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Divergence formulas (conservation laws) for
families of curves and surfaces and applications∗

A.G. Megrabov

Abstract. The divergence formulas we have obtained (differential conservation
laws) of the form divF = 0 for an arbitrary smooth field of unit vectors τ (x, y, z),
for a family of spatial curves as well as {Lτ} for a family of surfaces {Sτ} con-
tinuously filling a certain domain. The solenoidal vector field F in these formulas
is expressed, respectively, through the field τ (x, y, z), the characteristics of the
curves Lτ and characteristics of the surfaces Sτ . Also, we have found the formulas
connecting the surface characteristics and those of the curves orthogonal to them.
In the case when the curves Lτ and the surfaces Sτ are vector lines of the vector
field v = |v|τ with the direction τ and the surfaces orthogonal to them, the con-
servation laws found are equivalent to divergence formulas for the field v. With
these general geometric formulas the divergent identities (differential conservation
laws) for the solutions of the eikonal equation | grad τ |2 = n2(x, y, z), the Poisson
equation uxx + uyy + uzz = −4πρ(x, y, z) and for solutions of Euler’s hydrody-
namic equations are obtained. In the plane case, these formulas transform to the
conservation laws obtained earlier.

This paper is a generalization and development of the published works
[1–4].

The vector line Lτ of vector fields corresponding to the solutions of the
mathematical physics equations, and to the surfaces Sτ orthogonal to them
with the normal τ continuously fill the domain in question. Therefore, in
this paper we study not only the properties of fixed curves and surfaces, but
the properties of their families.

In [4], we obtained divergence formulas (conservation laws) for the family
{Lτ} of the plane curves Lτ with the tangent unit vector τ = τ (x, y) and
the unit normal ν = ν(x, y) or for an arbitrary smooth field of the unit
vectors τ (x, y) with the vector lines Lτ . These conservation laws have the

form divS(τ ) = 0⇔ divS∗ = 0, where S(τ )
def
= rot τ ×τ −τ div τ = S∗ def

=
Kτ+Kν ,Kτ = (τ ·∇)τ = rot τ×τ = kν,Kν = (ν ·∇)ν = rotν×ν = −kντ
are curvature vectors of the curves Lτ with the curvature k and the curves
Lν orthogonal to them with the tangent unit vector ν and the curvature
of kν . The symbols (a · b) and a × b denote the scalar and the vector
products of the vectors a and b, ∇ is the Hamiltonian operator, (v · ∇)a is
the derivative of the vector a in the direction of the unit vector v.
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In this paper, we discuss the three-dimensional case, when we have the
field of unit vectors τ = τ (x, y, z), the family of spatial curves Lτ with the
Frenet basis (τ , ν, β) [5–7] (τ is the unit tangent vector, ν is a principal
normal, β is binormal), the first curvature k and the second curvature κ,
and the family {Sτ} of the surfaces Sτ , orthogonal to the curves Lτ , with
the normal τ , the principal directions l1 and l2, the principal curvatures k1

and k2, the mean curvature H
def
= (k1 + k2)/2 and the Gaussian curvature

K
def
= k1k2 [5–7]. All the values τ , ν, β, k, κ and l1, l2, k1, k2, H, K are

vector and scalar fields in D, which is continuously filled by the curves Lτ
and the surface Sτ . In the three-dimensional case the value of divS(τ ) is
not identically equal to zero in D. The following geometric reason explains
this circumstance. In [8], it was found that the value of {−divS(τ )/2} is
the Gaussian curvature K of the surface Sτ . The plane case corresponds to
the cylindrical surfaces Sτ with the directrices Lν and generatrices parallel
to the axis Oz; their Gaussian curvature K ≡ 0 and hence, divS(τ ) = 0
in D. However, in the general case, K 6≡ 0 for a single surface Sτ (except
for evolving surfaces [5–7]) and, especially, for the family {Sτ}, i.e., in D;
hence, divS(τ ) 6≡ 0 in D.

In this paper, we obtain the divergence formula (differential conservation
laws) of the form divF = 0 for an arbitrary smooth field of the unit vectors
τ (x, y, z), for the family of spatial curves {Lτ} and for the family of the
surfaces {Sτ} with the normal τ = τ (x, y, z). The solenoidal vector field F
in these formulas is expressed, respectively, through the field τ (x, y, z), the
characteristics τ , ν, β, k, κ of the curves Lτ and the characteristics l1, l2,
k1, k2, K, H of the surfaces Sτ . Some of these formulas contain the field S∗

that is the sum of three vectors of curvature of the vector lines of the fields
τ , ν, β and the field Sl that is the sum of three curvature vectors: vector
lines of the normal fields τ surfaces Sτ and two vector lines of fields of their
principle directions l1, l2. In [8], it was found that the field S(τ ) is of the
sum of three curvature vectors: the vector line Lτ of the field τ and any
two geodesic lines (mutually orthogonal) on the surfaces Sτ , orthogonal to
the curves Lτ . In the case when the curves Lτ and the surface Sτ are vector
lines of the vector field v = |v|τ with the direction τ and the surfaces,
orthogonal to them, the conservation laws obtained are equivalent to the
divergence formulas for the field v.

