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Solving CSPs with predominating

constraints of the “not equal” type

M.Yu. Loenko

In this paper we present a new stochastic search algorithm which is designed to solve

finite binary constraint satisfaction problems, where constraints of the “not equal” type

predominate. The experiments show that, in comparison with the backtrack-based algo-

rithms, the presented algorithm is superior when it is used to solve problems of large

dimension with many solutions.

1. Introduction

A finite constraint satisfaction problem (finite CSP) is the main subject of
our consideration. The finite CSP is determined as a set of variables, each
of which is associated with a finite domain, and a set of constraints that
restrict the values simultaneously taken by the variables. The problems of
scheduling, assignment of resources, and many other practical problems can
be formulated as CSPs.

In order to solve finite CSPs, a combination of search algorithms [2, 3,
6] and narrowing algorithms (also called constraint propagation algorithms
[4]) is used. The latter ones narrow the search space by removing so-called
redundant values from it. Not all constraints, however, can be efficiently
propagated.

Consider the following example. Suppose that there exists a variable a
with a domainDa = {1, . . . , 100} and a variable b with a domainDb = {3, 7}.
Then we propagate the constraint a = 2b by removing all values except 6
and 14 from the domain of the variable a. The propagation of a constraint,
such as a = 2b, has the following property: the less elements in the b-domain,
the less elements in the a-domain after the removal of redundant values.

Now, let us consider the constraint a 6= 2b. In this case, everything is
different. If the b-domain contains at least two elements b1 and b2 such that
the a-domain contains elements 2b1 and 2b2, the a-domain cannot be nar-
rowed down. And even if the b-domain has the only element b1, we cannot
essentially narrow a-domain down: we can only remove the element 2b1 from
its domain if it is present there. Therefore, the use of the technique of con-
straint propagation in the problems with a great number of constraints of
the “not equal” type is inefficient.
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The most well known problems containing only inequality constraints
are the N-queens problem and the map (graph) coloring problem. In the N-
queens problem, it is necessary to place N queens on an N ×N chessboard
so that no queen is under direct attack from any other one. The problem of
coloring is in assigning a certain number (color) to each node of a specified
graph in such a way that the adjacent nodes are of different colors. These
problems can be scaled well: by changing the size of the chessboard or the
graph, we can make the problem simpler or more difficult. Therefore, they
are widely used to estimate the quality of various methods for solving CSPs.

Resource allocation problems also have many constraints of the “not
equal” type. Thus, if there is a set of jobs that use a resource, then the
constraint of non-simultaneity, which is a constraint of the “not equal” type,
is imposed on them. If the size of such problems is great, solving them
with the help of backtracking [2, 6] and constraint propagation [4] may take
several years. Recently in contrast to this, experienced dispatchers, who
had not a definite strategy but only subjective estimates and intuition and
rather limited number of operations per second, created timetables for big
universities manually (this took several weeks).

An algorithm of non-return search (NRS-algorithm), which, in a way,
models the manual search for a solution, is presented in this paper.

The paper is structured as follows. Some existing search algorithms are
described in Section 2. Then, a mechanism of manual scheduling is consid-
ered. The NRS-algorithm is constructed on the basis of this mechanism.
After that, the algorithm itself is presented. And, finally, the results of some
experiments and comparisons are presented.

2. Search algorithms

Thus, a major search algorithm for finite CSPs is backtracking [2, 6]. It is
also known as chronological backtracking. This algorithm consists in suc-
cessive assigning values to variables. Initially, all variables are unassigned.
An unassigned variable is chosen at each step. After that, a consistent value
from its domain is sought for. The consistent value is such that, together
with the values of the assigned variables, it does not violate any constraint
on these variables. If the domain of the chosen variable does not contain
consistent values, the value assigned to the previous variable is considered
incompatible, and return to the previous step is performed. Otherwise, the
consistent value found is assigned to the chosen variable. After that, tran-
sition to the next step takes place. At this step, another variable is chosen
and assigned. If all variables turned out to be assigned, a solution is found.



Solving CSPs with predominating constraints of the “not equal” type 47

If all values of the first chosen variable turned out to be incompatible, the
problem has no solutions.

