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Graph quotients: a topological approach to graphs 

L. Vepštas 

Abstract. This paper develops general concepts useful for extracting knowledge 

embedded in large graphs or datasets that have pair-wise relationships, such as relations of 

cause-effect type. Almost no underlying assumptions are made, other than that the data can 

be presented in terms of pair-wise relationships between objects/events. This assumption is 

used to mine for patterns in a dataset defining a reduced graph or a dataset that boils-down 

or concentrates information into a more compact form. The resulting extracted structure or 

the set of patterns are manifestly symbolic in nature, as they capture and encode the graph 

structure of the dataset in terms of a (generative) grammar. 

Keywords: knowledge extraction, graph structure, type theory, natural language 

processing, link grammar, sheaf theory.  

1. Introduction 

This paper presents some definitions and a vocabulary for working with datasets 

that contain complex relationships applicable to a large variety of application 

domains. The concepts borrow from graph theory and several other areas of 

mathematics. The goal is to define a way of thinking about complex graphs, and 

how they can be simplified and condensed into simpler graphs that “concentrate” 

embedded knowledge into a more manageable size. The output of the process is a 

grammar that summarizes or captures significant or important relationships. 

The ideas described here are not terribly complex; they represent a kind-of “folk 

knowledge” generally known to a number of practitioners. However, I am not 

currently aware of any kind of presentation of this information, either in a 

review/summary form, or as a fully articulated book or text. The background 

knowledge appears to be scattered across wide domains and occur primarily in 

highly abstract settings, outside of the mainstream computer science and data 

analysis domain. Thus, this paper tries to provide an introduction to these concepts 

in a plain-spoken language. The hope is to be precise enough that there will be few 

complaints from the mathematically rigorous-minded, yet simple enough that 

“anyone” can follow through and understand. 

Some examples are provided, primarily drawn from linguistics. However, the 

concepts are generally applicable, and should prove useful for analyzing any kind 

of datasets expressed with pair-wise relationships, but containing hidden (non-

obvious) complex cause-and-effect relationships. Such datasets include genomic 

and proteomic data, social graph data, and even such social policy information. 

Consider the example of determining the effectiveness of educational curricula. 
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When teaching students, one never teaches advanced topics until foundations are 

laid. Yet many students struggle. Given raw data on a large sample of students, and 

the curricula they were subjected to, can one discern sequences and dependencies 

of cause-and-effect in this data? Can one find the most effective curriculum to 

teach, that advances the greatest number of students? Can one discover different 

classes of students, some who respond better to one style than another? My belief 

is that these questions can not only be answered, but that the framework described 

here can be used to uncover this structure. 

Another example might be the analysis of motives and actions in humans. This 

includes analysis from real life, as well as the narratives of books and movies. In a 

book setting, the author cannot easily put characters into action until some basic 

sketch of personality and motives is developed. Motives cannot be understood 

until a setting is established. If one can break down a large number of 

books/movies into pairs of related facts/scenes/remarks/actions, one can then 

extract a grammar of relationships to see exactly what is involved in the 

movement of a narrative from here to there. 

Much of this paper is devoted to stating definitions for a few key structures used 

to talk about the general problem of discerning relationships and structures. The 

definitions are inspired by and draw upon concepts from algebraic topology, but 

mostly avoid both the rigor and the difficulty of that topic. 

The definitions provide a framework, rather than an algorithm. It is up to the 

user to provide some mechanism for judging similarity, and this can be anything: 

some neural net, Bayesian net, Markov chain, or some vector space or SVM-style 

technique; the overall framework is agnostic as to these details. The goal is to 

provide a way of talking about, thinking about and presenting data so that the 

important knowledge contained in it is captured and described, boiled down to a 

manageable, workable state from a large raw dump of pair relationship data. 

Currently, the ideas described here are employed in a machine learning project 

that attempts to extract the structure of natural language in an unsupervised way. 

Thus, the primary, detailed examples will come from the natural language domain. 

The theory should be far more general than that. 

This paper resides in, accompanies source code that implements the ideas here. 

Specifically,it is in 

https://github.com/opencog/atomspace/tree/master/opencog/sheaf and it spills 

over into other files, such as https://github.com/opencog/opencog/blob/master/ 

opencog/nlp/learn/scm/gram-class.scm . This code is in active development, and it 

most likely has changed a lot since it was written. This paper is not intended to 

describe the code; rather, it is meant to describe the general underlying concepts. 

For the mathematically inclined, please be aware that the concepts described 

here touch on the tiniest tips of some very deep mathematical icebergs, 

specifically in parsing, type theory and category theory. I have no hope of 

providing the needed background, as these fields are sophisticated and immense. 

The reader is encouraged to study these on their own, especially as they are 

applied in computer science and linguistics. There are many good texts on these 

https://github.com/opencog/atomspace/tree/master/opencog/sheaf
https://github.com/opencog/opencog/blob/master/opencog/nlp/learn/scm/gram-class.scm
https://github.com/opencog/opencog/blob/master/opencog/nlp/learn/scm/gram-class.scm
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topics. 

This paper is organized as follows. The first part provides a definition of a 

“section” of a graph. A section is a lot like a subgraph, except that it explicitly 

indicates which edges were cut to form the subgraph. The next part makes use of 

this concept of “sections” to show how they can be used to talk about and 

understand pattern mining, clustering and quotienting. The next part indicates 

how such clusters can be understood to be “types” in the formal sense of the 

mathematical type theory. Next follows a brief review of the concept of parsing, as 

it applies to this context. The ability to parse is what motivates the data discovery 

to begin with: after extracting patterns from a dataset, parsing is how those 

patterns can be re-assembled. An important part of pattern mining is the ability to 

distinguish polymorphic behavior. The final part shows how the system as a 

whole can be understood to be a kind of a sheaf, borrowing a concept from a 

different branch of mathematics. 

2. Sections 

Begin with the standard definition of a graph. 

Definition. A GRAPH G=(V, E) is an ordered pair (V, E) of two sets, the first 

being the set V of vertices, and the second being the set E of edges. An edge e ϵ E 

is a pair (v1, v2) of vertices, where every vk must be a member of V. That is, edges 

in E can only connect vertices in V, and not something else.  

For directed graphs, the vertex ordering in the edge matters. For undirected 

graphs, it does not. The subsequent will mostly leave this distinction unspecified 

and allow either (or both) directed and undirected edges, as the occasion and the 

need fits. Distinguishing between directed and undirected graphs is not important, 

at this point. In most of what follows, it will usually be assumed that there are no 

edges with v1=v2 (loops that connect back to themselves) and that there is at most 

one edge connecting any given pair of vertices. These assumptions are being 

made to simplify the discussion; they are not meant to be a fundamental limitation. 

It just makes things easier to talk about and less cluttered at the start. The primary 

application does not require either construct, and it is straightforward to add 

extensions to provide these features. Similar remarks apply to graphs with labeled 

vertices or edges (such as “colored” edges, vertices or edges with numerical 

weights on them, etc). Just keep in mind that such additional markup may appear 

out of thin air, later on. 

Besides the above definition, there are other ways of defining and specifying 

graphs. The one that will be of primary interest here will be one that defines 

graphs as a collection of sections. These, in turn, are composed of seeds. 

Definition. A SEED is a vertex and the set of edges that connect to it. That is, 

it is the pair (v, Ev) where v is a single vertex, and Ev is a set of edges containing 

that vertex, i.e. that set of edges having v as one or the other endpoint. The vertex 
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v may be called the GERM of the seed. 

It should be clear that, given a graph G, one can equivalently describe it as a set 

of seeds (one simply lists all of the vertices, and all of the edges attached to 

each vertex). The converse is not “naturally” true. Consider a single seed, 

consisting of one vertex v1, and a single edge e = (v1, v2). Then the pair (V, E) 

with V = {v1} and E = {(v1, v2)} is not a graph, because v2 is missing from the 

set V. Of course, we could implicitly include v2 in the collection of vertices, but 

this is not “natural”, if one is taking the germs of the seeds to define the vertices 

of the graph. 

 Thus, given a seed, each edge in that seed has one “connected” endpoint and 

one “unconnected” endpoint. The “connected” endpoint is that endpoint that is v. 

The other end, point will commonly be called the CONNECTOR; equivalently, 

the edge can be taken to be the connector. Perhaps it should be called a half-edge, 

as one end-point is specified but missing. 

The seed can be visualized as a ball, with a bunch of sticks sticking out of it. A 

burr one might collect on one’s clothing. One can envision a seed as an analog of 

an open set in topology: the center (the germ) is part of the set, and then there are 

some more, but the boundary is not part of the set. The vertices on the 

unconnected ends of the edges are not a part of the seed. 

Just as one can cover a topological space with a collection of open sets, so 

one can also cover a graph with seeds. This analogy is firm: if one has open 

sets Ui and Uj and Ui ∩ Uj ≠∅, then one can take Ui and Uj to be vertices, and 

Ui ∩Uj to be an edge running between them. 

