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The FHP-MP model as multiparticle Lattice–Gas

Yu. Medvedev

Abstract. An extension to the Lattice–Gas Boolean models up to integer values
of the particle velocity vectors is proposed. A new FHP-MP model is featured.
Experiments on simulation of a fluid using the new model were carried out. The
comparison with the known results is made.

1. Introduction

One of the promising directions of the physical processes simulation is that
with cellular automata. Cellular-automaton models of flows called the Lat-
tice–Gas were proposed in the seventies of the last century [1] and since
then are promptly advanced. These models are discrete; their ground is
the Boolean algebra. It allows one to construct efficient programs and to
minimize the computer costs.

But simplicity of the Lattice–Gas superimposes some limitations on the
area of their application. Here are some of them: the superior limit of the
Reynolds number amounts some hundreds; the boundary conditions allow
setting only the immovable walls; the simulation of a transonic velocity
is usually accompanied by distorting results. In this paper, an attempt is
undertaken to solve these problems and to propose a new kind of the Lattice–
Gas model, which is called the FHP-MP (multiparticle) cellular automaton.
It is a generalization of the classic FHP (Frish, Hasslacher, Pomeau) model
on Boolean vectors [2]. In the new model, more than one particle in a cell
with equal velocity vectors can be present. Attempts to use particles of
miscellaneous mass in the Lattice–Gas were undertaken [3], but by different
reasons they were not gaining acceptance.

In this paper, the new FHP-MP model is featured, and results of its
experimental research are given, such as two-dimensional approximation of
a flow between two planes, a flow with a flat valve and a flow of a circular
obstacle. In these examples, a correlation in a corresponding variety of a
flow velocity and the flow pressure rate between the FHP-MP and the FHP-I
models is demonstrated. A poiseuille flow for the new model is obtained.
Swirls were obtained, and the Kármán vortex street is visible in the pres-
ence of a valve or a circular obstacle, this showing to the possibility of the
simulation of turbulent properties of a flow.
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2. Specification of the FHP-MP model

2.1. The basic definitions. As a cellular automaton, the FHP-MP model
is denoted by a triplet (W,A,N), where W = {w1, w2, . . .} is a set of cells
allocated in corresponding sites in some discrete space. Each cell w ∈ W is
associated with a finite state machine (FSM) A called the elementary FSM.
Its states are given by an integer-valued vector, as distinct from a Boolean
vector in the classic FHP model. Each cell w ∈ W is correlated with some
coordinates x(w) and y(w) on the Cartesian plane. Therefore, between any
two cells w1 ∈ W and w2 ∈ W it is possible to easily calculate a distance
d(w1, w2).

For each cell w ∈ W an ordered set N(w) = {Ni(w) : N0(w) =
w, Ni(w) ∈ W ∧ d(w,Ni(w)) = 1, i = 1, 2, . . . , b} is determined. Its terms
belong to a neighborhood with the cell w and are called its neighboring
cells or neighbors. The constant b characterizes the number of non-identical
neighbors of each cell w ∈ W . Cells are neighbors to themselves. There
is a correspondence between the elementary automaton A outputs in a cell
w ∈ W and the inputs of neighbors of this cell and vice versa. Thus, the
structure of the cellular automaton cells set W is a graph in which ver-
texes are cells, and edges from the set are the neighborhood relation. This
graph has a regular lattice and degree of its vertices equal to b. The cell
state is represented by a vector with integer-valued components. A set of
states s(w) of all cells w ∈ W at the same instant t is called a global state
σ(t) = {s(w1), s(w2), . . .} of the cellular automaton.

Figure 1. Velocity vectors of particles
and numbering of neighbors

2.2. The neighbourhood rela-
tion. Each cell in the classic FHP
model has six neighbors (b = 6).
In some modifications of the model,
each cell is as well a neighbor
to itself (possibly several times),
that stipulates the possibility of the
presence of the rest particles. The
ground of the FHP-MP model is
the FHP model with one rest par-
ticle. In Figure 1, the cell w, and
its neighbors Ni(w), i = 0, 1, . . . , 6,
are represented. Thus, the number
of neighbors of each cell w of the
FHP-MP model is equal to seven,
one of the neighbors is the cell w,
i.e., N0(w) = w.
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Unlike the FHP, in the FHP-MP model, the components s0(w), s1(w),
. . . , s6(w) of a state vector s(w) are not Boolean, but integer. Thus, the
mass of particles in a cell w is equal to:

m(w) =
b∑

i=0

si(w), (1)

where b = 6 is the number of possible directions of a velocity vector, si is
the ith component of the states vector s. The physical interpretation of
the vector s(w) components values is the following: si defines the number
of unit mass particles, whose velocity vectors ci are directed towards the
neighbors Ni(w).