There are many different implementations of the backtracking with dif-
ferent strategies of choice:

• choice of the next variable to look at;

• choice of the next value to look at;

• choice of the next constraint to examine.

A successful choice may narrow down the search space.

There exist a great number of modifications of the backtracking. Let us
consider some of them.

The backchecking algorithm [3] was developed for applications in which
the value consistency test takes much time. If in the consideration of some
variable y, its value b turns out to be incompatible with some value a of an
assigned variable x, the backchecking memorizes this and does not check the
value b until a remains a value of the variable x.

The backmarking algorithm [3] is an improvement of the backchecking
algorithm. Similarly to the backchecking, it decreases the number of tests of
compatibility by memorizing what values are incompatible with the assigned
variables. Moreover, it memorizes the values compatible with the assigned
variables, and does not check them either.

Suppose that a consistent value for a variable xj is sought for at some
step. Suppose also that some time ago all possible values of xj were tested
and found incompatible. Assume that since then the backmarking returned
to some xi, where i < j, and gave it a new value. After that, it found
consistent values for the variables xi+1, . . . , xj−1. Then, at the search for a
consistent value for the variable xj , the backmarking will not consider those
values that are in conflict with the variables x1, . . . , xi−1; it is already known
that they are incompatible. Besides, the backmarking will not check com-
patibility between x1, . . . , xi−1 and those remaining values that are known
to be compatible beforehand.

Another algorithm is called backjumping [7]. It differs from backtracking
in the following: when it is necessary to return to the previous step, the al-
gorithm performs analysis and returns immediately to the variable assigning
to which led to the absence of consistent values at the current step.

When assigning each variable, the algorithm called forward checking [3]
removes those values that are incompatible with the values of already as-
signed variables from the domains of non-assigned variables. Here, if the
domain of any variable becomes empty, the latest assigned value is consid-
ered incompatible.
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There also exist algorithms that call a narrowing algorithm after the as-
signing of each variable. These algorithms, along with the forward checking,
are called lookahead-algorithms [11].

Another subclass of search algorithms is the class of stochastic algorithms
[5, 8, 9]. They are usually used in those cases when it is necessary to find
quickly an arbitrary solution of the problem under consideration. Algorithms
of stochastic search are such search algorithms that include heuristics and
elements of randomness. Among them, the classes of algorithms, such as the
hill-climbing and connectionlist, are best known.

In the general case, the hill-climbing algorithm is determined by two
functions. One of them is an evaluation function which maps each vector
from the search space to a value (which is a number). The other one is an
adjacency function which assigns one or several other points to each point
from the search space. Maximal values of the evaluation function must be
attained at solutions to the problem. The algorithm consists in the choice
of a random point in the search space and the execution of a series of tran-
sitions: at each step, all the points which are adjacent according to the
adjacency function are evaluated using the evaluation function. Then one
of the points that have greater values than the value of the current point is
chosen randomly, and the transition to that point takes place. The algorithm
terminates if the values of all adjacent points are less than or equal to the
value of the current point. The best known hill-climbing algorithms are the
gradient-based conflict minimization [9] and the heuristic repair [5].

Most stochastic algorithms do not guarantee passage through the entire
search space. This is their most serious drawback. Their major advantage
is as follows: it turns out that only they can can find solutions to some
problems in a reasonable time.

There exist heuristic algorithms of search, which guarantee passage
through the entire search space. The algorithm of iterative broadening [1],
which is a kind of backtracking, is an example of such algorithms. Its idea is
to add elements of randomness to the distribution of computational efforts
along the tree of search. The number of visits to each node of the tree has a
certain limit. When this limit is reached, all unconsidered branches of this
node are ignored. If, at a given limit of the number of visits, the algorithm
does not find a solution, the limit increases.

Now let us consider the process of manual scheduling.

3. Manual scheduling

Let us consider the operation of a dispatcher making a schedule for a uni-
versity. The process of scheduling consists, as in the case of backtracking, in
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a successive assignment of the time, the necessary resources, such as class-
rooms, and, possibly, the lecturers to each lesson. In this case, lectures which
require many resources (several groups) are scheduled first. Lessons in sub-
groups are scheduled last. In scheduling the lessons, each new lesson is put
to a free place if possible, that is, it is placed so as not to be in conflict with
the lessons already scheduled in terms of resources.