 

 

 

 

 

 

 

 

 

Figure 1. A seed 

More definitions are needed to advance the ideas of connecting and covering. 

Definition. A SECTION is a set of seeds. ⋄ 
It should be clear that a graph G can be expressed as a section; that section has 

a nice property that all of the germs appear once (and only once) in the set V of G, 

and that all of the edges in E appear twice, once each in two distinct seeds. This 

connectivity property motivates the following definition. 

Definition. Given a section S, a LINK is any edge (v1, v2) where both v1 and v2 

appear as germs of seeds in S. Two seeds are CONNECTED when there is a link 

between them.  
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Figure 2. Two linked (connected) seeds 

The use of links allows the concepts of paths and connectivity, taken from graph 

theory, to be imported into the current context. Thus, one can obviously define: 

Definition. A CONNECTED SECTION, or a CONTIGUOUS SECTION, is a 

section where every germ is connected to every other germ via a path through the 

edges. 
In graph theory, this would normally be called a “connected graph”, but we 

cannot fairly call it that because the seeds and sections were defined in such a way 

that they are not graphs; they only become graphs when they are fully connected. 

Nevertheless, it is fairly safe and straightforward to apply common concepts from 

graph theory. Sections are almost like graphs, but not quite. 

Note that there are two types of edges in a section: those edges that connect to 

nothing, and those edges that connect to other seeds in that section. Henceforth, 

the unconnected edges will be called connectors (as defined above), while the 

fully connected edges will be called links (also defined above). Connectors can be 

thought of as a kind-of half-edge: incomplete, missing the far end, while links are 

fully connected, whole. 

Seeds and sections can (and should!) be visualized as hedgehogs - a body with 

spines sticking out of it - the connectors can be thought of as the spiny bits 

sticking out, waiting to make a connection, while the hedgehog body is that 

collection of vertices and the fullyconnected links between them. 

 

 

 

 

 

 

 

 

 

Figure 3.  A connected section 

Implicit in the above definitions was that, during link formation, an edge is only 
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allowed to connect to another seed if and only if the connector matches the germ. 

That is, if (v1, v2) is an edge rooted in the seed for v1 and if (v3, v4) is an edge 

rooted in the seed for v3, then these two can form a link if and only if v2 = v3 and 

v4 = v1. That is, the connectors are typed: they can only connect to seeds that are 

of the same type as the unconnected end of the edge. 

This motivates a different way of looking at seeds: they can be visualized as 

jigsaw puzzle pieces, where any given tab on one jigsaw piece can fit into one and 

only one slot on another jigsaw piece. This union of a tab+slot is the link. 

Connectors must be of the same type in order to be connectable. The types of the 

connectors will later be seen to be the same thing as the types of type theory; that 

is, they are bona-fide types, in the proper sense of the word. 

 

 

Figure 4. Joining two connectors to form a link 

The jigsaw puzzle-piece illustration is not uncommon in the literature; such 

illustrations are explicitly depicted in a variety of settings [1-4]. 

Why sections? What is the point of introducing this seemingly non-standard 

approach to something that looks a lot like graph theory? There are several 

reasons. 

 From a computational viewpoint, sections have nice properties that a list 

of vertices and edges do not. Given a single seed, one “instantly” knows 

all of the edges attached to its germ: they are listed right there. By 

contrast, given only a graph description, one has to search the entire list 

E for any edges that might contain the given vertex. Computationally, 

searching large lists is inefficient, especially so for very large graphs. 

 A subset of a section is always a section. This is not the case for a 

graph: given G = (V, E), some arbitrary subset of V and some arbitrary 

subset of E do not generally form a graph; one has to apply consistency 

conditions to get a subgraph. 

 A connected section behaves very much like a seed: just as two seeds can 

be linked together to form a connected section, so also two connected 

• 

• 

• 

file:///C:/public/НЭИКОН/sheaves_V2.docx%23_bookmark1
file:///C:/public/НЭИКОН/sheaves_V2.docx%23_bookmark4
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sections can be linked together to form a larger connected section. Both 

have a body, with spines sticking out. The building blocks (seeds), and 

the things built from them (sections) have the same properties and lie in 

the same class. Thus, one has a system that is naturally “scalable” and 

allows the notions of similarity and scale invariance to be explored. 

There is no need to introduce additional concepts and constructions. 

 Given two seeds, one can always either join them (because they 

connect) or it is impossible to connect them. Either way, one knows 

immediately. Graphs, in general, cannot be joined, unless one specifies a 

subgraph in each that matches up. Locating subgraphs in a graph is 

computationally expensive; verifying subgraph isomorphism is 

computationally expensive. 

 The analogy between graphs and topology, specifically between open 

sets and seeds and the intersection of open sets and edges, allows 

concepts and tools to be borrowed from algebraic topology. 

If we stop here, not much is accomplished, other than to define a somewhat 

idiosyncratic view of graph theory. But that is not the case; the concept of seeds 

and sections is needed to pursue more complex constructions. They provide a tool 

to study natural language and other systems. 

Example: Biochemical reaction type. An example of a seed applied to the 

biochemical domain would be the phosphorylation of ADP to ATP shown in the 

figure below. 

 

The germ of the seed is the point where the semi-circle kisses the line: not 

labeled here, the germ would be succinate-CoA ligase. The connectors are labeled 

with their types, and the arrows provide directionality. The connector types clearly 

indicate what can be linked to what: this particular seed, when linked, must link to 

a source of ADP, or a source of phosphate, or a sink if ATP or a sink of hydroxyls, 

if it is to be validly linked into any part of a connected section. 

An example of a connected section would be the Krebs cycle taken as a whole: 

• 

• 
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Each distinct reaction constitutes a seed; the heavy lines forming the cycle are 

the links internal to the section, and each tangent arrow is a pair of connectors, 

with one end of the arrow being an unconnected reaction input, and the other end 

of the arrow an unconnected reaction product. Thus, for example, connector types 

include NAD, NADH, water and ATP, among others. These connectors are free to 

be attached to other seeds or sections. 

Similar concept: Link Grammar. Readers familiar with Link Grammar [1, 5] 

should have recognized seeds as being more or less the same thing as “disjuncts” 

in Link Grammar. The formal definition for Link Grammar disjuncts are a bit 

more complicated than seeds, and is expanded on in later sections. To lay that 

groundwork, however, consider an unlabelled dependency parse for the sentence 

“this is an example” shown in the figure below. 

 

Figure 5. A dependency parse decomposed into four seeds 

The dependency parse is shown as a graph with four vertices. Below, the parse 

is decomposed into the component seeds; as always, the open dots are connectors, 

the closed dots are germs. Using the notation (v, Ev) for a seed, where Ev = 
{(v,va), (v,vb),···}, these seeds can be textually written as follows: 

 

this: {(this, is+)} 
is: {(is, this-), (is, example+)}  
an: {(an, example+)} 
example: {(example, is-), (example, an-)} 
 

The above vertex: edge-list notation is a bit awkward and hard to read. A 

simpler notation conveying the same idea is 

 

this: is+; 
is: this- & example+; 
an: example+;  
example: an- & is-; 
 

file:///C:/public/НЭИКОН/sheaves_V2.docx%23_bookmark1
file:///C:/public/НЭИКОН/sheaves_V2.docx%23_bookmark5
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→ 

→ 

In both textual representations, the pluses and minuses are used to indicate 

word-order: minuses to the left, pluses to the right. This is an additional 

decoration added to the connectors, needed to indicate and preserve word-order, 

but not a part of the core definition of a seed. The ampersand is not symmetric, but 

enforces order; this is not apparent here, but is required for the proper definition. 

In Link Grammar, the objects to the right of the colon are called “disjuncts”. 

The name comes from the idea that they disjoin collocation extractions. After 

observing a large corpus, one might find that 

 

is: (this- & example+) or (banana- & fruit+) or (apple- & green+); 
 

which indicates that sentences such as “a banana is a kind of fruit” or “this apple is 

green” were observed and parsed into (unlabelled) dependencies. 

Similar concept: lambda notation. Linguistics literature sometimes describes 

similar concepts using a lambda-calculus notation. For example, one can sort-of 

envision the expression λM.xyz as a seed with the germ M and with connectors x, 

y and z. This notation has been used to express the concept of a seed, as described 

above. For example, Poon and Domingos [6] write λyλx.borders(x, y) to represent 

the attachments of the word “borders” as a synonym for “is next to”. This is 

illustrated with the verb-phrase λyλx.borders(x, y)(Idaho) which beta-reduces to 

the verb-phrase λx.borders(x, Idaho) to indicate that x is next to Idaho. The utility 

of this device becomes apparent because one can use this same notation to write 

λyλx.is_next_to(x, y) and λyλx.shares_a_border_with(x, y) as synonymous 

phrases. The lambda notation allows x and y to be exposed as connectors, while at 

the same time hiding the links that were required to assemble seeds for “next”, 

“is”, and “to” into a phrase. That is, λyλx.is_next_to(x, y) is an example of a 

connected section, having x and y as the externally exposed connectors and the 

internal links between “next”, “is”, and “to” hidden. 