The model momentum p in a cell w ∈ W is the total of all momenta
directed to all neighbors Ni(w), where i = 0, 1, . . . , b, and b = 6:

p(w) =
b∑

i=1

si(w)ci(w). (2)

From (1), with allowance for Figure 1, it is easy to compute the to-
tal momentum p of the projections px and py onto the Cartesian axes Ox
and Oy :

px =
√

3
2

(s2 + s3 − s5 − s6), (3)

py = s4 − s1 +
1
2

(s3 + s5 − s2 − s6), (4)

where si is the sum of velocity vectors of all particles in a cell w directed to
the neighbor Ni(w).

2.3. The behavior of the cellular automaton. We introduce three
types of cells w ∈ W . The conventional cells wc ∈ Wc we will call those, in
which both the mass and momentum conservation laws are satisfied. The
wall cells ww ∈ Ww are the cells, in which the mass conservation law is
satisfied, but the momentum conservation law can be violated. And, finally,
the source cells ws ∈Ws are cells, in which both the law of mass conservation,
and the law of momentum conservation can be violated. Sets of conventional
cellsWc, of wallsWw, and of sourcesWs do not intersect pairwise (Wc∩Ww =
∅, Wc∩Ws = ∅, Ww∩Ws = ∅). Integration of these sets coincides with a set
of all cells of the automaton (Wc ∪Ww ∪Ws = W ). The behavior of walls
and sources specifies the boundary conditions of the cellular automaton.

In the FHP-MP model, the cellular automaton with a synchronous op-
eration is used. In each cycle, there is a replacement of states s(t) in all
cells, by the states s(t+ 1) = δ(s(t)), where δ(s(t)) is a next-state function



86 Yu. Medvedev

of the elementary FSM A. The cellular automaton thus changes its global
state σ(t) to a new global state σ(t+ 1).

Each cycle of the cellular automaton processing has two phases: propaga-
tion and collision. So, a next-state function of the elementary FSM consists
of a composition of the propagation function δ1 and the collision function
δ2:

δ(s) = δ2(δ1(s)). (5)

Each of the functions δ1 and δ2 should satisfy the laws of conservation
of mass ∑

w∈W

b∑
i=0

δj(si(w)) =
∑

w∈W

b∑
i=0

si(w), j ∈ {1, 2}, (6)

and momentum∑
w∈W

b∑
i=0

δj(si(w)ci(w)) =
∑

w∈W

b∑
i=0

si(w)ci(w), j ∈ {1, 2}. (7)

According to the fluid flow dynamics, the presence of these two phases
is interpreted as follows. Collisions implement diffusion in fluids, and prop-
agation implements the matter transport process in a flow. Further, these
two phases are explicitly featured.

Propagation phase. In the propagation phase, in each cell w ∈ W
each particle specified by the components si(w), at i = 1, . . . , 6, propagates
to the neighboring cell Ni(w) corresponding to its velocity vector ci. The
rest particles corresponding to s0, remain in the cell w. Thus, the i-th
component si(w) of the state vector s(w) of the cell w after propagation
adopts the value

δ1(si(w)) =
{
si(N((i+2) mod 6)+1(w)), for i = 1, 2, . . . , b;
si(w), for i = 0.

(8)

In spite of the fact that when propagating mass and momentum of par-
ticles in a single cell change, within the whole cellular automaton they are
maintained, i.e., requirements (6) and (7) are fulfilled.

Collision phase. In the collision phase, there is a veering of particles
velocity vectors directions according to some collision rules which are inde-
pendent of states of the neighboring cells, i.e., δ2 depends only on the state
of its own elementary FSM. In the FHP-MP model, the function δ2 is prob-
abilistic. The collision rules for the above all types of the cells (conventional
cells, walls, and sources) are as follows:

In the conventional cells wc ∈ Wc, the function δ2 is selected from such
ones that the mass m(w) and the momentum p(w) of particles in a cell were
conserved:
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b∑
i=0

δ2(si(wc)) =
b∑

i=0

si(wc), ∀wc ∈W, (9)

b∑
i=0

δ2(ci(wc)) =
b∑

l=0

si(wc)ci(wc), ∀wc ∈W. (10)

One of the possible value obeying (9) and (10) should be chosen with equal
probability. Fulfillment of (9) and (10) implies that of (6) and (7).

