Divergence formulas (conservation laws) for families of curves and surfaces and applications*

A.G. Megrabov

Abstract

The divergence formulas we have obtained (differential conservation laws) of the form $\operatorname{div} \boldsymbol{F}=0$ for an arbitrary smooth field of unit vectors $\boldsymbol{\tau}(x, y, z)$, for a family of spatial curves as well as $\left\{L_{\tau}\right\}$ for a family of surfaces $\left\{S_{\tau}\right\}$ continuously filling a certain domain. The solenoidal vector field \boldsymbol{F} in these formulas is expressed, respectively, through the field $\boldsymbol{\tau}(x, y, z)$, the characteristics of the curves L_{τ} and characteristics of the surfaces S_{τ}. Also, we have found the formulas connecting the surface characteristics and those of the curves orthogonal to them. In the case when the curves L_{τ} and the surfaces S_{τ} are vector lines of the vector field $\boldsymbol{v}=|\boldsymbol{v}| \boldsymbol{\tau}$ with the direction $\boldsymbol{\tau}$ and the surfaces orthogonal to them, the conservation laws found are equivalent to divergence formulas for the field \boldsymbol{v}. With these general geometric formulas the divergent identities (differential conservation laws) for the solutions of the eikonal equation $|\operatorname{grad} \tau|^{2}=n^{2}(x, y, z)$, the Poisson equation $u_{x x}+u_{y y}+u_{z z}=-4 \pi \rho(x, y, z)$ and for solutions of Euler's hydrodynamic equations are obtained. In the plane case, these formulas transform to the conservation laws obtained earlier.

This paper is a generalization and development of the published works [1-4].

The vector line L_{τ} of vector fields corresponding to the solutions of the mathematical physics equations, and to the surfaces S_{τ} orthogonal to them with the normal $\boldsymbol{\tau}$ continuously fill the domain in question. Therefore, in this paper we study not only the properties of fixed curves and surfaces, but the properties of their families.

In [4], we obtained divergence formulas (conservation laws) for the family $\left\{L_{\tau}\right\}$ of the plane curves L_{τ} with the tangent unit vector $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y)$ and the unit normal $\boldsymbol{\nu}=\boldsymbol{\nu}(x, y)$ or for an arbitrary smooth field of the unit vectors $\boldsymbol{\tau}(x, y)$ with the vector lines L_{τ}. These conservation laws have the form $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=0 \Leftrightarrow \operatorname{div} \boldsymbol{S}^{*}=0$, where $\boldsymbol{S}(\boldsymbol{\tau}) \stackrel{\text { def }}{=} \operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}-\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}=\boldsymbol{S}^{*} \stackrel{\text { def }}{=}$ $\boldsymbol{K}_{\tau}+\boldsymbol{K}_{\nu}, \boldsymbol{K}_{\tau}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}=k \boldsymbol{\nu}, \boldsymbol{K}_{\nu}=(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\nu}=\operatorname{rot} \boldsymbol{\nu} \times \boldsymbol{\nu}=-k_{\nu} \boldsymbol{\tau}$ are curvature vectors of the curves L_{τ} with the curvature k and the curves L_{ν} orthogonal to them with the tangent unit vector $\boldsymbol{\nu}$ and the curvature of k_{ν}. The symbols $(\boldsymbol{a} \cdot \boldsymbol{b})$ and $\boldsymbol{a} \times \boldsymbol{b}$ denote the scalar and the vector products of the vectors \boldsymbol{a} and \boldsymbol{b}, ∇ is the Hamiltonian operator, $(\boldsymbol{v} \cdot \nabla) \boldsymbol{a}$ is the derivative of the vector \boldsymbol{a} in the direction of the unit vector \boldsymbol{v}.

[^0]In this paper, we discuss the three-dimensional case, when we have the field of unit vectors $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$, the family of spatial curves L_{τ} with the Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})[5-7](\boldsymbol{\tau}$ is the unit tangent vector, $\boldsymbol{\nu}$ is a principal normal, $\boldsymbol{\beta}$ is binormal), the first curvature k and the second curvature \varkappa, and the family $\left\{S_{\tau}\right\}$ of the surfaces S_{τ}, orthogonal to the curves L_{τ}, with the normal $\boldsymbol{\tau}$, the principal directions \boldsymbol{l}_{1} and \boldsymbol{l}_{2}, the principal curvatures k_{1} and k_{2}, the mean curvature $H \stackrel{\text { def }}{=}\left(k_{1}+k_{2}\right) / 2$ and the Gaussian curvature $K \stackrel{\text { def }}{=} k_{1} k_{2}[5-7]$. All the values $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}, k, \varkappa$ and $\boldsymbol{l}_{1}, \boldsymbol{l}_{2}, k_{1}, k_{2}, H, K$ are vector and scalar fields in D, which is continuously filled by the curves L_{τ} and the surface S_{τ}. In the three-dimensional case the value of $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ is not identically equal to zero in D. The following geometric reason explains this circumstance. In [8], it was found that the value of $\{-\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau}) / 2\}$ is the Gaussian curvature K of the surface S_{τ}. The plane case corresponds to the cylindrical surfaces S_{τ} with the directrices L_{ν} and generatrices parallel to the axis $O z$; their Gaussian curvature $K \equiv 0$ and hence, $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=0$ in D. However, in the general case, $K \not \equiv 0$ for a single surface S_{τ} (except for evolving surfaces $[5-7]$) and, especially, for the family $\left\{S_{\tau}\right\}$, i.e., in D; hence, $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau}) \not \equiv 0$ in D.