The problem with this notation is that, properly speaking, lambda calculus is a 

system for generating and working with strings, not with graphs, and lambdas are 

designed to perform substitution (beta-reduction), and not for connecting things. 

That is, lambda terms are always strings of symbols, and the variables bound 

by the lambda are used to perform substitutions. To illustrate the issue, suppose 

that M above is axbyczd and suppose that λN.w = ewf. Can these be “connected” 

together, linked together like seeds? No: if one tried to “connect” N to z, one has 

the beta-reduction (λM.xyz)λN.w → λaxbycewfdxyw. There is no way to express 

some symmetric version of this, because (λN.w)λM.xyz → λeaxbyczdf.xyz which is 

hardly the same. Now, of course, lambda calculus has great expressive power, and 

one could invent a way encoding graph theory, and/or seeds, in lambda calculus; 

however, doing so would result in a verbose and complex system. It is easier to 

work with graphs directly, and just sleep peacefully with the knowledge that one 

could encode them with lambdas, if that is what your life depended on. 

Note also that there have been extensions of the ideas of lambda calculus to 
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graphs; however, those extensions cling to the fundamental concept of beta 

reduction. Thus, one works with graphs that have variables in them. Given a 

variable, one plugs in a graph in the place of that variable. The OpenCog 

(https://opencog.org/) works in exactly this way. The beta-reduction is 

fundamentally not symmetrical: putting A into B is not the same as putting B into 

A. The concept of “connecting” in a symmetric way does not arise. 

Similar concept: tensor algebra. The tensor algebra is an important 

mathematical construct underlying large parts of mathematical analysis, including 

the theory of vector spaces, the theory of Hilbert spaces, and, in physics, the theory 

of quantum mechanics. 

It has been widely noted that tensor algebras have the structure of monoidal 

categories; perhaps the most insightful and carefully explained such development 

is given by Baez and Stay [4]. The diagram of a tensor shown above is taken from 

that paper; it is a diagrammatic representation of a morphism 

f : X1⊗X2⊗X3 → Y1⊗Y2. There are several interesting operations one can do with 

tensors. One of them is the contraction of indexes between two tensors. For 

example, to multiply a matrix Mik by a vector vk, one sums over the index k to 

obtain another vector: wi = ∑k Mik vk. The matrix Mik should be understood as a 2-

tensor, having two connectors, while vectors are 1-tensors. The intent here is that 

Mik is to be literally taken as a seed with the germ M, and the connectors i and k 

on the germ. The vector vk is another seed with the germ v and connector k. The 

inner product ∑k Mik vk is a connected section. The multiplication of vectors and 

matrices is the act of connecting together connectors to form links: multiplication 

is linking. 

 

Figure 6. A tensor with three input wires and two output wires 

Tensors have additional properties and operations on them, the most important 

of which, for analysis, is their linearity. For the purposes here, the linearity is not 

important, whereas the ability to contract indexes is. The contraction of indexes, 

that is, the joining together of connectors to form links, gives tensor algebras the 

structure of a. monoidal category. This is a statement that seems simple, and yet 

carries a lot of depth. As noted above, the beta-reduction of lambda calculus also 

http://wiki.opencog.org/w/PutLink
https://en.wikipedia.org/w/Tensor_algebra
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looks like the joining together of connectors This is not accidental; rather, it is the 

side effect of the fact that the internal language of closed monoidal categories is 

simply typed lambda calculus. The words “simply typed” are meant to convey that 

there is only one type. For the above example morphism, that would mean that X1 

and X2 and so on all have the same type: X1 = X2 = X3 = Y1 = Y2. The end-points 

on the seed are NOT labeled; equivalently, they all carry the same label. This is in 

sharp contrast to the earlier example 

 

is: this- & example+; 

 

where the two connectors are labeled and have different types, which sharply 

limits what they connect to. The this- connector has the this-is and can only 

attach to another connector having the same type, namely, the is+ connector on 

“this” 

 

this: is+; 

 

It may seem strange to conflate the concept of tensors and monoidal categories 

with linguistic analysis, yet this has a rich and old history, briefly touched on in the 

next section. The core principle driving this is that the Lambek calculus, 

underpinning the categorial grammars used in linguistic analysis, can be 

embedded into a fragment of non-commutative linear logic. The remaining step is 

to recall that the linear logic is the logic of tensor categories; the non-

commutative aspect is a statement that the left and right products must be handled 

distinctly. 

Similar concept: Lambek Calculus. The foundations of categorial grammars 

date back to Lambek in 1961 [7, 8] and the interpretation in terms of tensorial 

categories proliferates explosively in modern times. One direct example can be 

found in works by Kartsaklis [9, 3], where one can find not only a detailed 

development of the tensorial approach, together with its type theory, but also 

explicit examples, such as the tensor 
 

men ⨂ built ⨂ houses  

 
together with explicit instructions on how to contract this with a different tensor 

 

ℱ(αsubj verb obj) = εW ⨂1W⨂εW 

 

to obtain the “quantization” of the sentence “men built houses”. This notation will 

not be explained here; the reader should consult [9] directly for details. The point 

to be made is that this kind of tensorial analysis can be, and is, done and often 

invokes words like “quantum” and “entanglement” to emphasize the connection to 

linear logic and linear type theory. 

Unfortunately, it is usually not clearly stated that it is only a fragment of linear 

file:///C:/public/НЭИКОН/sheaves_V2.docx%23_bookmark9
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logic and linear type theory that applies. In linguistics, it is not the linearity that is 

important, but rather the conception of frames (in the sense of Kripke frames in 

proof theory). Frames have an important property of presenting choices or 

alternatives: one can have either this or can have that. The property of having 

alternatives is described by intuitionistic logic, where the axiom of double-

negation is discarded. This either-or choice appears as the concept of a 

“multiverse” in quantum mechanics, and far more known as alternative parses in 

linguistics. 

Another worthwhile example of tensor algebra can be found in equation 13 of 

[3] reproduced below: 
  

verb  = ∑i( subject i ⨂ object i) 

 

where object I and subject i are meant to be the ith occurance of a subect/object pair 

in an observed corpus. If the corpus consisted of two sentences, “a banana is a 

kind of fruit” or “this apple is green”, then one would write 

 

verb =( banana⨂ fruit )+( apple⨂ green ), 

 

where the verb, in this case, is “is”. The control over the word order, that is, the 

left-right placement of the dependencies, is controlled by means of the pregroup 

grammar. The pregroup grammar and its compositionality properties follow 

directly from the properties of the left-division, right-division and multiplication 

in the Lambek calculus. A quick modern mathematical review of the axioms of the 

Lambek calculus can be found in Pentus [10], which also provides a proof of 

equivalence to context-free grammars. 

Similar concept: history and Bayesian inference. Some first-principles 

applications of Bayesian models to natural language explicitly make use of a 

sequential order, called the “history” of a paper [11]. That is, the probability of 

observing the n-th word of a sequence is taken to be P(wn|h), where 

h = wn−1,wn−2,… ,w1 is termed “the history”. This conception of probability is 

sharply influenced by the theory of Markov processes and finite-state machines, 

dating back to the dawn of information theory [12]. In a finite-state process 

model, the future state is predicated only on the current state, and thus the Markov 

assumption holds. In deciphering such a process, one might not know how the 

current state is correlated to the output symbol, thus leading to the concept of a 

Hidden Markov Model (HMM). The concept of “history” is well-suited for such 

analysis. Several issues, however, make this approach impractical for many 

common problems, including natural language. 

One issue, already noted, is the sequential nature of the process. One can try to 

hand-wave away this issue: given a graph of vertices, it is sufficient to write the 

vertices in some order, any order will do. This obscures the fact that n vertices have 

n! (n-factorial) possible  

file:///C:/public/НЭИКОН/sheaves_V2.docx%23_bookmark10
file:///C:/public/НЭИКОН/sheaves_V2.docx%23_bookmark12
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| 

 

 
 

Figure 7. The history of a text as a sequence of words 

 

interactions: a combinatorial explosion, when the actual data graph may have a 

much smaller number of interactions between vertices (aka “edges”). By encoding 

the known interactions as edges, a graphical approach avoids such a combinatorial 

explosion from the outset. 

Actually a sequential history model of genomic and proteomic data is 

inappropriate. Although the base pairs and amino acids come in sequences, the 

interactions between different genes and proteins are not in any way form 

sequential. The interactions are happening in parallel, in distinct, different 

physical locations in a cell. These interactions can be depicted as a graph. 

Curiously, that graph can resemble the one depicted below, although the depiction 

is meant to show something different: it is meant to show a history. 