If there is no free place, some previously scheduled lessons are to be re-
moved from the schedule. In this case, the simplest lessons for which it will
be the easiest to find a new time or assign a new resource (for instance, an-
other classroom) are removed. Lectures and lessons the scheduling of which
took a good deal of effort of the dispatcher are not removed usually.

Thus, some characteristics determining the scheduling complexity can be
assigned to each lesson. Let us introduce a concept of the cost of a lesson.
We distinguish between the initial cost of a lesson and its current cost.
The initial cost of a lesson reflects the preliminary estimated complexity of
scheduling the lesson. It should be calculated on the basis of the specific and
number of constraints imposed on this lesson. It should not change in the
process of scheduling. It is clear that the more resources are used by this
lesson, the more constraints are imposed on it and the more difficult is to
find the proper time for it. Thus, the initial cost of lectures will be higher
than the initial cost of lessons in subgroups.

For the lessons that are to be put into the schedule, we can introduce
a concept of a current cost. The current cost of a lesson must reflect how
easy it was to find a place for the lesson. That is, if, for instance, a lecture
had to be removed from the schedule in order to arrange a lesson, it can
be concluded that the scheduling was not easy, and that it is better not to
reschedule this lesson further. Thus, the current cost depends on the initial
cost and on the current costs of all the lessons that had to be removed from
the schedule in order to insert this lesson.

And finally, before choosing a position for a given lesson, the dispatcher
estimates all possible variants and chooses the simplest one. We can intro-
duce a concept of the cost of a position. In the scheduling of a given lesson,
the position cost is equal to zero if we do not violate any constraint that
connects the lesson with the other scheduled lessons. Otherwise, the position
cost depends on the number and current costs of those lessons that are to
be removed from the schedule in order to put the lesson to this position.

Thus, manual scheduling can be approximately described as follows. The
lesson with maximal initial cost is chosen from the set of non-scheduled
lessons. If there are several lessons with maximal initial cost, any of them is
chosen. From all possible positions, the position with minimal cost is chosen
for a given lesson, and the lesson is put to this position. All previously
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scheduled lessons that are in conflict with the newly scheduled one on some
resource (for instance, classroom, group, lecturer) are removed from the
schedule. We memorize how difficult it was to schedule the lesson. This
is done in order to decide whether it should be removed later. After this,
we choose another non-scheduled lesson, and proceed until all lessons are
scheduled.

As for position costs and initial costs of lessons, it can be said that they
are determined intuitively by the dispatcher from his experience of work.
In the next section, we present an NRS-algorithm based on the method of
dispatchers operation described above.

4. Algorithm of non-return search

Definition 1. A constraint satisfaction problem (CSP) is a tripple M =
(X,D,C), where

X is a set of variables {x1, . . . , xn},
D = D1 × . . . ×Dn, Di is the domain of the variable xi,
C is a set of constraints {c1, . . . , cm} on all or some of the variables

x1, . . . , xn.

In what follows, we consider only those problems that have finite sets of
possible values of variables and in which all constraints are binary.

Definition 2. A vector (a1, . . . , an) ∈ D is a solution to a given CSP if for
all constraints cl ∈ C the condition (al1 , . . . , alu) ∈ cl holds, where l1, . . . , lu
are the subscripts of the variables that are bound by the constraint cl.

The algorithm of non-return search, like backtracking, is a successive
assigning of certain values to the variables. If a value assigned to a variable
is incompatible with the values of the previously assigned variables, these
variables are set unassigned. To determine the rules for choosing a variable
and a value for assigning, we introduce the notions of initial and current
costs of a variable, as well as the notion of the cost of its value. The following
three constants are used to define the notions: Pinitial, Pmax and Punassign.
The constants should satisfy the following conditions: Punassign ≥ 0, 0 <
Pinitial < Pmax. Later we return to these constants.

