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Monte Carlo methods for estimating
the time dependence during the process
of radiation transfer*

G.Z. Lotova

Let us consider the problem of estimating the reflected light intensity.
This problem arises when studying the interference of backward scattering
in laser sensing of the ocean from the atmosphere. Let ¢, be the time it
takes for the intensity to achieve some asymptotical function. In this paper,
a new method of calculating the time t, is proposed.

It is well-known [1] that the whole light intensity I(t) at the point r* at
the time ¢ is

I(t) = [ ®(r*,v,t) dv.
/

Here ®(r*,v,1) is the intensity, v is the velocity vector, V; is the solid angle
of the detector. To calculate this integral by a Monte Carlo method, it is
necessary to consider the Markov chain with states z, = (*h;9n;ts) and
apply the local estimate [1]:
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where ,,, v, and ¢, are the coordinate, the velocity, and the time in state
with number n,
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o is the reduction coefficient, o, is the scattering coefficient, w, is the indi-
catrix of scattering, Ay, is the indicator of the domain Vo, v,, is the velocity
with the new direction w}, = (v} — r,.)/|r% — 7y,
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l= lr:l _Tﬂ|’ w =‘U/|‘Ul, r(l,rn,w) =rn+£w,
;
Top (£ Tnyw) = /a(r(s,rn,w),v)ds
0

is the optical length of the particle path, Q, are the special weights [2].
It is known [1] that I(t) asymptotically behaves as follows:

I(t) ~ A5/ exp(~M) = Io(t), (1)

where A is a constant. The value ] is equal to (o —o;)v for the homogeneous
medium. From (1) we obtain
II
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whence

R(t) = = + = ~ =,

Therefore, if we calculate R(t) at a large ¢, then we can find the unknown
parameter . The time ¢, is the time at which the function R(t) approaches
a constant.

In what follows, we propose two ways of estimating the values I(t) and
I'(t) by a Monte Carlo method.

1. Assume that f(r,v,t) is distribution density of particle source, 7(r,v) is
collision estimate for the functional

J,(,O)(To,'vo).:///(pg(r,v,r;ro,vo)]h(r,v”d,-dv di
RV 0

where ¢ is distribution density of collisions that is a result of one collision
at the point (rp,vo). Let us use the following theorems [4].

Theorem 1. Suppose that the point (ro,vq) is distributed for to = 0 with
the density fo(r,v). Moreover,

f(T‘o,’Uo,t)
fo(ro, o)

<C<+o00, fe€L(RxV xT)

and foEn? € Li(R x V).
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Then the relation I1(t) = E¢; holds, where

N
b= Quhlrn, vy fT00E—t) oy (2)

n=0 fO(TOaUO)

In addition, D¢; < +o0.

Theorem 2. Suppose that the function ft(m_l)(:z:) is absolutely continuous
in t on any finite time interval for any (r,v) € R xV and | ft(')l < Cfo(r,v)
for almost all z and i = 0,1,...,m. If, moreover, the conditions of Theo-

rem 1 with substitution f — ft(m) take place, then the relation I(™) = Edm)
holds. Here

N (m) —
(m) _ f (r07vO’t tn)
t - nZ_O th(rn1 vﬂ) fg ("'0’ 'Uo) . (3)

In addition, Dﬁt(m) < +00.

Thus, we can find the values I(t) and I'(t) for sufficiently smooth distri-
bution function of the source by formulae (2) and (3).

Let us consider model problem of estimating of reflected light intensity
(2]. Simplified system “atmosphere-ocean” is defined as follows. Medium
that scattered the radiation (“ocean”) fills a half-space z < 0. Whole re-
duction coefficient is o = 0.216m ™!, scattering coefficient is o, = 0.175m ™1,
so that survival probability for “quantum” of radiation at interaction is
g = 0.81. Cosine of scattering angle u for the “quantum” is simulated by
formula [3]

1 2 ( 1—pu) )2)
= o f L e [ B0 Y = 0.9,
£ 2#0( ™ N+ 1— iy Ho

that corresponds to the known indicatrix of Henyey—Greenstein

Here a is a random value uniformly distributed in the interval (0,1). Upper
half-space z > 0 is filled by vacuum. Instantaneous source (with the depen-
dence d(t)) is located at the point with the coordinates (0,0, H) and radiate
the “quantums” in the direction w = (0,0, —1) along negative semi-axis of z.
The radiation detector registers distribution (with respect to time) of whole
particle flux at the same point (0,0, H).

The time ¢, is calculated by Monte Carlo method. In the problem men-
tioned above the parameter X is known and is equal to o.v = (0 — o,)v =
—0.009225. The calculations were made for the model with the following
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parameters (%) = 0, o) = g,, o{!) = oy, H = 5 m, v = 0.225 m/nsec. The
source angle is v = 0.001 rad. Corresponding weights have an exponential
type Qn = exp(—o.Ly,), where L, is particle length of path from entrance
to the “ocean”. Since m(:l) = 0, the trajectory can be terminated, when the
inequality Ly, + £ > vTj is achieved for some Tj. For t, estimating we use
artificial model source with fo(t) = texp(—owvt). It is clear that this way
gives overestimated value of ¢, that is satisfied for the practice.

Numerical experiment show us that ¢, is greater than ty = 370 nsec that
corresponds to dimensionless time ovt ~ 17.

The ratio of I(t) intensity to asymptotical function Iy(t):

t 3644 | 377.0 | 380.6 | 4021
I(t)/To(t) | 0.9569 | 0.9808 | 1.0032 | 1.0000

2. The method considered above is not applicable for estimating the func-
tion I(t) when the particle source is impulsive over time. This source is

practically important. Suppose that the function a§”“”(r0 + wt) is totally
continuous and o(rg+wt) = 0 for t < 0. We take advantage of direct Fourier
transform and then inverse one for the local estimate of Monte Carlo method
(4]. For the inverse Fourier transform we bound the interval of integration
by the segment [—S, S] for comparatively big value of S. We obtain that

n=0

N
2#/@(7‘*,1},15) dv~ E Z Qnhs(zy,) (4)
Vo

where
sin(S(tk —t))

n

Since the segment [—S, S] is bounded, the estimate of intensity obtained by
formula (4) have fluctuations. Therefore, it is important to calculate inte-
grals of the function I(t) over time in the intervals with the length 27/S
to the given limit Tg. Note that these integrals of the function
sin(S(t, —t))/(tn — t) can be expressed in terms of integral sine

13
f Sn(f%m dt = si(S(t®) - tn)) — si(S(EM - t,)).
(1) ¥

In order to calculate the function I'(t), it is enough to differentiate the
estimate of Monte Carlo method for I(t). For the model problem described
above the factor A in asymptotic (1) is calculated by this relation
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t+At t+At
J(t)= / I(t) dt =~ / exp(—ovt)i 5% df = Jo(t).
t t
In calculations, we use the following constants S = 2, At = 12.56637.
Computational experiments shows that ¢, is close to to = 380 nsec that
corresponds to dimensionless time ovty ~ 18. The obtained results stay in
the agreement with results in [1].
The ratio of integral of J(t) intensity to asymptotical function Jo(t):
t | 364.4 I 377.0 | 389.6 402.1

J(t)/Jo(t) | 0.9569 | 0.9808 | 1.0032 | 1.0000
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