 

 
 

Figure 8. A Viterbi parse lattice of a Markov chain 

The above depicts the lattice of a Viterbi parse of a Markov chain. The dashed 

red line depicts a maximum-likelihood path through the lattice, that is, the most 

likely history. Viterbi decoding, using an “error correcting code”, is a process by 

which the validity of the dashed red path is checked, and failing paths discarded. 

For natural language, the dashed red path must be a grammatically correct 

sequence of words. For a radio receiver, the dashed red path must be a sequence 

of bits that obey some error-correction polynomial; if it does not, the next-most-

likely path is selected. 

Each black line represents a probability pij of moving from a state i to a state j 

at the next time-step. That is, pij = P(wn = j|wn−1 = i) is the likelihood of the 

word j given the word i in the immediate past. The probabilities are arranged so 

that ∑i pi = 1. This is called a Markov model, because only the most recent state 

transitions are depicted: there are no edges connecting the nodes more than one 

time-step apart; there are no edges connecting wn to wn−2, etc. Put it differently, 
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P(wn|h) = P(wn|wn−1). That is, this depicts the use of 2-grams to predict the 

current state. 

Non-Markov models would have edges connecting nodes further in the past. 

An n-gram approach to language digs n steps into the past. If there are k states, 

and n steps into the past, then kn edges are required: that is, a rank-n tensor. Here, 

k = 4 and n = 2 are depicted; k is the number of words in natural language (say, 

k = 104 for a common subset of the English language), while n is the length of a 

longer sentence, say k = 12. In this case, the history tensor P(wn|h) has kn = 1048 

= 2160 edges. But of course, this is computationally absurd. It is also 

theoretically absurd: almost all of those edges have zero probability. Almost none 

of the edges are needed; the actual tensor is very-very sparse. 

The reason for this sparsity becomes apparent from the viewpoint of 

dependency parsing. So, for example, if wn−3 = this and wn−2 = is and wn−1 = an, a 

dependency parse will tell you that wn must be a noun starting with a vowel. It also 

tells you that, for this particular history, this noun can depend only on wn−2 and 

wn−1 but not wn−3. A collection of dependency parses obtained from a corpus 

allows you to figure out which edges matter and which do not. 

Dependency parses also give a more holistic perception of what might be going 

on in natural language. That is, the notation 

  

is =( banana⨂ fruit )+( apple⨂ green ) 

  
and 
 

is: (banana- & fruit+) or (apple- & green+); 

 

and 
 

P(wn = fruit|wn−1 = is, wn−2 = banana) + P(wn = green|wn−1 = is, 

wn−2 = apple) 

 
all represent the same knowledge, the dependency notation appears to be less 

awkward than viewing history as some Bayesian probability. The dependency 

notion focuses attention on a different part of the problem. 

Another popular way to deal at least partly with the sparsity of the history 

tensor P(wn|h) is to use skip-grams. The idea recognizes that many of the edges of 

an n-gram will be zero, and so these edges can be skipped.  This is not a bad 

approach, except that it is “simply typed”: it does not leverage the possibility that 

different words might have different types (verb, noun, ...) and that this typing 

information delivers further constraints on the structure of the skip-gram. That is, 

the notion of subj-verb-obj not only tells you that your skip-gram is effectively a 
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3-gram, but also that the first and third words belong to a class called “noun”, and 

the middle is a transitive verb. This sharply prunes the number of possibilities 

*before* the learning algorithm is launched, instead of *during* or *after*. The 

fact that such pruning is even possible is obscured by the notation and language of 

n-grams and the history P(wn|h). 
A different stumbling block of the “history” approach is that it ignores “the 

future”: the fact that the words might be said next have already influenced the 

choice of the words already spoken. This can be hand-waved away by stating that 

the history is creating a model of (hidden) mental states, and that this model 

already incorporates those, and thus is anticipating future speech actions. 

Although this might be philosophically acceptable to some degree, it again forces 

complexity onto the problem, when the complexity is not needed. If you’ve 

already got the document, look at all of it; go all the way to the end of the 

sentence. Don’t arbitrarily divide it into past and future, and discard the future. 

To summarize: dependency structures appear naturally; flattening them into 

sequences places one at a notional, computational and conceptual disadvantage, 

even if the flattening is conceptually isomorphic to the original problem. The 

tensor P(wn|h) may indeed encode all possible knowledge about the text in a 

rigorously Bayesian fashion; but it is unwieldy. 

3. Quotienting 

The intended interpretation for the graphs discussed in this paper is that they 

represent or are the result of capturing a large amount of collected raw data. From 

this data, one wants to extract commonalities and recurring patterns. 

The core assumption being made in this section is that, when two local 

neighborhoods of a graph are similar or identical, then this reflects some 

important similarity in the raw data. That is, similarity of subgraphs is the be-all 

and end-all of extracting knowledge from the larger graph, and the primary goal is 

to search for, mine, such similar subgraphs. 

Exactly what it means to be “similar” is not defined here; this is up to the user. 

Similarity could mean subgraph isomorphism, or subgraph homomorphism, or 

something else: some sort of “close-enough” similarity property involving the 

shape of the graph, the connections made, the colors, directions, labels and 

weights on the vertices or edges. The precise details do not matter. However, it is 

assumed that the user can provide some algorithm for finding such similarities, 

and that the similarities can be understood as a kind-of “equivalence relation”. 

Example of similarity. To motivate this, consider the following scenario. One 

has a large graph, some dense mesh, and one decides, via some external decision 

process, that two vertices are similar. One particularly good reason to think that 

they are similar is that they share a lot of nearest neighbors. In a social graph, one 

might say they have a lot of friends in common. In genomic or proteomic data, 
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they may interact with the same kinds of genes/proteins. In natural language, they 

might be words that are synonyms, and thus get used the same way across many 

different sentences; specifically, the syntactic dependency parse links these words 

to the same set of heads and dependents. At any rate, one has a large graph, and 

some sort of equivalence operation that can decide if two vertices are the “same” 

are not in any way, shape, or form sequential or are “similar enough”. Whenever 

one has an equivalence relation, one can apply it to obtain a quotient, of grouping 

together into an identity all things that are the same. 

To make this even more concrete, consider this example from linguistics. 

Suppose, given a corpus, one has observed three sentences: “Mary walked home”, 

“Mary ran home” and “Mary drove home”. A dependency parse provides three 

seeds: 

 

walked: Mary- & home+;  

ran: Mary- & home+; 

drove: Mary- & home+; 

 

which seem to be begging for an equivalence relation that will reduce these to 
 

walked ran drove: Mary- & home+; 
 

Using a tensorial notation, one starts with 
  

Mary⨂ walked ⨂ home + Mary⨂ ran  ⨂ home + Mary⨂ drove  ⨂ home  

 
and applies the equivalence relation to obtain 
 

Mary⨂ ( walked + ran + drove )⨂ home  

 
The structure here strongly resembles the application of the distributive law of 

multiplication over addition. This distributivity property is one of the appeals of 

the tensor notation.  

One can obtain a similar sense of distributivity by using the operator “or” to 

separate the Link Grammar style stanzas, and note that the change also appears to 

be an application of the distributive law of conjunction over disjunction. 

This is illustrated pictorially below. 

It need not be the case that an equivalence relation is staring us in the face, yet 

here, it is. The vertices “walked”, “ran” and “drove” can be considered similar, 

precisely because they have the same neighbors. The upper graph can be 

simplified by computing a quotient, 
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∼ 

 

 

Figure 9. Creating a quotient graph 

shown in the lower part: the quotient merges these three similar vertices into one. 

The result is not only a simpler graph, but also some vague sense that “walked”, 

“ran” and “drove” are synonymous in some way. 

 

Quotienting. If one has an equivalence relation that can be applied to a graph, 

then the obvious urge is to attempt to perform quotienting on the graph. That is, to 

create a new graph, where the “equal” parts are merged into one. 

The first issue to be cleared out of the way is the use of the word “quotienting”, 

which seems awkward, since the example above seemed to involve some sort of 

factoring, or the application of a distributive law of some sort. The terminology 

comes from modulo arithmetic, and is in wide use in all branches of mathematics. 

A simple example is the idea of dividing by three: given the set of integers Z, one 

partitions it into three sets: the set0,3,6,9,…, the set 1,4,7,… and the set 

2,5,8,…. These three sets are termed the cosets of 0,1 and 2, and all elements in 

each set are considered to be equal, in the sense that, for any m and n in any one of 

these sets, it is always true that m=n mod3: they are equal modulo 3. In this way, 

one obtains the quotient set Z3 = Z/3Z = Z/mod 3 = 0, 1, 2. Modulo 

arithmetic resembles division, ergo the term “quotient”. 

Given a set S and an equivalence relation ~, it is common to write the quotient 

set as Q = S/~ . In the above, S was Z and ~ was mod 3. In general, one looks 

for and works with equivalence relations that preserve desirable algebraic 

properties of the set, while removing undesirable or pointless distinctions. In the 

modulo arithmetic example, addition is preserved: it is well defined and works as 

expected. In the linguistic example, the subj-verb-obj structure of the sentence is 

preserved; the quotienting removes the “pointless” distinction between different 

https://en.wikipedia.org/wiki/Quotient


 L. Vepštas                                  72 

→ 

verbs. 