In this paper, we obtain the divergence formula (differential conservation laws) of the form $\operatorname{div} \boldsymbol{F}=0$ for an arbitrary smooth field of the unit vectors $\boldsymbol{\tau}(x, y, z)$, for the family of spatial curves $\left\{L_{\tau}\right\}$ and for the family of the surfaces $\left\{S_{\tau}\right\}$ with the normal $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$. The solenoidal vector field \boldsymbol{F} in these formulas is expressed, respectively, through the field $\boldsymbol{\tau}(x, y, z)$, the characteristics $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}, k, \varkappa$ of the curves L_{τ} and the characteristics $\boldsymbol{l}_{1}, \boldsymbol{l}_{2}$, k_{1}, k_{2}, K, H of the surfaces S_{τ}. Some of these formulas contain the field \boldsymbol{S}^{*} that is the sum of three vectors of curvature of the vector lines of the fields $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}$ and the field \boldsymbol{S}_{l} that is the sum of three curvature vectors: vector lines of the normal fields $\boldsymbol{\tau}$ surfaces S_{τ} and two vector lines of fields of their principle directions $\boldsymbol{l}_{1}, \boldsymbol{l}_{2}$. In [8], it was found that the field $\boldsymbol{S}(\boldsymbol{\tau})$ is of the sum of three curvature vectors: the vector line L_{τ} of the field $\boldsymbol{\tau}$ and any two geodesic lines (mutually orthogonal) on the surfaces S_{τ}, orthogonal to the curves L_{τ}. In the case when the curves L_{τ} and the surface S_{τ} are vector lines of the vector field $\boldsymbol{v}=|\boldsymbol{v}| \boldsymbol{\tau}$ with the direction $\boldsymbol{\tau}$ and the surfaces, orthogonal to them, the conservation laws obtained are equivalent to the divergence formulas for the field \boldsymbol{v}.

With the help of these general geometric formulas, the differential conservation laws for the solutions of the eikonal $|\operatorname{grad} \tau|^{2}=n^{2}(x, y, z)$, the Poisson equation $\Delta u=-4 \pi \rho(x, y, z)\left(\Delta u=u_{x x}+u_{y y}+u_{z z}\right)$ and threedimensional solutions of Euler's hydrodynamic equations were obtained. In the plane case, the formulas found transform to conservation laws obtained in $[2-4]$. The symbols $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ denote the right-hand side system of unit vectors along the axes of the Cartesian coordinate system x, y, z.

Lemma 1 [2]. For any vector field $\boldsymbol{v}=\boldsymbol{v}(x, y, z)=v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}+v_{3} \boldsymbol{k}=|\boldsymbol{v}| \boldsymbol{\tau}$ defined in D, with components $v_{k}(x, y, z) \in C^{1}(D), k=1,2,3$, the modulus $|\boldsymbol{v}| \neq 0$ in D and the direction $\boldsymbol{\tau}=\boldsymbol{v} /|\boldsymbol{v}|(|\boldsymbol{\tau}| \equiv 1)$ the following identity holds:

$$
\begin{equation*}
\boldsymbol{T}(\boldsymbol{v})=\boldsymbol{S}(\boldsymbol{\tau}) \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
\boldsymbol{S}(\boldsymbol{\tau}) \stackrel{\text { def }}{=} \operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}-\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}-\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}, \tag{2}\\
\boldsymbol{T}(\boldsymbol{v}) \stackrel{\text { def }}{=} \operatorname{grad} \ln |\boldsymbol{v}|+\{\operatorname{rot} \boldsymbol{v} \times \boldsymbol{v}-\boldsymbol{v} \operatorname{div} \boldsymbol{v}\} /|\boldsymbol{v}|^{2} .
\end{gather*}
$$