In the cells ww ∈ Ww, which are walls, particles are “mirrored” back-
wards, thus violating the momentum conservation law:

δ2(si(ww)) =
{
s((i+2) mod 6)+1(ww), for i = 1, 2, . . . , b;
si(ww), for i = 0.

(11)

Since the number of particles in a cell is not changing, requirements (9) and,
therefore, (6) are satisfied. This is not so for (7), because directions of the
velocity vectors c of the particles are changing, but this is admitted by the
boundary conditions. Such a behavior of particles in wall cells simulates the
requirement of zero speed of the flow on borders of obstacles.

Each cell-source ws ∈ Ws sustains the given concentration of particles
n0(ws). For this purpose, it generates particles with every possible direction
of the velocity vector in case that the current concentration of particles
n(ws) < n0(ws). The number of generated particles is equal to a difference
between a given concentration and a current one n0(ws)−n(ws). It is possible
to construct various obstacles by source cells. For example, having placed
them in one line (usually, they are skirting a cellular array), we can obtain a
source of a steady particle flow with a given concentration. A single source
cell simulates an injector. Naturally, when generating new particles neither
the mass m(ws) nor the momentum p(ws) are conserved. The boundary
conditions in cells-sources enable a breach of conditions (6) and (7).

Averaged values. In the simulation of flows, microlevel parameters of
the cellular automaton such as a mass m(w) and velocity of particles ci(w)
in each cell w ∈ W do not have a practical significance. But the averaged
values of their velocities 〈u〉 and concentrations 〈n〉 over some averaging
vicinity Av(w), in which one includes all cells wj ∈ W placed not farther
from a cell w, than at a certain distance r called the averaging radius are
worth while. An averaged velocity is the total of velocity vectors of all
particles in the averaging vicinity Av(w), divided by the cardinal number of
the averaging vicinity:

〈u〉(w) =
1

|Av(w)|
∑

wj∈Av(w)

b∑
i=0

sici, (12)



88 Yu. Medvedev

where |Av(w)| is the number of the cells situated in Av(w), ci is the unit
velocity vector corresponding to the i-th digit of the state vector s(wj),
and si is a magnitude of the i-th digit of the state vector s(wj) of the cell
wj ∈ Av(w).

The averaged concentration of particles 〈n〉 is evaluated in the same
vicinity Av(w) as follows:

〈n〉(w) =
1

|Av(w)|
∑

wj∈Av(w)

b∑
i=0

si. (13)

Averaged values of velocity and concentration of particles are called the
model velocity and the model pressure. They correspond to values of velocity
and pressure of a simulated fluid and are macrolevel arguments.

We will note that average values of the model velocity and the model
concentration will match with their physical analogs only in the case when
the averaging vicinity Av(w) consists exclusively of conventional cells ww ∈
Ww. Otherwise, we will figure the values 〈u〉 and 〈n〉 as indefinite. This
requirement does not allow calculating the values 〈u〉 and 〈n〉 for the cells,
which are closer from walls and sources than averaging radius r.

3. Experimental study of the FHP-MP model

For validation of the proposed model, its program has been implemented.
This allows carrying out computing experiments both on single-processor
computers, and on multiprocessor and multicomputer systems. The code
has been written in C, parallelism is implemented by means of the MPI
library. The computing experiments performed with the FHP-MP model are
described below. The qualitative behavior of a simulated flow is obtained.