Quotienting is often described in terms of homomorphisms, functions f : S → Q 

that preserve the algebraic operations on S. For example, if m: S×S×S → S is a 

three-argument endomorphism on S, one expects that f preserves it: f (m(a, b, 

c)) = m(f (a), f (b), f (c)). For the previous example, if m was used to provide or 

identify a subj-verb-obj relationship, then, after quotienting, one expects that m 

can still identify the verb-slot correctly. 

 

Graph quotients. In graph theory, the notion of quotienting is often referred to 

as working “relative to a subgraph”. Given a graph G and a subgraph A  G, one 

“draws a dotted line” or places a balloon around the vertices and edges in A, but 

preserves all of the edges coming out of A and going into G. The internal structure 

of A is then ignored. The equivalence relation makes all elements of A equivalent, 

so that A behaves as if it were a single vertex, with assorted edges attached to it, 

running from A to the rest of G. 

 

Stalks. Given the above notion of a graph quotient, it can be brought over to 

the language of seeds and sections established earlier. 

Given two vertices va and vb, let sa and sb be the corresponding seeds, as 

defined previously. That is, s = (v, Ev) with Ev being the set of edges connecting v 

to all of its nearest neighbors. Consider now creating the object ( va,vb, Eab). 
This is no longer a seed, as the first item is no longer a single vertex, but a set of 

vertices. The set Eab is still a set of edges, depending on the two initial sets of 

edges Ea and Eb. The precise definition of Eab is not given: it might be the union 

of Ea and Eb, or the intersection, or some other function. In general, one writes 

Eab = f (Ea, Eb) for some function f . It is typically desirable for f to be both 

commutative and associative, so that f (Ea, Eb) = f (Eb, Ea) and 

f (f (Ea,b), Ec) = f (Ea, f (Eb, Ec)) = f (Ea, Eb, Ec). 
The mashing together of several vertices creates a structure resembling a graph 

quotient, as described above. This will be called a stalk in what follows. The stalk 

is defined in such a way that it is not actually a graph quotient; it merely resembles 

one. It is a partial step on the way to a graph quotient. The definition asks that the 

internal structure of the stalk be preserved. One obtains a true graph quotient only 

after projecting the stalk down to a base space. 

Definition. A STALK is an ordered pair S = (V, E) of vertices and edges such 

that every edge in E has one endpoint being a vertex in V and the other endpoint 

being a vertex not in V . That is, each edge in E is a connector, and no edge in E is 

a link (back into V ). 
This definition of a stalk is meant to be a straightforward generalization of the 

previously defined seed, replacing the germ vertex by a germ that is a set of 

vertices. Stalks can be linked together, much as seeds are: 

Definition. A LINK between two different stalks Sa = (Va, Ea) and 

Sb = (Vb, Eb) is any edge e = (v1, v2) running between them, viz. where v1Va 
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and v2Vb and eEa and eEb . Two stalks are CONNECTED when there are one 

or more links between them.  
It is convenient (it is suggested) that the vertices in the stalk be visualized as 

being stacked one on top another, forming a tower or a fiber, with the edges 

sticking out as spines. Perhaps one can visualize a kind-of melted stack of jigsaw-

puzzle pieces. This visualization is suggested only to enforce the idea that two 

different stalks project down to two different base-points. In particular, one now 

can have the notion of a meta-graph where each stalk is a vertex, and each link is 

an edge. That is, if one flattens the meta-graph down to two dimensions, then one 

can imagine a stalk growing up as a pole above each meta-vertex, and each meta-

edge as being the projection of a link between two stalks. To maintain consistency 

with standard mathematical terminology, this meta-graph should really be called a 

“base space”, and the stalks and links project down onto it in the usual sense. 

The notion of projection can be formalized. 

Definition. A projection π is a function that accepts a stalk S = (V, E) and 

produces a seed s = (b, E’) such that for each vV it produces b, and for each edge 

(v, w)E it produces the edge (b, w)E 
’
. That is π(v,(v, w)) = (b,(b, w)). By 

abuse of notation, one may write π(v) = b so that π(v, (v, w)) = (π(v) , π(v) , w).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. A stalk and its projection 

The desirable properties of the projection can be summarized in a lemma: 

Lemma. The projection function π is a morphism of graphs, taking a 

graph and mapping it to a quotient graph. ⋄ 
The proof of the lemma is left to the reader, in the hopes that it is self-evident. 

An actual proof requires a few additional definitions, as follows. 

The projection down to a base space suggests that the equivalence relation on 
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vertices can be extended to an equivalence relation on edges: two edges are 

equivalent if they form the same link. That is, one has an equivalence class of 

edges: 

Definition. A LINK between two different stalks Sa = (Va, Ea) and Sb = (Vb, 

Eb) is the set l = {ek} of all edges ek that connect some pair of vertices in Va 

and Vb. That is, every ek = (vk1, vk2) in L has the property that vk1Va and vk2Vb 

and ekEa and ekEb.  
This redefines the notion of a link. Perhaps it should be given a different name, 

but it should be OK, because the intended sense should be clear from the context. 

This allows us to redefine the notion of a stalk as well: 

Definition. A STALK is an ordered pair S = (V, L) of vertices and links such 

that every link in L has one endpoint that is V and the other endpoint not being V . 

That is, each link in L is a connector or half-edge. ⋄ 
One then has an obvious lemma about the projection. 

Lemma. The projection function π can be extended consistently to the 
revised definition of a stalk.  

As before, the proof is left as being obvious. 

Sheaves 

The above definitions, along with the projection function, 

indicate that stalks can be thought of as seeds. The stalk 

preserves the graph structure; the projection creates graph 

quotients. The above finally allows the definition of a section to 

be understood in a way that is in keeping with the usual notion of 

a section as commonly defined in covering spaces and fiber 

bundles. 

Definition. A sheaf is a graph G represented as a collection 

of seeds, together with a projection function π that can be taken 

to be an equivalence relation. That is, π maps G to a quotient 

graph G/π such that, for each pair of vertices v, wG, one has 

π(v) = π(w) if and only if v, w are in germs in the same stalk 

and, for any pair of edges e, e
j
G, one has π(e)=π(e’) if and 

only if the pair e, e’ are connectors in the same stalk.  

 

Figure 11. Corn 

 
The formal definition of a sheaf also requires that it obeys a set of axioms, 

called the gluing axioms. Before giving these, it is useful to look at an example. 

Example: collocations. A canonical first step in corpus linguistics is to align 
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text around a shared word or phrase: 
    fly like a butterfly 

airplanes that  fly 

    fly fishing 

    fly away home 

    fly ash in concrete 

when sparks   fly 

let’s    fly a kite  

learn to    fly  helicopters 

 

Each word is meant to be a vertex; edges are assumed to connect the vertices 

together in some way. In standard corpus linguistics, the edges are always taken to 

join together neighboring words, in a sequential fashion. Note that each phrase in 

the collocation obeys the formal definition of a section given above. It does so 

trivially: it is just a linear sequence of vertices connected with edges. If the 

collocated phrases are chopped up so that they form a word-sequence that is 

exactly n words long, then one calls that sequence an n-gram. 

The projection function π is now also equally plain: it simply maps all of the 

distinct occurrences of the word “fly” down to a single, generic word “fly”. The 

stalk is just the vertical arrangement of the word “fly”, one above another. Each 

phrase or section can  be visualized as a botanical branch or botanical leaf 

branching off the central stalk. The projection of the stalk is shown below. The 

words in each phrase are connected as a linear sequence. Identical words are 

projected down to a common base point. 

The sections do not have to be linear sequences; the phrases can be parsed with 

a dependency parser of one style or another, in which case the words are joined 

with (directed) edges that denote dependencies. Parsing with a head-phrase parser 

introduces additional vertices, typically called NP, VP, S, and so on. The next 

figure shows the projection that results from alignment on an (unlabeled, 

undirected) dependency parse of the text. Most noticeable is that the determiner 

“a” does not link to “fly” even though it stands next to it; instead, the determiner 

links to the noun it determines. This figure also shows “ash” as modifying “fly”, 

which, as a dependency, is not exactly correct but does serve to illustrate the 

difference between the N-gram and the dependency alignment. 

Both of these figures represent a quotient graph that results from a corpus 

alignment, where all uses of a word have been collapsed (projected down) to a 

single node. The resulting graph is the graph of the language. 

Why sheaves? Are projections useful? Yes. A collapsed graph like that might 

appear strange; why would one want to do that, if one has individual sentence 

data? 
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Figure 12. N-gram corpus text alignment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13. Dependency parse corpus text alignment 

By collapsing in this way, one obtains a natural place to store marginal 

distributions. For example, when accumulating statistics for large collections of 

sentences, the projected vertex becomes an ideal place to store the frequency count 

of that word; the edge becomes an excellent place to store the joint probability or 

the mutual information for a pair of words. The projected graph – the quotient 

graph – is manageable in size. For example, in a corpus consisting of ten million 

sentences, one might see 130K distinct, unique words (130K vertices) and 

perhaps 5 million distinct word-pairs (5M edges). Such a graph is manageable and 

can fit into the RAM of a contemporary computer. 