By the direct calculation one can prove
Lemma 2. Let $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)=\cos \alpha_{1} \boldsymbol{i}+\cos \alpha_{2} \boldsymbol{j}+\cos \alpha_{3} \boldsymbol{k}$ be the vector field of the unit vectors $(|\boldsymbol{\tau}| \equiv 1)$ with the domain of definition D, α_{1}, α_{2}, α_{3} are the direction angles between the vector $\boldsymbol{\tau}$ and the axes x, y, z, respectively, and $\boldsymbol{\tau}(x, y, z) \in C^{1}(D)$. Then the field $\boldsymbol{S}(\boldsymbol{\tau})$ of the form of (2) can be represented in any of the forms $\boldsymbol{S}(\boldsymbol{\tau})=\sum_{j=1}^{3} \operatorname{grad} \cos \alpha_{j} \times\left(\boldsymbol{i}_{j} \times \boldsymbol{\tau}\right)=$ $\sum_{j=1}^{3} \cos \alpha_{j} \operatorname{rot}\left(\boldsymbol{\tau} \times \boldsymbol{i}_{j}\right), \boldsymbol{S}(\boldsymbol{\tau})=\mathbf{\Phi}_{1}-\operatorname{rot} \boldsymbol{\Psi}=\mathbf{\Phi}_{2}+\operatorname{rot} \boldsymbol{\Psi}$, where $\boldsymbol{i}_{1}=\boldsymbol{i}$, $\boldsymbol{i}_{2}=\boldsymbol{j}, \boldsymbol{i}_{3}=\boldsymbol{k}$,

$$
\begin{gathered}
\boldsymbol{\Phi}_{1} \stackrel{\text { def }}{=} 2\left[\cos \alpha_{3} \operatorname{rot}\left(\cos \alpha_{2} \boldsymbol{i}\right)+\cos \alpha_{1} \operatorname{rot}\left(\cos \alpha_{3} \boldsymbol{j}\right)+\cos \alpha_{2} \operatorname{rot}\left(\cos \alpha_{1} \boldsymbol{k}\right)\right], \\
\boldsymbol{\Phi}_{2} \stackrel{\text { def }}{=}-2\left[\cos \alpha_{2} \operatorname{rot}\left(\cos \alpha_{3} \boldsymbol{i}\right)+\cos \alpha_{3} \operatorname{rot}\left(\cos \alpha_{1} \boldsymbol{j}\right)+\cos \alpha_{1} \operatorname{rot}\left(\cos \alpha_{2} \boldsymbol{k}\right)\right], \\
\boldsymbol{\Psi} \stackrel{\text { def }}{=} \cos \alpha_{2} \cos \alpha_{3} \boldsymbol{i}+\cos \alpha_{1} \cos \alpha_{3} \boldsymbol{j}+\cos \alpha_{1} \cos \alpha_{2} \boldsymbol{k} .
\end{gathered}
$$

From Lemmas 1 and 2 follows

Theorem 1. Under the conditions of Lemma 2 in D the following equivalent divergent identities (conservation laws) for the field $\boldsymbol{\tau}$ are valid: $\operatorname{div}\left\{\boldsymbol{S}(\boldsymbol{\tau})-\mathbf{\Phi}_{i}\right\}=0, i=1,2$. If $\boldsymbol{\tau}$ is the direction of the vector field $\boldsymbol{v}=|\boldsymbol{v}| \boldsymbol{\tau}$, then under the conditions of Lemma 1 in D the following equivalent divergent identities for the field \boldsymbol{v} hold: $\operatorname{div}\left\{\boldsymbol{T}(\boldsymbol{v})-\boldsymbol{\Phi}_{i}(\boldsymbol{v})\right\}=0, i=1,2$, where $\mathbf{\Phi}_{i}(\boldsymbol{v})$ is obtained from $\mathbf{\Phi}_{i}$ by replacing $\boldsymbol{\tau}$ by $\{\boldsymbol{v} /|\boldsymbol{v}|\}$ and $\cos \alpha_{j}$ by $\left\{v_{j} /|\boldsymbol{v}|\right\}$.

Let us obtain divergent formulas (differential conservation laws), which appear to be of a higher order for the field of the unit vectors $\boldsymbol{\tau}$ or for a family of the curves $\left\{L_{\tau}\right\}$, as compared to the identities of Theorem 1. Let $\left\{L_{\tau}\right\}$ be a family of the curves L_{τ} with the tangent unit vector $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$ continuously filling the domain D. Let:
(D) one and only one curve $L_{\tau} \in\left\{L_{\tau}\right\}$ passes through each point $(x, y, z) \in D ;$
(E) at each point (x, y, z) of any curve $L_{\tau} \in\left\{L_{\tau}\right\}$ there is a (right) Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})$, so that three mutually orthogonal vector fields $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}$ are defined in D;
(F) $\boldsymbol{\tau}(x, y, z) \in C^{2}(D)$.