Thus, let the set of constraints of the problem contain k constraints
binding a variable xi. Then the number kPinitial will be called the initial

cost of the variable xi.
The notion of the current cost of a variable is determined recursively. If a

variable xi has not been ever assigned, its current cost is equal to the initial
one. Otherwise, at each assigning its current cost increases as described
below.
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Let us assume that the set of assigned variables, before assigning to a
variable xi, consisted of variables x1, . . . , xi−1. Let ai be the value assigned
to the variable xi, pi be the initial cost of the variable xi, and Pi be the
current cost before assigning. Let xj1 , . . . , xjk be those assigned variables
the values of which are in conflict with the value ai of the variable xi, and
let Pj1 , . . . , Pjk be their current costs.

Then the number

pi + Pi +
k
∑

m=1

Pjm

is the current cost of the variable xi after assigning.
Finally, let us define a notion of the cost of a value. Let us assume that

the set of assigned variables before assigning to a variable xi consisted of the
variables x1, . . . , xi−1. Let ai be a value from the domain of possible values
of the variable xi. Let xj1 , . . . , xjk be the variables the values of which are in
conflict with the value ai of the variable xi. Let Pj1 , . . . , Pjk be their current
costs.

Then the number

kPunassign +
k
∑

m=1

Pjm

is called the cost of the value ai.
Now, we can formulate the algorithm of non-return search. Thus, initially

all variables are said to be unassigned. The algorithm consists of successive
iterations. The following actions are performed at each iteration:

• search for the maximal current cost of unassigned variables;

• compilation of a list of the unassigned variables whose current costs
are equal to the maximal one;

• random choice of some variable from the list; the quality of the gener-
ator of pseudorandom numbers used is of importance here;

• search for a value with the least cost of the chosen variable; if there
are several such values, we choose any of them;

• assigning of the found value to the chosen variable;

• unassigning variables whose values conflict with the newly assigned
value of the chosen variable.

The algorithm terminates its work if all variables are assigned, or if the cost
of the value to be assigned exceeds Pmax. In the first case, a solution is
found, and in the second case no solution is found.

Let us estimate the number of iterations that can be performed by the
NRS-algorithm. Let n be the number of variables in the problem. Since only
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one variable is assigned at each iteration, the total number of iterations of
the algorithm cannot be less than n.

Let us assume that the algorithm does not terminate its work in n iter-
ations. Let us consider a series of n + 1 successive iterations. Let pi, where
1 ≤ i ≤ n+1, be the current cost before the i-th iteration of the variable as-
signed at the i-th iteration of this series. Since the total number of variables
of the problem is n, at least one of the variables was assigned twice during
these n + 1 iterations. Let the same variable be assigned at the iterations
i and j of this series, where i < j. Then, according to the definition of the
current cost and the inequality Pinitial > 0, we have pi < pj . Hence, there
exists an integer k such that 1 ≤ k ≤ n and pk < pk+1. Let x be the variable
assigned at the iteration k and y be the variable assigned at the iteration
k + 1.

Since an unassigned variable with maximal current cost is chosen, the
variable y was in the assigned state before the iteration k. Hence, it was
unassigned at the iteration k, and consequently the current cost of the vari-
able x at the iteration k is at least doubled. Notice also that pk+1 < Pmax.
Otherwise, the cost of the value assigned to the variable x would exceed
Pmax, and in this case the algorithm would terminate its work.

Thus, we conclude that at one of n iterations the current cost of at least
one variable is at least doubled. And before increasing, this cost did not
exceed Pmax. Hence, it can be concluded that the total number of iterations
performed by the algorithm does not exceed n2(1+log2 Pmax− log2 Pinitial).

The numbers 1, 10300, and 104, respectively, were used for Pinitial, Pmax

and Punassign. These values were chosen experimentally. The results of test-
ing of the algorithm with these constants are presented in the next section.

5. Results of experiments

In this section we compare the execution time for solving N-queens and map
coloring problems using a software system called S3 Solver with a built-in
algorithm of non-return search and using an ILOG Solver.

The statement of a map coloring problem was taken from the site [12].
In this statement, a (N +1)×N matrix with a given odd N is constructed.
Its elements are determined by the following formula:

ai,j =

{

(i− 1)N − (i−1)i
2 + j, if i ≥ j,

(j − 1)N − (j−1)j
2 + i− 1, otherwise.