By contrast, storing the individual parses for 10 million sentences is more 

challenging. Assuming 15 words per sentence, this requires storing 150M vertices 

and approximately 20 links per sentence for 200M edges. This graph is two orders 

https://en.wikipedia.org/wiki/Marginal_distribution
https://en.wikipedia.org/wiki/Marginal_distribution
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of magnitude larger than the quotient graph. It makes sense to collapse the stalks 

down to their projections as soon as possible. They can be envisioned to still be 

there, virtually, in principle, but the actual storage can be avoided. 

 

 

Figure 14. A sheaf of stalks; a sheaf of paper 

 

Every graph can be represented as an adjacency matrix. In this example, it 

would be a sparse matrix with 5 million non-zero entries out of 130K total. The 

marginals stored with the graph can be accessed as marginals in the normal sense 

of values written in the margin of the matrix. Standard linear-algebra tools, such 

as the R programming language, can access the matrix and the marginals. 

One way of visualizing the sheaf is as a stack of sheets of paper, with one 

sentence written on each sheet. The papers are stacked in such a way that words 

that are the same are always vertically above one-another. This stacking is where 

the term “sheaf” comes from. Each single sheet of paper is a section. Each 

collocation is a stalk. 

A different example can be taken from biochemistry. There, one might want to 

write down specific pathways or interaction networks on the individual sheets of 

paper, treating them as sections. If one specific gene is up-regulated, one can then 

try to view everything else that changed as belonging to the same section, as if it 

were an activation mode within the global network graph of all possible 

interactions. Thus, for example, the Krebs cycle can be taken to be a single section 

through the network: it shows exactly which coenzymes are active in aerobic 

metabolism. The same substrates, products and enzymes may also participate in 

other pathways; those other pathways should be considered as other sections 

through the sheaf. Each substrate, enzyme or product is itself a stalk. Each 

reaction type is a seed. 

The sheaf, its decomposition into sections and its projection down to a single 

base unified network, provides a holistic view of a network of interactions. 



 L. Vepštas                                  78 

Activations or modes of the network correspond to grammatically valid sentences, 

when the network is a language network. Sections correspond to activated 

biological pathways, when the network is a map of biochemical interactions. 

Gluing Axioms. Sections can be cut down, or they can be enlarged, yet each 

section must consist of a grammatically-correct sentence, phrase (or paragraph, or 

larger! ... or smaller, just a sentence fragment). The base space consists simply of 

individual words in a language, each word being a vertex, connections between 

words being projections of the connections discovered from the N-grams, or 

dependency graphs, as the case may be. One can examine how the language 

structure changes as words are removed from the base space: such changes 

correspond to the “restriction morphisms” of a sheaf. These restriction morphisms 

obey all of the axioms of a sheaf; this observation is what drives the peculiar 

naming convention given here. The reason this “works”, that the axioms apply, is 

in fact rather shallow: it is because the seeds, as initially defined, behave very 

much like open sets, and when they are projected to the base space, they serve to 

cover the base space, much as a topological covering does. 

The restriction morphisms appear to continue to satisfy the sheaf axioms even 

after projection (at least, at the informal level given here). 

Why sheaves? The primary reason for introducing this notion is to consolidate 

the otherwise vague idea of a “language graph”. One has dueling notions: the 

graph of all sentences; the generative power of grammars. Surface realizations of 

language are studied in corpus linguistics, where differences in regional dialects, 

differences according to socio-economic status and politically motivated 

differences are found. However, these surface realizations are almost never refined 

into a grammar, and thus, one does not obtain a generative model of how different 

speakers in different socio-economic classes speak: corpus linguistics examples 

are just that: examples that are not further refined. By applying a pattern mining 

approach, the underlying grammar can be discovered computationally. But what 

is it, really, that is being discovered, other than some collection of grammatical 

classes and relations? By looking at the collection of all words, sentences and 

paragraphs in a corpus as if it were a sheaf, one gets a more “holistic” view of 

what language is: one can start seeing a “big picture” instead of just the trees. This 

holistic view is the primary point of this exercise. 

Related ideas. As before, the “sections” presented above (sentence fragments) 

are presented minimally. In practice, sections will be adorned with additional 

information, such as frequency counts and mutual information values. Once 

clustering and quotienting have been performed, non-trivial type tags become 

available. 

4. Clustering 

typical bullshit 
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Why clustering? foo  

x 

x 

 

By contrast, the goal here is not to talk about a graph G relative to just a single A, 

but relative to a huge number of different A’s. What’s more, the internal structure 

of these A’s will continue to be interesting, and so is carried onwards. Finally, the 

act of merging together multiple vertices into one A may result in some of the 

existing edges being cut or new edges being created. The clustering operation 

applied to the graph alters the graph structure. These considerations are what 

makes it convenient to abandon the traditional graph theory and to replace it by 

the notion of sheaves and sections. 

The above establishes a vocabulary, a means for talking about the clustering of 

similar things on graphs. It does not suggest how to cluster. Without this 

vocabulary, it can be very confusing to visualize and talk about what is meant by 

clustering on a graph. It is worth reviewing some examples. 

 In a social graph, a cluster might be a clique of friends. By placing 

these friends into one group, the stalk allows you to examine how 

different groups interact with one another. 

 In proteomic or genomic data, if one can group together similar 

proteins or genes into clusters, one can accomplish a form of 

dimensional reduction, simplifying the network model of the dataset. It 

provides a way to formalize network construction, without the bad smell 

of ad-hoc simplifications. 

 In linguistic data, the natural clustering is that of words that behave in a 

similar syntactic fashion; such clusters are commonly called 

“grammatical classes” or “parts of speech”. In particular, it allows one 

to visualize language as a graph. So: consider, for example, the set of 

all dependency parses of all sentences in some corpus, say Wikipedia. 

Each dependency parse is a tree; the vertices are words, and the edges 

are the dependencies. Taken as a graph, this is a huge graph, with words 

connecting to other words, all over the place.  It is not terribly 

interesting in this raw state, because it is overwhelmingly large. 

However, we might notice that all sentences containing the word “dish” 

resemble all sentences containing the word “plate”; that these two 

words always get used in a similar or the same way. Grouping these 

two words together into one reduces the size of the graph by one vertex. 

Aggressively merging similar words together can sharply shrink the 

size of the graph to a manageable size. One gets something more: the 

resulting graph can be understood as encapsulating the structure of the 

English language. 

This last example is worth expanding on. Two things happen when the 

compressed graph is created. First, that graph encodes the syntactic structure of the 

language: the links between grammatical classes indicate how words can be 

• 

• 

• 
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arranged into grammatically correct sentences. Second, the amount of 

compression applied can reveal different kinds of structures. With extremely heavy 

compression, one might discover only the crudest parts of speech: determiners, 

adjectives, nouns, transitive and intransitive verbs. All these classes are distinct, 

because they link differently. However, if instead, a lot less compression is 

applied, then one can discover synonymous words: so, “plate” and “dish” might 

be grouped together, possibly with “saucer”, but not with “cup”. Here, one is 

extracting a semantic grouping, rather than a syntactic grouping. 

So, the answer to “why clustering?” is that it allows information to be extracted 

from a graph, and encoded in a useful, usable fashion. No attempt is made here to 

suggest how to cluster; merely, that if an equivalence relation is available and if it 

is employed wisely, then one can construct quotient graphs that encode important 

relationships of the original, raw graph. 

Similar concepts. One can think of a stalk as a kind of hypergraph, but this 

view does not seem to be particularly productive. 

5. Types 

It is notationally awkward to have to write stalks in terms of the sets of vertices that 

they are composed of; it is convenient to instead replace each set by a symbol. The 

symbol will be called a TYPE. As it happens, these types can be seen to be the 

same things occurring in the study of type theory; the name is justified. 

The core idea can be illustrated with Link Grammar as an example. The Link 

Grammar disjuncts are one and the same thing as stalks. It is worth making this 

very explicit. A subset of the Link Grammar English dictionary looks like this: 

 

cat dog: D- & S+;  

the a: D+; 

ran: S-; 

 

This states that “cat” and “dog” are both vertices, and they are in the same 

stalk. That stalk has two connectors: D- and S+, which encode the other stalks 

that can be connected to. So, the D+ can be connected to the D- to form a link. 