By the direct calculations one can prove
Lemma 3. Let the family $\left\{L_{\tau}\right\}$ of the curves L_{τ} with the Frenet unit vectors $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}$, the first curvature k and the second curvature \varkappa satisfy the conditions (D)-(F) in D. Let the field \boldsymbol{S}^{*} be the sum of the three curvature vectors:

$$
\begin{aligned}
\boldsymbol{S}^{*} & \stackrel{\text { def }}{=} \boldsymbol{K}_{\tau}+\boldsymbol{K}_{\nu}+\boldsymbol{K}_{\beta}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}+(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\nu}+(\boldsymbol{\beta} \cdot \nabla) \boldsymbol{\beta} \\
& =\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}+\operatorname{rot} \boldsymbol{\nu} \times \boldsymbol{\nu}+\operatorname{rot} \boldsymbol{\beta} \times \boldsymbol{\beta} \\
& =-\{\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}+\boldsymbol{\nu} \operatorname{div} \boldsymbol{\nu}+\boldsymbol{\beta} \operatorname{div} \boldsymbol{\beta}\}=\{\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{S}(\boldsymbol{\nu})+\boldsymbol{S}(\boldsymbol{\beta})\} / 2
\end{aligned}
$$

Here $\boldsymbol{K}_{\tau}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}=k \boldsymbol{\nu}, \boldsymbol{K}_{\nu}=(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\nu}=\operatorname{rot} \boldsymbol{\nu} \times \boldsymbol{\nu}$, $\boldsymbol{K}_{\beta}=(\boldsymbol{\beta} \cdot \nabla) \boldsymbol{\beta}=\operatorname{rot} \boldsymbol{\beta} \times \boldsymbol{\beta}$ are curvature vectors of the vector lines L_{τ}, L_{ν}, L_{β} of the fields $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}$, respectively. Then $\boldsymbol{S}^{*}=\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{\tau} \times \boldsymbol{R}^{*}$ in D, where $\boldsymbol{R}^{*} \stackrel{\text { def }}{=} \varkappa \boldsymbol{\tau}+k \boldsymbol{\beta}+\boldsymbol{\beta} \operatorname{div} \boldsymbol{\nu}-\boldsymbol{\nu} \operatorname{div} \boldsymbol{\beta}=\boldsymbol{\Phi}+\boldsymbol{S}^{*} \times \boldsymbol{\tau}=\varkappa \boldsymbol{\tau}+(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\nu}) \boldsymbol{\nu}+$ $(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta}) \boldsymbol{\beta}, \boldsymbol{\Phi} \stackrel{\text { def }}{=} \varkappa \boldsymbol{\tau}+k \boldsymbol{\beta}$. Here Φ is the Darboux vector [5].

Lemma 3 results in

Theorem 2. Under the conditions of Lemma 3 the divergent identity (conservation law for a family of curves $\left\{L_{\tau}\right\}$) holds in D :

$$
\begin{aligned}
& \operatorname{div}\left\{\boldsymbol{\tau} \operatorname{div} \boldsymbol{S}^{*}-\varkappa \operatorname{rot} \boldsymbol{\tau}-k \operatorname{rot} \boldsymbol{\beta}\right\}=0 \quad \Leftrightarrow \\
& \operatorname{div}\left\{\frac{1}{2} \boldsymbol{\tau} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})-k \boldsymbol{\nu}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})-k \boldsymbol{\beta}[(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta})+\varkappa]\right\}=0
\end{aligned}
$$

Everywhere here the expression in braces is equal to $\operatorname{rot} \boldsymbol{R}^{*} ; \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=$ $2\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{R}^{*}\right) ; \operatorname{div} \boldsymbol{S}^{*}=(1 / 2) \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})+k(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta})+\varkappa(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})$; the fields $\boldsymbol{S}(\boldsymbol{\tau}), \boldsymbol{S}^{*}, \boldsymbol{R}^{*}, k, \varkappa$ are defined in Lemmas 1, 3.

The expressions for the value $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$, the first curvature k and the second curvature \varkappa of the curves L_{τ} in terms of the fields of the Frenet unit vectors $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}$ are given by

Lemma 4. Under the conditions of Theorem 2, the following identities hold in D :

$$
k=(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\tau}), \quad \varkappa=\{(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})-(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\nu})-(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta})\} / 2,
$$

$$
\begin{aligned}
\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau}) & =2\{\varkappa[\varkappa-(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})]-(\boldsymbol{\tau} \cdot[\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta}])\} \\
& =2\left\{(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\nu})+\left[A^{2}-(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})^{2}\right] / 4\right\} \\
A^{2} & +B^{2}=(\operatorname{div} \boldsymbol{\tau})^{2}+2 \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})+(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})^{2}
\end{aligned}
$$