3.1. Two-dimensional approximating of a fluid flow between two
parallel planes. This experiment, which has already become a classical
one, allows checking out a model onto correspondence with physics. Its
essence is in the fact that the longitudinal flow velocity (the flow moves the
lengthways Oy in a positive direction) with the velocity on the boundaries
〈u〉b = 0 should be proportional along the direction Ox under the parabolic
law. The cellular automaton used in this computing experiment measures
100 by 2000 cells (along Cartesian axes Ox and Oy accordingly). The cells
with coordinates in the interval [(2, 1), (99, 1)] are sources. The cells with
coordinates in spacing [(1, 1), (1, 2000)] and [(100, 1), (100, 2000)] are walls.
Remaining ones are conventional cells. This 2D-construction is a cutting
of a parallelepiped of the infinite width (lengthwise axis Oz ) and it is an
approximation of a three-dimensional flow between two parallel planes.
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Figure 2. Poiseuille parabola and the experimental flow velocity

The projection of the flow velocity 〈u〉y onto the axis Oy in a flow cross-
section (lengthways Ox ) is shown in Figure 2. The dotted curve illustrates
the numerical simulation results. It is approximated by the parabola equa-
tion (in Figure 2, it is a solid curve):

〈u〉y(r) = −0.0008r2 + 2, (14)

where r is a spacing interval between the middle of the bisecting point and
an observed point of the cross-section.

The curve (14) is an inferential Poiseuille parabola; it is one of a few
analytical solutions of the Navier–Stokes equation looking like:

〈u〉y(r) =
dP

4ηl
(R2 − r2), (15)

where dP is a pressure drop on a part of a pipe in the length l, η is a
dynamic viscosity of fluid, R is a pipe radius (in a two-dimensional case, it
is a spacing interval between planes).

The number of iterations, after which one average is spent, is T = 20000.
The averaging radius is r = 15 cells. According to the constraints imposed
on (12) and (13), averaged values cannot be obtained in cells closer to walls
than r = 15 cells. Therefore, idealized and experimental curves over the
range, shown in the picture, are not declined to zero point.

A maximum velocity of the flow in the carried out experiment (Figure 2)
was obtained equal to two; that is a little greater than in the classical FHP
model. But it is not a maximum velocity; in the proposed multiparticle
model it is possible to increase the concentration provided by sources, thus
obtaining the flow velocity considerably superior the obtained one.

Results of this experiment demonstrate that the FHP-MP model cor-
rectly reproduces processes in a flow and corresponds to physics.

3.2. A flow with a valve. The following computing experiment has been
carried out aimed at studying flows with obstacles. For this purpose, an
additional boundary condition as a valve-shaped obstacle was added to the
cellular automaton, being in the previous experiment. The valve has been
placed at a distance to the source line equal to the third part of the pipe
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Figure 3. The flow velocity field with a valve as an obstacle.
A fragment behind the valve

length perpendicular to the flow propagation direction and has partitioned
the pipe by half. The obtained velocity field resembles a streamline of the
valve by the flow. The fact is, at the small-sized image scale encompassing
the whole cellular automaton, high-velocity parts of the flow are only visible.
It is necessary to discern a low velocity such as velocity behind the valve. In
Figure 3, a fragment of the automaton, which is directly behind the valve,
is given in a larger scale. The direction of each arrow in the figure coincides
with a streamline in its basis, and its length is proportional to a flow velocity
in that point. The flow is directed from left to right, the valve is figured in
the left-hand side of the figure. On the painted fragment, flow vortices are
clearly visible.

Figure 4. The flow velocity field with a circular obstacle
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3.3. Streamlining of a circular obstacle. One more experiment has
been carried out with a circular obstacle. It also demonstrates flow vortices.
In the initial cellular automaton, a circle-shaped obstacle was added. The
obtained velocity field of this automaton is shown in Figure 4. Behind the
obstacle, an eddy is fetched away and the “S-turn” is visible. This “S-turn”
is obviously alternative to the Kármán vortex street for a sufficiently small
spacing interval to the skirting of the flow planes.

4. Conclusion

In this paper, the new cellular-automaton flow FHP-MP model, in which
more than one particle are enabled in a cell with equal velocity vectors
is proposed. The computing experiments have been carried out with this
model; they demonstrate a correlation of the new model with the classic FHP
model and with the physical laws. Experimentally, the obtained velocity
field matches with the Poiseuille parabola. A maximum flow velocity in
the experiments is slightly greater than that in the FHP model. In the
new model, it is possible to augment the initial concentration of particles
to obtain the flow velocity considerably exceeding that of the classic model.
Therefore, we hope that the FHP-MP model will allow the simulation of a
turbulent flow. The experiments with a valve and a circle-shaped obstacle
convince us in this, because the flows with whirls were obtained, and the
Kármán vortex street behind the obstacle is distinct.
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