The link has the form ({the, a}, 

{cat, dog}) and the connector symbols D+ and D- act as abbreviations for the 

vertex sets that the unconnected end can connect to. The + and - symbols indicate 

directionality: to the right or to the left. They capture the notion that, in English, 

the word-order matters. To properly explain the + and -, we should have to go 

back to the definition of a graph on the very first page and introduce the notion of 

left-right order among the vertices. Doing so from the very beginning would do 

nothing but clutter up the presentation, so that is not done. The reader is now 

invited to treat the initial definition of the graph as a monad: there are additional 
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details “under the covers”, but they are wrapped up and ignored, and only the 

relevant bits are exposed. Perhaps the vertices had a color. Perhaps they had a 

name, or a numerical weight; this is ignored. Here, we unwrap the idea that the 

vertices must be organized in a left-right order. It is sufficient, for now, to leave it 

at that. 
 

 

 

Figure 15. Three stalks and two typed links 

The three stalks here encode a set of grammatically valid English language 

sentences. Hooking together the S- and S+ connectors to form an S link, one 

obtains the sequence [{the, a} {cat, dog} {ran}]. This can be used to generate 

grammatically valid sentences: pick one word from each set, and one gets a valid 

sentence. Alternatively, this structure can be taken to encode the sum-total 

knowledge about this toy language: it is a kind-of graphical representation of the 

entire language, viewed as a whole. 

Definition. Given a stalk S = (V, L), the CONNECTOR TYPE of L is a 

symbol that can be used as a synonym for the set L. It serves as a short-hand 

notation for L itself. ⋄ 
Just as in type theory, a type can be viewed as a set. Yet, just as in type theory, 

this is the wrong viewpoint: a type is better understood as expressing a property: 

it is an intensional, rather than an extensional description. Formally, in the case of 

finite sets, this may feel like splitting hairs. For an intuitive understanding, 

however, it is useful to think of a type as a property carried by an object, not just 

the class that the object can be assigned to. 

Why types? Types are introduced here primarily as a convenience for working 

with stalks. They are labels, but they can be useful. Re-examining the examples: 

 

 In a social graph, one group of friends might be called “students” and 

another group of friends might be called “teachers”. The class labels 

are useful for noting the function and relationship of the different social 

groups. 

 In a genetic regulatory network, sub-networks can be classified as 

"positive regulatory pathways" or "negative regulatory pathways" with 

respect to the activation of a particular gene. 

 

• 

• 



 L. Vepštas                                  82 

These examples suggest that the use of types is little more than a convenient 

labeling system. In fact, more can be made here, as types interact strongly with 

category theory: types are used to describe the internal language of monoidal 

categories. But this is a rather abstract viewpoint, of no immediate short-term use. 

Suffice it to say that appearance of types in grammatical analysis of a language is 

not accidental. 

What kind of information do types carry? The above example oversimplifies the 

notion of types, presenting them as a purely syntactic device. In practice, types also 

carry semantic information. The amount of semantic information varies inversely 

to the broadness of the type. In language, coarse-grained types (noun, verb) carry 

almost no semantic information. Fine-grained types carry much more: a “transitive 

verb taking a particle and an indirect object” is quite specific: it must be some 

action that can be performed on some object using some tool in some fashion. An 

example would be “John sang a song to Mary on his guitar”: there is a what, who 

and how yoked together in the verb “sang”. The more fine-grained the 

classification, the more semantic content is contained in it. 

This suggests that the proper approach is hierarchical: a fine-grained clustering, 

that captures the semantic content, followed by a coarser clustering, that erases 

much of this, leaving behind only the syntactic” content. 

6. Parsing 

The introduction remarked that not every collection of seeds can be assembled in 

such a way as to create a valid graph. This idea can be firmed up and defined 

more carefully. Generically, a valid assembly of seeds is called a parse, and the 

act of assembling them is called parsing, which is done by parse algorithms. To 

illustrate the process, consider the following two seeds: 

 

v2 : {(v2, v1) , (v2, v3)} 

v3 : {(v3, v2)} 

 
Represented graphically, these seeds are 
 

 

 

Figure 16. Two unconnected seeds 

The connector (half-edge) (v2, v3) appears with both polarities and can be 

linked together to form a link. The connector (v2, v1) has nothing to connect to. 

Even after maximally linking these two seeds, one does not obtain a valid graph: 
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the vertex v1 is missing from the vertex set of the graph, even though there is an 

edge ready to attach to it. This provides an example of a failed parse. It is enough 

to add the seed v1: (v1, v2) to convert this into a successful parse. Adding this seed 

and then attempting to maximally link it results in a valid graph; the parse is 

successful. 

Note the minor change in notation: the colon is used as a separator, with the 

germ appearing on the left and the set of connectors on the right. The relevance of 

this notational change becomes more apparent, if we label the vertices in a funny 

way: let v1 carry the label “the”, v2 carry the label “dog” and v3 carry the label 

“ran”. The failed parse is meant to illustrate that “dog ran” is not a grammatically 

valid sentence, whereas “the dog ran” is. 

Converting these seeds to also enforce the left-right word order requires the 

notation 
 

 

 

 

 

 

 

Figure 17. Parsing is the creation of links 

the: {(the, dog+)} 

dog: {(dog, the-), (dog, ran+)}  

ran: {(ran, dog-)} 

 

This notation is verbose and slightly confusing. Repeating the germ as the first 

vertex in every connector is entirely unnecessary. Write instead: 

 

the: { dog+ }  

dog: { the-, ran+} 

ran: { dog- } 

 

The set-builder notation is unneeded and perhaps slightly confusing. In 

particular, the word “dog” has two connectors on it; both must be connected to 

obtain a valid parse. The ampersand can be used to indicate the requirement that 

both connectors are required. This notation will also be useful in the next section. 

 

the: dog+ ; 

dog: the- & ran+; 

ran: dog-; 
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This brings us almost back to the previous section, but not quite. Here, we are 

working with seeds; previously we worked with stalks. Here, the connector type 

labels were not employed. In the real-world use-cases, using stalks and type labels 

is much more convenient. 

This now brings us to a first draft of a parse algorithm. Given an input set of 

vertices, it attempts to find a graph that is able to connect all of them. 

(1) Provide a dictionary D consisting of a set of unconnected stalks. 
(2) Input a set of vertices V = {v1, v2,…, vk. 

(3) For each vertex in V, locate a stalk which contains that vertex in its 

germ. 

(4) Attempt to connect all connectors in the selected stalks. 
(5) If all connectors can be connected, the parse is successful; else the 

parse fails. 
(6) Print the resulting graph. This graph can be described as a pair 

(V, E) with V the input set of vertices, and E the set of links 

obtained from fully connecting the selected stalks. 

The above algorithm is “generic” and does not suggest any optimal strategy for 

the crucial steps 3 or 4. It also omits discussion of any further constraints that 

might need to be applied: perhaps the edges need to be directed; perhaps the 

resulting graph must be a planar graph (no intersecting edges); perhaps the graph 

must be a minimum spanning tree; perhaps the input vertices must be arranged in a 

linear order. These are additional constraints that will typically be required in 

some specific application. 

 

Why parsing? The benefit of parsing for the analysis of the structure of natural 

language is well established. Thus, an example of parsing in a non-linguistic 

domain is useful. Consider having used the above graph compression or vertex-

edge clustering techniques to obtain a collection of stalks that describe genomic 

interactions. This collection provides the initial dictionary D. Now imagine a 

process where a certain specific set of genes are associated with some particular 

trait or reaction. Is this a complete set? Can it be said that their interactions are 

fully understood? 

One way to answer these last two questions would be to apply the parse 

algorithm, using the known dictionary, to see if a complete interaction network 

can be obtained. If so, then this new specific gene-set fits the general pattern. If 

not, if a complete parse cannot be found, then one strongly suspects that there 

remain one or more genes, yet undetermined, that also play a role in the trait. To 

find these, one might examine the stalks that might have been required to complete 

the parse: these will give hints as to the specific type of gene, or the style of 

interaction to search for. 

Thus, parsing new gene expressions and pathways offers a way of discovering 

whether they resemble existing, known pathways, or whether they are truly novel. 

If they seem novel, parsing also gives strong hints as to where to look for any 
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missing pieces or interactions. 

Is this really parsing? The above description of parsing is sufficiently different 

from standard textbook expositions of natural language parsing that some form of 

an apology needs to be written. 

The first step is to observe that the presented algorithm is essentially a 

simplified, generalized variation of the Link Grammar parsing algorithm [5]. The 

generalization consists in the removal of word-order and link-crossing constraints. 

The second step is to observe that the theory of Link Grammar is more or less 

isomorphic to the theory of pregroup grammars [3] (see Wikipedia), the primary 

differences being notational. The left-right directional Link Grammar connectors 

correspond to the left and right adjoints in a pregroup. A Link Grammar disjunct 

(that is, a seed) corresponds to a sequence of types in a pregroup grammar. The 

correspondence is more or less direct, except that Link Grammar is notationally 

simpler to work with. 

The third step is to observe that the Link Grammar is a form of dependency 

grammar. Although the original Link Grammar formulation uses undirected links, 

it is straight-forward and unambiguous to mark up the links with head-dependent 

directional arrows. 