where $A \stackrel{\text { def }}{=}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\nu})-(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}), \boldsymbol{B} \stackrel{\text { def }}{=}(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\nu})+(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})$.
Let us find a divergence formula (a conservation law) for the surfaces S_{τ} given by some general properties in terms of their geometric characteristics. Let $\left\{S_{\tau}\right\}$ be a family of the surfaces S_{τ} with the unit normal $\boldsymbol{\tau}$ continuously filling the domain D in the space of x, y, z. The principal direction on S_{τ} will be represented by a unit vector $\boldsymbol{l}_{i}(i=1,2)$ with the corresponding direction; \boldsymbol{l}_{i} is the unit tangent vector of the curvature lines L_{i} on $S_{\tau}[5-7]$. Let:
(A) through each point $(x, y, z) \in D$ there passes one and only one surface $S_{\tau} \in\left\{S_{\tau}\right\} ;$
(B) at each point $(x, y, z) \in D$ there exists a system (the right-hand side one) of the mutually orthogonal unit vectors $\boldsymbol{\tau}, \boldsymbol{l}_{1}, \boldsymbol{l}_{2}$, where $\boldsymbol{\tau}$ is the unit normal, \boldsymbol{l}_{1} and \boldsymbol{l}_{2} are the principal directions on the surface S_{τ}, passing through this point. For this, it is sufficient that each surface $S_{\tau} \in\left\{S_{\tau}\right\}$ be C^{2}-regular [7]. Thus, three mutually orthogonal vector fields of the unit vectors $\boldsymbol{\tau}(x, y, z), \boldsymbol{l}_{1}(x, y, z), \boldsymbol{l}_{2}(x, y, z)$ are defined in D. Simultaneously $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$ is the tangent unit vector of the curves L_{τ}, orthogonal to the family $\left\{S_{\tau}\right\}$, that is, the vector lines of the normal vector field $\boldsymbol{\tau}$;
(C) $\boldsymbol{\tau} \in C^{n}(D)$ (below $n=1$ or 2), $\boldsymbol{l}_{i} \in C^{1}(D), i=1,2$.

The geometric meaning of the quantities $\operatorname{div} \boldsymbol{\tau}, \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ and the divergent representations of the mean and the Gaussian curvatures of the surfaces is proved in

Theorem 3 [8]. At any point $(x, y, z) \in D$ under the conditions (A)-(C) the mean curvature H for $n=1$ and the Gaussian curvature K for $n=2$ of the surface S_{τ} passing through this point are equal to the divergence (the sources density) of the vector fields $\{-\boldsymbol{\tau} / 2\}$ and $\{-\boldsymbol{S}(\boldsymbol{\tau}) / 2\}$, respectively, at this point: $H=-\frac{1}{2} \operatorname{div} \boldsymbol{\tau}, K=-\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$.

The geometric meaning of the conservation law of Theorem 1 explains
Corollary 1. Under the conditions of Theorem 3, the Gaussian curvature K of the surfaces $S_{\tau} \in\left\{S_{\tau}\right\}$ admits in D the divergent representation of $K=-\frac{1}{2} \operatorname{div} \boldsymbol{\Phi}_{i}$. If the surfaces S_{τ} are orthogonal to the vector lines L_{τ}
of the vector field $\boldsymbol{v}=|\boldsymbol{v}| \boldsymbol{\tau},|\boldsymbol{v}| \neq 0$ in D and $\boldsymbol{v} \in C^{2}(D)$, then $K=$ $-\frac{1}{2} \operatorname{div} \boldsymbol{T}(\boldsymbol{v})=-\frac{1}{2} \operatorname{div} \boldsymbol{\Phi}(\boldsymbol{v})$. Here the fields $\boldsymbol{S}(\boldsymbol{\tau}), \boldsymbol{T}(\boldsymbol{v}), \mathbf{\Phi}_{i}, \mathbf{\Phi}(\boldsymbol{v})$ are defined in Lemmas 1, 2.

The connection between the characteristics $\boldsymbol{l}_{1}, \boldsymbol{l}_{2}, k_{1}, k_{2}, H, K$ of the surfaces $S_{\tau} \in\left\{S_{\tau}\right\}$ and the characteristics $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}, k, \varkappa$ of the curves L_{τ} orthogonal to S_{τ} is given by

Theorem 4. Let the family $\left\{S_{\tau}\right\}$ of the surfaces S_{τ} with the unit normal $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$ satisfy the conditions $(\mathrm{A})-(\mathrm{C})$ for $n=2$ and the family $\left\{L_{\tau}\right\}$ of the curves L_{τ}, orthogonal to $\left\{S_{\tau}\right\}$, satisfy the conditions $(\mathrm{D})-(\mathrm{F})$. Then at each point $(x, y, z) \in D$, the principal directions \boldsymbol{l}_{1} and \boldsymbol{l}_{2}, the principal curvatures k_{1} and k_{2}, the mean curvature H and the Gaussian curvature K of the surface S_{τ} passing through this point are expressed in terms of the Frenet unit vectors $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}$, the first curvature k and the second curvature \varkappa of the curves L_{τ} by the formulas:

$$
\begin{gathered}
\boldsymbol{l}_{1}=\cos \omega \boldsymbol{\nu}+\sin \omega \boldsymbol{\beta}, \quad \boldsymbol{l}_{2}=-\sin \omega \boldsymbol{\nu}+\cos \omega \boldsymbol{\beta}, \\
\operatorname{tg} 2 \omega=-\frac{A}{B} \quad \Leftrightarrow \quad\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{l}_{1}\right)=\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right), \\
k_{1}=-\frac{1}{2}\left\{\operatorname{div} \boldsymbol{\tau} \pm \sqrt{A^{2}+B^{2}}\right\}=-\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{l}_{1}\right), \\
k_{2}=-\frac{1}{2}\left\{\operatorname{div} \boldsymbol{\tau} \mp \sqrt{A^{2}+B^{2}}\right\}=\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right), \\
\Rightarrow \quad K \stackrel{\text { def }}{=} k_{1} k_{2}=\frac{1}{4}\left\{(\operatorname{div} \boldsymbol{\tau})^{2}-\left(A^{2}+B^{2}\right)\right\} \\
K=(\boldsymbol{\tau} \cdot[\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta}])-\varkappa^{2}=-\left\{(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\nu})+\frac{1}{4} A^{2}\right\} \\
\Rightarrow \quad H \stackrel{\text { def }}{=} \frac{1}{2}\left(k_{1}+k_{2}\right)=-\frac{1}{2} \operatorname{div} \boldsymbol{\tau}, \quad K=-\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau}),
\end{gathered}
$$

where the quantities $A, B, k, \varkappa, \boldsymbol{S}(\boldsymbol{\tau})$, div $\boldsymbol{S}(\boldsymbol{\tau})$ are given by the formulas of Lemmas 1, 2, 4. Let us place the sign "plus" in front of the radical for $k_{1}<k_{2}$ and "minus" for $k_{1}>k_{2}$. We have $H^{2}-K=A^{2}+B^{2} \geq 0 \Rightarrow$ $H^{2} \geq K$.

Lemma 5. Let the conditions of Theorem 4 be valid and the field \boldsymbol{S}_{l}^{*} be the sum of the three curvature vectors:

$$
\begin{aligned}
\boldsymbol{S}_{l}^{*} & \stackrel{\text { def }}{=} \boldsymbol{K}_{\tau}+\boldsymbol{K}_{1}+\boldsymbol{K}_{2}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}+\left(\boldsymbol{l}_{1} \cdot \nabla\right) \boldsymbol{l}_{1}+\left(\boldsymbol{l}_{2} \cdot \nabla\right) \boldsymbol{l}_{2} \\
& =\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}+\operatorname{rot} \boldsymbol{l}_{1} \times \boldsymbol{l}_{1}+\operatorname{rot} \boldsymbol{l}_{2} \times \boldsymbol{l}_{2} \\
& =-\left\{\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}+\boldsymbol{l}_{1} \operatorname{div} \boldsymbol{l}_{1}+\boldsymbol{l}_{2} \operatorname{div} \boldsymbol{l}_{2}\right\}=\left\{\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{S}\left(\boldsymbol{l}_{1}\right)+\boldsymbol{S}\left(\boldsymbol{l}_{2}\right)\right\} / 2
\end{aligned}
$$

Here $\boldsymbol{K}_{\tau}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}=k \boldsymbol{\nu}$ is the curvature vector of the vector line L_{τ} of the normal field $\boldsymbol{\tau}$ of the surfaces $S_{\tau}, \boldsymbol{K}_{i}=\left(\boldsymbol{l}_{i} \cdot \nabla\right) \boldsymbol{l}_{i}=\operatorname{rot} \boldsymbol{l}_{i} \times \boldsymbol{l}_{i}$ is the curvature vector of the curvature lines L_{i} on $S_{\tau}(i=1,2)$. Then in D

$$
\begin{array}{r}
\boldsymbol{S}_{l}^{*}=\boldsymbol{S}^{*}+\boldsymbol{\tau} \times \operatorname{grad} w, \quad \boldsymbol{S}_{l}^{*}=\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{\tau} \times \boldsymbol{R}_{l}^{*} \quad \Rightarrow \\
\boldsymbol{R}_{l}^{*} \stackrel{\text { def }}{=} \operatorname{grad} w+\boldsymbol{R}^{*}=\varkappa_{l} \boldsymbol{\tau}+k \boldsymbol{\beta}+\boldsymbol{S}_{l}^{*} \times \boldsymbol{\tau} \\
=\varkappa_{l} \boldsymbol{\tau}+\operatorname{rot} \boldsymbol{\tau}-\left(\boldsymbol{l}_{1} \operatorname{div} \boldsymbol{l}_{2}-\boldsymbol{l}_{2} \operatorname{div} \boldsymbol{l}_{1}\right) \\
\\
=\varkappa_{l} \boldsymbol{\tau}+\boldsymbol{l}_{1}\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{l}_{1}\right)+\boldsymbol{l}_{2}\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right),
\end{array}
$$

where $\boldsymbol{S}^{*}, \boldsymbol{R}^{*}, w$ are defined in Theorems 2, 4, and

$$
\varkappa_{l} \stackrel{\text { def }}{=}-\left\{\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{l}_{1}\right)+\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right)\right\} / 2=-\left(\boldsymbol{l}_{i} \cdot \operatorname{rot} \boldsymbol{l}_{i}\right), \quad i=1,2 .
$$

