Lm(1/p")
© T T L0y
Hence, if ¢ < c*, then Ay, > 1. The forward-jump RK-method uses the
condition ¢ < ¢*. As Ay > 1, then £, = tAmT € [tnt1,tn+2). This case can
be used for the control of the numerical solution.
The stability functions of the nilpotent RK-methods have the form:

SRolury Lin ) (1/p)
(1 - pr)m '
In particular, R(—o0) = Ly (1/p). Since the explicit method is a special

case of the diagonally implicit one for u = 0, its stability function R(r) is
the polynomial:

R(r) =

moy
R(7) = Z ﬁrJ,
i=0
i.e., a segment of the Taylor exponent expansion.

3. The advanced accuracy RK-method can be determined through the sta-
bility function
R(T) - Nm—B,M—m-i-G(T)’
D6, M -m+6(T)

where
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1 L (-n)¢( M-k
Dpg,M-m+6(T) = —37 )
e o k! M-m+86

1 M—-m+8 ‘rk M-k
Nim—6,M-m+6(T) = —*( M_a) kZ; K\m-0)
m_ —

The parameter § = 0 or 1 determines nonsingularity or singularity of the
matrix B.

Another parameter w = 0 or 1 determines nonsingularity or singularity of
the matrix A. The characteristic polynomial of the matrix A is the following:

Pa(d) = —oe 3 (<1 (’:)( M- .)Am—f

(m_w) j=0 m=w=3
m! gM-m
M!d\M-m

(AM_m'H"(A _ l)m—w).

For w = 0, M = 2m, these polynomials are the Legendre ones.
For calculating the nodes X;, ¢ = 1(1)m, it is convenient to use the
following algorithm (3, 5]:

Theorem 3. The Euclidean algorithm applied to the polynomials ¥, ()) =
Pm(A) and Ym_1(A) = ‘P,(,P(.\) /m, brings about the sequence

k .
—ivi(RB\[k+j—u+2 / 2k—u+2
= —1Yk—d i
k=m—1-10, u = 2m — M, satisfying the recursive relation

2—w

Po(A) =1, th(A)=A- -

Pe(A) = (A = Up)Pr-1(A) — Vihg—2(A), &k =2(1)m,

thereto,
U _2k(k—u+1)+wu—-2)
P T k- (2k—ut2)
(k- 1)k -w)(k—u+1)(k —u+w) .
Ve = (2k — u)2((2k —u)? — 1)  k=m-1-1,
_ m-w _(m-1)(m-w)(M—-m+w)
Un="37 V= (M-1)M2

The approximation quality is defined by the expression for Epyq =
1- (M + l)bm+1AMB [3, 5]
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(1M
Evmir= 550 (7)
(m) (o
due to which the expression for the local truncation error has the form

lny1 = Eppam™HL

It is easily seen from this expression that the m-stage Radau schemes-1 and
Radau scheme-2 enclose the true solution from both sides (under assumption
of a constant sign of the (M + 1)-th derivative of y on the segment [tn, tn41])-
The same property is shared by m — 1 stage Gauss scheme and m-stage
Lobatto scheme.

For a non-degenerate matrix B (6 = 0) the equalities

BA¥ e = %Ake, k=11)m — w,

hold, i.e., the condition C(m — w) is satisfied.

Therefore, if w = 0, the condition C(m) is transformed into the equality
BV = AVh, which uniquely defines the matrix B. There are only two
RK-schemes for which # = w = 0: M = 2m is the Gaussian scheme and
M = 2m — 1 is the Radau scheme-1, both being uniquely defined.

For a non-degenerate matrix B (¢ = 0) and a degenerate matrix A (w =
1) the following hold

1

B = m(M-m+1)’

There are two RK-schemes satisfying condition (8), which possess the
property # = 0 (and the condition C(m — 1)), w = 1: M = 2m — 1 - the
Radau scheme-2 and M = 2m — 2 — the Lobatto scheme-1. (The 20-stage
Radau scheme-2 was generated by subroutine GRKSCHEM [9] and success-
fully used for solving the integral Volterra equation.) The generation of the
matrix B has the same form as for the transformed RK-schemes.

The last possible case consists in the choice of w = 6@ = 1. In this case
M = 2m — 2. As well as in the Lobatto scheme-1, these RK-schemes use
the end-points of the integration step \; =0, Ay, = 1. f 6 =w =1 and
M = 2m — 2, the equality

i=1)m+1. (8)

BA*le = %A"e, k=1(1)m,
takes place, if and only if the following conditions are satisfied:
1. The matrix B of the size m — 1, obtained from B by deleting the first
row and the first column out, is non-degenerate.

2. The first row of the matrix B is formed by zeros.

The RK-scheme with # = w = 1, M = 2m — 2, for which the condition
C(m) is satisfied, will be called the Lobatto scheme-2.
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3. Examples

The choice of the RK-scheme is determined by the parameters m, M, w,
6. In subroutine GRKSCHEM we rename M to MB, m to M, w to 1 and @ to
METHOD, p to Um, A to A, bl to B1, respectively.

Example 1 (The MDIRK-method of order MB = M). M = 3, METHOD = 2,
Um = 0.100, '

0.400 0.100 0.000
0.064 0.736 0.100

Weights B1 = (0.260, 0.479, 0.260); nodes A = (0.100, 0.500, 0.900).