The fourth step is to realize that dependency grammars (DG) and head-phrase-

structure grammars (HPSG) are essentially isomorphic. Given one, one can obtain 

the other in a purely mechanistic way. 

The final step is to realize that most introductory textbooks describe parsers for 

a context-free grammar, and that, for general instructional purposes, such parsers 

are sufficient to work with HPSG. The primary issue with HPSG and context-free 

language parsers is that they obscure the notion of linking together pieces; this is 

one reason why dependency grammars are often favored: they make clear that it is 

the linkage between various words that has a primary psychological role in the 

human understanding of language. It should be noted that many researchers in the 

psychology of linguistics are particularly drawn to the categorial grammars; these 

are quite similar to the pregroup grammars and are more closely related to Link 

Grammar than to the phrase-structure grammars. 
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Figure 18.  Polymorphism 

This figure illustrates a polymorphic assignment for the word “fly”. It is split 

into two parts: the first, a noun, classed with other nouns, showing labeled 

connectors to determiners, adjectives, and a connector showing that nouns can act 

as the subject of a verb. The second class shows labeled connectors to subjects 

and objects, as is appropriate for transitive verbs. Underneath are the flattened raw 

seeds, showing the words “fly” and “cat” and the myriad of connectors on them. 

The flattened seeds cannot lead to grammatical linkages, as they mash together 

into one the connectors for different parts of speech. 

7. Polymorphism 

Any given vertex may participate in two or more seeds, independently from one-

another. It is this statement that further sharpens the departure from naive graph 

theory. This is best illustrated by a practical example. 

Consider a large graph constructed from a large corpus of English language 

sentences. As subgraphs, it might contain the two sentences “A big fly landed on 

his nose” and “It will fly home”. The vertex “fly” occurs as a noun (the subject, 

with the determiner and adjective) in one sentence, and a verb (with the subject 

and object) in the other. Suppose that the equivalence relation described in the 

clustering section also has the power to discern that this one word should really be 

split into two, namely flynoun and flyverb, and placed into two different stalks, 

namely, in the “noun” stalk in the first case, and the “verb” stalk in the second. 

Recall that these two stalks must be different, because the kinds of connectors that 

are allowed on a noun must necessarily be quite different from those on a verb. 

One is then led to the image shown in Figure 18. 

The point of the figure is to illustrate that, although the “base graph” may not 
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distinguish one variant of a vertex from another, it is important to discover, 

extract and represent this difference. The concept of “polymorphism” applies, 

because the base vertex behaves as one of several distinct types in practice. There 

are several ways the above diagram can be represented textually. As before, the 

Link Grammar-style notation is used, as it is fairly clear and direct. One 

representation would be to expose the polymorphism only in the connectors, and 

not in the base vertex label: 

 
fly:(DET- & ADJ- & SUBJ+) or (SUBJ- & OBJ+); 

 

A different possibility is to promptly split the vertex label into two, and ignore 

the subscript during the parsing stage: 

 
fly.noun cat: (DET- & ADJ- & SUBJ+); 

fly.verb walk: (SUBJ-  OBJ+); 

 

Either way, the non-subscripted version of fly behaves in a polymorphic 

fashion. 

Note that the use of the notation “or” to disjoin the possibilities denotes a choice 

function, and not a boolean “or”. That is, one can choose either one form, or the 

other; one cannot choose both. During the parse, both possibilities need to be 

considered, but only one selected in the end. This implies that at least some 

fragment of linear logic is at play, and not boolean logic (this should be expanded 

upon in future drafts). 

Similar concept: part of speech. It is tempting to identify the connectors DET, 

ADJ, SUBJ, OBJ in the diagrams above with “parts of speech”. This would be a 

mistake. In conventional grammatical analysis, there are half-a-dozen or a dozen 

parts of speech that are recognized: noun, verb, adjective, and so on. By contrast, 

these connector types indicate a grammatical role. That is, the disjunct SUBJ-

 & OBJ+ indicates a word that takes both a subject and an object: a transitive 

verb. That is, the disjunct is in essence a fine-grained part of speech, indicating not 

only verb-ness, but the specific type of verb-ness (transitive). 

The Link Grammar English dictionary documents more than 100 connector 

types; these are subtyped, so that approximately 500 connectors might be seen. 

These connectors, when arranged into disjuncts, result in tens of thousands of 

disjuncts. That is, Link Grammar defines tens of thousands of distinct “parts of 

speech”. They can be thought of as parts of speech, but they are quite fine-

grained, far more fine-grained than any text on grammar might ever care to list. 

If one uses a technique, such as MST parsing [13], and then extracts disjuncts, 

one might observe more than 6 million disjuncts and 9 million seeds on a 

vocabulary of 140K words. These are, again, in the above technical sense, just 

“parts of speech”, but they are hyperfine-grained. The count is overwhelming. So, 

although it is technically correct to call them “parts of speech”, it is a conceptual 
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error to think of a class that has six million representatives as if it were a class 

with a dozen members. 

Similar concept: skip-grams. The N-gram [11] and the more efficient skip-

gram [14] models of semantic analysis provide somewhat similar tools for 

understanding connec-tivity, and differentiating different forms of connectivity. In 

a skip-gram model, one might extract two skip-grams from the above example 

sentences: “a fly landed” and “it fly home”. A clustering process, such as adagram 

or word2vec, might be used to classify these two strings into distinct clusters, 

categorizing one with other noun-like words, and the other with verb-like words. 

The N-gram or skip-gram technique works only for linear, sequenced data, 

which is sufficient for natural language, but cannot be employed in a generic non-

ordered graphical setting. To make this clear: a seed representation for the above 

would be: “fly: a- landed+” indicating that the word “a” (written as the connector 

“a-”) comes sequentially before “fly”, while the word “landed” (written as the 

connector “landed+”) comes after. 

The other phrase has the representation “fly: it- home+”. These two can now be 

employed in a clustering algorithm, to determine whether they fall into the same, 

or into different categories. If one treats the skip-grams and the seeds as merely 

two different representations of the same data, then applying the same algorithm 

to either should give essentially the same results. 

The seed representation, however, is superior in two different ways. First, it can 

be used for non-sequential data. Second, by making clear the relationship between 

the vertex and its connectors, the connectors can be treated as “additional data”, 

tagging the vertex carrying additional bits of information. That additional 

information is manifested from the overall graph structure and is explicit. By 

contrast, untagged N-grams or untagged skip-grams leave all such structure 

implicit and hidden. 

Polymorphism and semantics. The concept of polymorphism introduced 

above lays a foundation for semantics, for extracting meaning from graphs. This is 

already hinted at by the fact that any English-language dictionary will provide at 

least two different definitions for “fly”: one tagged as a noun, the other as a verb. 

The observation of hyperfine-grained parts of speech can push this aggressively 

farther. 

In a modern corpus of English, one might expect to observe the seeds “apple: 

green and “apple: iphone+”. The disjuncts “green-” and “iphone+” can be 

interpreted as a kind-of tag on the word “apple”. Since there are exactly two tags 

in this example, they can be viewed as supplying exactly one bit of additional 

information to the word “apple”. Effectively, a single apple has been split into two 

distinct apples. Are they really distinct, however? This can only be judged on the 

basis of some clustering algorithm that can assign tagged words to classes. Even 

very naive, unsophisticated algorithms might be expected to classify these two 

different kinds of apple into different classes; the extra bit of information carried by 

the disjunct is a bit of actual, usable information. 

To summarize: the arrangement of vertices into polymorphic seeds and sections 
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enables the vertices to be tagged with extra information. The tags are the 

connectors themselves: their presence or absence carries information. That extra 

information can be treated as “semantic information”, identifying different types 

or kinds, rather than as purely syntactic information about arrangements and 

relationships. 

8. Conclusion 

This paper presents a way of thinking about graphs that allows them to be 

decomposed into constituent parts fairly easily and then brought together and 

reassembled in a coherent, syntactically correct fashion. It does so without having 

to play favorites among competing algorithmic approaches and scoring functions. 

It makes only one basic assumption: that knowledge can be extracted at a 

symbolic level from pair-wise relationships between events or objects. 

It touches briefly, all too briefly, on several closely related topics, such as the 

application of category theory and type theory to the analysis of graph structure. 

These topics could be greatly expanded upon, possibly clarifying much of this 

content. It is now known to category theorists that there is a close relationship 

between categories, the internal languages that they encode, and that these are 

reflections of one another, reflecting through a theory of types. A reasonable but 

incomplete reference for some of this material is the HoTT book. It exposes types 

in greater detail, but does not cover the relationship between internal languages, 

parsing, and the modal logic descriptions of parsing. It is possible that there are 

texts in proof theory that cover these topics, but I am not aware of any. 

This is a bit unfortunate, since I feel that much or most of what is written here 

is “well known” to computational proof theorists; unfortunately, that literature is 

not aimed at the data-mining and machine-learning crowd that this paper tries to 

address. Additions, corrections and revisions are welcomed. 
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