The expression of the conservation law of Theorem 2 in terms of the characteristics of the surfaces S_{τ} is given by

Theorem 5. With the conditions and notations of Lemma 5 and Theorem 4 for the family $\left\{S_{\tau}\right\}$ of the surfaces S_{τ} in D there holds the divergent identity (conservation law):

$$
\begin{gathered}
\operatorname{div}\left\{K \boldsymbol{\tau}+k_{2}\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \boldsymbol{l}_{1}-k_{1}\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \boldsymbol{l}_{2}\right\}=0 \\
\Leftrightarrow \quad \operatorname{div}\left\{K \boldsymbol{\tau}+(H+B / 2) \boldsymbol{K}_{\tau}-A \operatorname{rot} \boldsymbol{\tau} / 2\right\}=0 \\
\Leftrightarrow \quad \operatorname{div}\left\{-\boldsymbol{\tau} \operatorname{div} \boldsymbol{S}_{l}^{*}+\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \operatorname{rot} \boldsymbol{l}_{1}+\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \operatorname{rot} \boldsymbol{l}_{2}+\varkappa_{l} \operatorname{rot} \boldsymbol{\tau}\right\} .
\end{gathered}
$$

Here, the expression in braces $\left\}\right.$ in everywhere equal to $\left\{-\operatorname{rot} \boldsymbol{R}_{l}^{*}\right\}=$ $-\operatorname{rot} \boldsymbol{R}^{*} ; K=-\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{R}_{l}^{*}\right) ; \operatorname{div} \boldsymbol{S}_{l}^{*}=-K+\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{\tau}\right)\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{l}_{1}\right)+\left(\boldsymbol{l}_{2} \cdot\right.$ $\operatorname{rot} \boldsymbol{\tau})\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right)$.

Remark 1. The Frenet unit vectors $\boldsymbol{\nu}, \boldsymbol{\beta}$ and the first curvature k of the curves L_{τ} can be expressed in terms of $\boldsymbol{\tau}: \boldsymbol{\nu}=(\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}) / k, \boldsymbol{\beta}=\boldsymbol{\tau} \times \boldsymbol{\nu}$, $k=|\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}|$. Since by the formulas of Lemma 4 and Theorem 4 the quantities $\boldsymbol{l}_{1}, \boldsymbol{l}_{2}, k_{1}, k_{2}, \varkappa, \boldsymbol{S}(\boldsymbol{\tau}), H, K$ are expressed in terms of the orts $\boldsymbol{\tau}$, $\boldsymbol{\nu}, \boldsymbol{\beta}$ of the curves L_{τ}, then finally, all these quantities can be expressed only through the field $\boldsymbol{\tau}$. Therefore, all the formulas of Theorems 2, 4, 5 and Lemmas $3-5$ can be only expressed through the field $\boldsymbol{\tau}$ (the unit tangent vectors of the curves L_{τ} or normals to S_{τ}).

Let us apply the general formulas obtained to the solutions of the mathematical physics equations. Theorem 1 implies

Corollary 2. Let $\tau=\tau(x, y, z)$ be the solution of the eikonal equation $\tau_{x}^{2}+\tau_{y}^{2}+\tau_{z}^{2}=n^{2}(x, y, z)$ in D, the time field $\tau \in C^{3}(D)$, the refractive index $n \in C^{2}(D)$. Then in D the following conservation law holds:

$$
\operatorname{div}\left\{\boldsymbol{T}-\boldsymbol{\Phi}_{i}(\tau)\right\}=0, \quad i=1,2
$$

where $\boldsymbol{T}=\operatorname{grad} \ln n-\Delta \tau \operatorname{grad} \tau / n^{2}, \mathbf{\Phi}_{i}(\tau)$ are obtained from the values $\boldsymbol{\Phi}_{i}$ of Lemma 2 by substitution $\cos \alpha_{1}=\tau_{x} / n, \cos \alpha_{2}=\tau_{y} / n, \cos \alpha_{3}=\tau_{z} / n$.

Corollary 3. Let $u=u(x, y, z)$ be the solution of the Poisson equation $\Delta u=-4 \pi \rho(x, y, z)$ in $D,|\operatorname{grad} u| \neq 0$ in D, the potential $u \in C^{3}(D)$, the density $\rho \in C^{1}(D)$. Then, in D the conservation law $\operatorname{div}\left\{\boldsymbol{T}-\boldsymbol{\Phi}_{i}(u)\right\}=0$ holds, where $\boldsymbol{T}=\operatorname{grad} \ln |\operatorname{grad} u|+4 \pi \rho \operatorname{grad} u /|\operatorname{grad} u|^{2}$, the fields $\boldsymbol{\Phi}_{i}(u)$ are defined in Corollary 2 by replacing τ by u.