The problem has N(N + 1)/2 variables: x1, . . . , xN(N+1)/2. It is formulated
as follows:
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∀i ∈ {1, . . . , N + 1} ∀j, k ∈ {1, . . . , N} j 6= k ⇒ xai,j 6= xai,k .

The time for solving the problems by the NRS-algorithm is given in the
table below. It was obtained at a workstation Ultra-60. The time for solving
the problems with the help of ILOG was taken from the site [12] and is also
presented in this table.

problem NRS, s ILOG, s

Queens-100 0.02 0.12

Queens-500 0.09 3.73

Queens-1000 0.21 18.94

Map-19 0.01 0.04

Map-25 0.02 0.11

Map-41 0.03 94.21

This table shows that the NRS-algorithm is highly efficient. In spite of
the fact that the NRS-algorithm does not guarantee a solution in the general
case, the experiments performed have shown that the problem of N-queens
is successfully solved at 4 ≤ N ≤ 100 000 and at all N that are multiples of
1000 such that 100 000 ≤ N ≤ 2 000 000. The problem of graph coloring is
solved successfully for all odd N such that 3 ≤ N ≤ 1499.

The compilation of the N-queens problem from a textual representation
into an internal representation of the NRS-algorithm takes most of the time
in the solution of the problem. Therefore, experiments were performed under
the condition that the constraints of the problem had been built into the
NRS-algorithm beforehand. The results obtained are presented in the table
below.

N NRS, s

100’000 0.07

500’000 0.81

1’000’000 1.78

2’000’000 3.82

3’000’000 8.86

Thus, if the constraints are built into the NRS-algorithm, we can solve
the problem of queens in approximately the same time as with the help of the
well-known algorithm QS4 (Queen Search 4) [10]. This algorithm is specially
designed to solve this problem. The algorithm QS4 needs 38 seconds to solve
a one-million-queens problem on Sparc 1 and 17 seconds on IBM RS 6000.
Sparc 1 is approximately 32 times slower than Ultra-60. That is, the time for
solving a one-million-queens problem with the help of the NRS-algorithm
on Sparc 1 is approximately 57 seconds.



54 M.Yu. Loenko

As for other methods, the heuristic repair gives the best time for solving
the problem of queens. It solves it in 90–240 seconds on Sparc 1 [5]. These
results were also obtained in implementation of a special optimization of the
algorithm allowing for the specific character of the problem being solved. The
algorithm itself, however, can also be used to solve other problems.

Thus, the experiments have shown that, in spite of its simplicity, the
NRS-algorithm is superior to the algorithms presently known on the tests
carried out in this study. To check experimentally the number of iterations
performed by the NRS-algorithm when it does not find a solution, the al-
gorithm was used to place N queens on an N × (N − 1) chessboard. The
results of the experiments are presented in the table below.

N No. of iterations (i) i/N

4 392 98.00

8 1062 132.75

16 2439 152.43

32 5098 159.31

64 10399 162.48

128 21056 164.50

256 42350 165.43

512 84847 165.72

1024 169837 165.86

2048 339851 165.94

4096 679807 165.97

It is seen from the table that the dependence of the number of iterations
on the number of variables is close to linear.

6. Conclusion

An algorithm of non-return search (the NRS-algorithm), a stochastic search
algorithm, is presented. It is designed to solve finite binary CSPs where
constraints of the “not equal” type predominate.

The experiments performed have shown that, in comparison with the
algorithms based on backtracking, the NRS-algorithm is superior when it
is used to solve the problems of large dimensions with many solutions. In
a relatively short time, the algorithm either finds a solution or terminates
its work. Although the NRS-algorithm, as most stochastic algorithms, does
not guarantee a solution, the results of experiments presented above have
shown that it still finds a solution for many problems.

In spite of the fact that the algorithm was formulated for binary CSPs, it
can be generalized for arbitrary constraints. This work is being carried out
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by the author. The NRS-algorithm is built into a scheduling system, which
is now under development.
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