[0.100 0.000 0.000]
B= .

Example 2 (The MDIRK-method of order MB = M+1). M = 3, METHOD = 2,
Um = 0.129,

0.371 0.129 0.000
0.258 0.485 0.129

Weights B1 = (0.303, 0.395, 0.302); nodes A = (0.129,0.500,0.871).

[0.129 0.000 0.000]
B= .

Example 38 (Collocation method of order MB = M + 1). M = 3, METHOD = 3,
Un = 0.129,

0.170  0.131 -0.005
0.046 0.571 0.194

Weights B1 = (0.108,0.444, 0.448); nodes A = (0.054,0.296,0.811).

[ 0.062 -—0.009 0.001 }
B= .

Example 4 (Transformed method of order M + 1). M = 3, METHOD = 4,
Unm = 0.129, Const = —0.50,

0.068 -—0.008 0.001
B= 0.196 0.143 0.004 |.
—-0.571 1.560 -0.031
Weights B1 = (0.031,0.690,0.279); nodes A = (0.060,0.335,0.958).

Example 5 (Transformed method of order M). M = 3, METHOD = 4, Um =
0.100, Const = —1.00,

0.056 —0.007  0.000
B= 0.163 0.119 -0.003 §.
—0.662 1.560 -0.026

Weights B1 = (0.007,0.618,0.375); nodes A = (0.049,0.279,0.872).
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Example 6 (Transformed method of order M + 1). M = 3, METHOD = 4,
Um = 0.129, Const = —1.00,

0.210 0.153 -0.003

[ 0.072 -0.008 0.000 ]
B= .
—-0.854 2.011 -0.034

Weights B1 = (—0.013,0.835,0.179); nodes A = (0.064, 0.360, 1.123).
Example 7 (The new transformed method of order M+1). M = 3, METHOD =

5, MB = 3, Um = 0.129, Const = —1.00,

0.239 0.149 -0.003

[ 0.092 -0.014 0.001
B= .
—0.098 0.939 -0.003

Weights B1 = (0.191, 0.427,0.382); nodes A = (0.080, 0.385,0.839).
Example 8 (The new transformed method of order M+1). M = 3, METHOD =

5, MB = 3, Um = 0.129, Const = —5.00,

0.348 0.306 -—0.029

0.122 -0.018 0.003
B= .
0.007 1.245 -0.105

Weights B1 = (0.305,0.632,0.064); nodes A = (0.108, 0.624, 1.147).

Example 9 (SIRK with arbitrary nodes of order M). M = 3, METHOD = 6,
Um = 0.013,

0.287  0.240 -0.026
0.253 0.506 0.141

Weights B1 = (0.260,0.479, 0.260); nodes A = (0.100,0.500, 0.900).

[ 0.120 -0.027 0.007 ]
B= .

Example 10 (SIRK with arbitrary nodes of order MB = M + 1). M = 3,
METHOD = 6, Um = 0.129,

0.120 —0.027  0.007 ul
B=| 0287 0.240 -0.026 | .
0.253 0.506 0.141
Weights B1 = (0.260,0.479, 0.260); nodes A = (0.100,0.500, 0.900).

Example 11 (Superprecise RK-method: The Gauss method). L = 0,
METHOD = 0, M = 3, MB = 6, approximation error 0.3 - 102,



72 Yu.l. Kuznetsov

0.300 0.222 -0.023

[ 0.139 -0.036 0.010 ]
B= .
0.268 0.480 0.139

Weights B1 = (0.278,0.444, 0.278); nodes 4 = (0.113,0.500, 0.887).

Example 12 (Advanced accuracy: The Radau 1-method (Radau II)). L =
0, METHOD = 0, M = 3, MB = 5, approximation error = —0.01,

0394 0.292 -0.042

[ 0.197 -0.066  0.024 i]
B= .
0.376 0.513 0.111

Weights B1 = (0.376,0.513,0.111); nodes A = (0.155,0.645,1.000).

Example 18 (Advanced accuracy: The Radau 2-method (RadauI)). L = 1,
METHOD = 0, M = 3, MB = 5, approximation error = 0.01,

0.111  0.292 -0.048

0.111 -0.192 0.081
B= .
0.111 0537 0.197

Weights B1 = (0.111,0.513,0.376); nodes A = (0.000, 0.355, 0.845).

Example 14 (Advanced accuracy: The Lobatto 1-method (Lobatto C)).
L = 1, METHOD = 0, M = 3, MB = 4, approximation error = —0.04,

0.167 0.417 -0.083

[ 0.167 —0.333  0.167 ]
B= .
0.167 0.667  0.167

Weights B1 = (0.167,0.867, 0.167); nodes A = (0.000, 0.500, 1.000).

Example 15 (Advanced accuracy: The Lobatto 2-method (Lobatto A)).
L = 1, METHOD = 1, M = 3, MB = 4, approximation error = —0.04,

0.208 0.333 -0.042

0.000 0.000 0.000
B= .
0.167 0.667 0.167

Weights B1 = (0.167,0.667, 0.167); nodes A = (0.000, 0.500, 1.000).
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