Corollary 4. Let $\boldsymbol{v}=\boldsymbol{v}(z, y, z)=v \boldsymbol{\tau}$ be the velocity in Euler's hydrodynamic equations $\boldsymbol{v}_{t}+\operatorname{grad} v^{2} / 2-\boldsymbol{v} \times \operatorname{rot} \boldsymbol{v}=\boldsymbol{F}-\operatorname{grad} p / \rho$, which can be written down in D as $\boldsymbol{G}=-\boldsymbol{T}(\boldsymbol{v})(=-\boldsymbol{S}(\boldsymbol{\tau}))$, where $\boldsymbol{G} \stackrel{\text { def }}{=}\left\{\boldsymbol{v}_{t}+\boldsymbol{v} \operatorname{div} \boldsymbol{v}+\right.$ $\operatorname{grad} p / \rho-\boldsymbol{F}\} / v^{2} ; v \stackrel{\text { def }}{=}|\boldsymbol{v}| \neq 0$ in $D, \boldsymbol{v} \in C^{2}(D)$, the pressure $p \in C^{2}(D)$, the density $\rho \in C^{1}(D)$, the body force per unit of mass $\boldsymbol{F} \in C^{1}(D)$. Then in D the conservation law $\operatorname{div}\left\{\boldsymbol{G}+\mathbf{\Phi}_{i}(\boldsymbol{v})\right\}=0, i=1,2$, holds, where the field $\boldsymbol{\Phi}_{i}(\boldsymbol{v})$ is defined in Theorem 1.

Similarly by virtue of Theorems 2,5 , Remark 1 , and the equality $\boldsymbol{\tau}=$ $\boldsymbol{v} /|\boldsymbol{v}|$, we obtain for the above equations for the conservations laws of a higher order. In this case, the role of mutually orthogonal families of the curves L_{τ} and the surfaces S_{τ} for the eikonal equation is played by rays (the vector lines of the field $\boldsymbol{v}=\operatorname{grad} \tau)$ and by the fronts $\tau(x, y, z)=$ const; for the Poisson equation - by the vector (force) lines of the field $\boldsymbol{v}=\operatorname{grad} u$ and by the equipotential surfaces $u(x, y, z)=$ const; for Euler's hydrodynamic equations - by the streamlines (the vector lines of the velocity field \boldsymbol{v} at $t=$ const) and by surfaces orthogonal to them. In the plane case, when all the quantities are independent of z, from Theorems $1,2,5$ and from the Corollaries 2, 4 follow the conservation laws $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=\operatorname{div} \boldsymbol{S}^{*}=0$, $\operatorname{div} \boldsymbol{T}=0$, and $\operatorname{div} \boldsymbol{G}=0$ obtained in $[2-4]$.

References

[1] Megrabov A.G. Differential identities relating the Laplacian, the modulus of gradient and the gradient directional angle of a scalar function // Dokl. Math.2009. - Vol. 79, No. 1. - P. 136-140. [Dokl. Acad. Nauk. - 2009. - Vol. 424, No. 5.-P. 599-603].
[2] Megrabov A.G. Differential identities relating the modulus and direction of a vector field, and Euler's hydrodynamic equations // Dokl. Math. - 2010.Vol. 82, No. 1. - P. 625-629. [Dokl. Acad. Nauk. - 2010. - Vol. 433, No. 3.P. 309-313].
[3] Megrabov A.G. Some differential identities and their applications to the eikonal equation // Dokl. Math. - 2010. - Vol. 82, No. 1.-P. 638-642. [Dokl. Acad. Nauk. - 2010. - Vol. 433, No. 4. - P. 461-465].
[4] Megrabov A.G. Divergence formulas (conservation laws) in the differential geometry of plane curves and their applications // Dokl. Math.-2011.- Vol. 84, No. 3.-P. 857-861. [Dokl. Acad. Nauk. - 2011.- Vol. 441, No. 3.-P. 313-317].
[5] Vygodsky M.I. Differential Geometry. - Moscow-Leningrad: GITTL, 1949 (In Russian).
[6] Novikov S.P., Taimanov I.A. Modern Geometric Structures and Fields. Moscow: MTSNMO, 2005 (In Russian).
[7] Poznyak E.G., Shikin E.V. Differential Geometry. The First Acquaintance. Moscow: Moscow State University, 1990 (In Russian).
[8] Megrabov A.G. On divergence representations of the Gaussian and the mean curvature of surfaces and applications // This issue.

[^0]: *Supported by RFBR under Grant 12-01-00648.