With the help of these general geometric formulas, the differential con-
servation laws for the solutions of the eikonal | grad τ |2 = n2(x, y, z), the
Poisson equation ∆u = −4πρ(x, y, z) (∆u = uxx + uyy + uzz) and three-
dimensional solutions of Euler’s hydrodynamic equations were obtained. In
the plane case, the formulas found transform to conservation laws obtained
in [2–4]. The symbols i, j, k denote the right-hand side system of unit
vectors along the axes of the Cartesian coordinate system x, y, z.
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Lemma 1 [2]. For any vector field v = v(x, y, z) = v1i+ v2j + v3k = |v|τ
defined in D, with components vk(x, y, z) ∈ C1(D), k = 1, 2, 3, the modulus
|v| 6= 0 in D and the direction τ = v/|v| (|τ | ≡ 1) the following identity
holds:

T (v) = S(τ ), (1)

where

S(τ )
def
= rot τ × τ − τ div τ = (τ · ∇)τ − τ div τ ,

T (v)
def
= grad ln |v|+ {rotv × v − v div v}/|v|2.

(2)

By the direct calculation one can prove

Lemma 2. Let τ = τ (x, y, z) = cosα1 i+ cosα2 j + cosα3 k be the vector
field of the unit vectors (|τ | ≡ 1) with the domain of definition D, α1,
α2, α3 are the direction angles between the vector τ and the axes x, y, z,
respectively, and τ (x, y, z) ∈ C1(D). Then the field S(τ ) of the form of (2)
can be represented in any of the forms S(τ ) =

∑3
j=1 grad cosαj× (ij×τ ) =∑3

j=1 cosαj rot(τ × ij), S(τ ) = Φ1 − rot Ψ = Φ2 + rot Ψ, where i1 = i,
i2 = j, i3 = k,

Φ1
def
= 2

[
cosα3 rot(cosα2 i) + cosα1 rot(cosα3 j) + cosα2 rot(cosα1 k)

]
,

Φ2
def
= −2

[
cosα2 rot(cosα3 i) + cosα3 rot(cosα1 j) + cosα1 rot(cosα2 k)

]
,

Ψ
def
= cosα2 cosα3 i+ cosα1 cosα3 j + cosα1 cosα2 k.

From Lemmas 1 and 2 follows

Theorem 1. Under the conditions of Lemma 2 in D the following equiv-
alent divergent identities (conservation laws) for the field τ are valid :
div{S(τ ) − Φi} = 0, i = 1, 2. If τ is the direction of the vector field
v = |v|τ , then under the conditions of Lemma 1 in D the following equiva-
lent divergent identities for the field v hold : div{T (v)−Φi(v)} = 0, i = 1, 2,
where Φi(v) is obtained from Φi by replacing τ by {v/|v|} and cosαj by
{vj/|v|}.

Let us obtain divergent formulas (differential conservation laws), which
appear to be of a higher order for the field of the unit vectors τ or for a
family of the curves {Lτ}, as compared to the identities of Theorem 1. Let
{Lτ} be a family of the curves Lτ with the tangent unit vector τ = τ (x, y, z)
continuously filling the domain D. Let:

(D) one and only one curve Lτ ∈ {Lτ} passes through each point
(x, y, z) ∈ D;
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(E) at each point (x, y, z) of any curve Lτ ∈ {Lτ} there is a (right) Frenet
basis (τ ,ν,β), so that three mutually orthogonal vector fields τ , ν, β
are defined in D;

(F) τ (x, y, z) ∈ C2(D).

By the direct calculations one can prove

Lemma 3. Let the family {Lτ} of the curves Lτ with the Frenet unit vec-
tors τ , ν, β, the first curvature k and the second curvature κ satisfy the
conditions (D)–(F) in D. Let the field S∗ be the sum of the three curvature
vectors:

S∗ def
= Kτ +Kν +Kβ = (τ · ∇)τ + (ν · ∇)ν + (β · ∇)β

= rot τ × τ + rotν × ν + rotβ × β
= −{τ div τ + ν div ν + β divβ} = {S(τ ) + S(ν) + S(β)}/2.

Here Kτ = (τ · ∇)τ = rot τ × τ = kν, Kν = (ν · ∇)ν = rotν × ν,
Kβ = (β · ∇)β = rotβ×β are curvature vectors of the vector lines Lτ , Lν ,
Lβ of the fields τ , ν, β, respectively. Then S∗ = S(τ )+τ ×R∗ in D, where

R∗ def
= κτ + kβ + β div ν − ν divβ = Φ + S∗ × τ = κτ + (τ · rotν)ν +

(τ · rotβ)β, Φ
def
= κτ + kβ. Here Φ is the Darboux vector [5].

Lemma 3 results in

Theorem 2. Under the conditions of Lemma 3 the divergent identity
(conservation law for a family of curves {Lτ}) holds in D:

div{τ divS∗ − κ rot τ − k rotβ} = 0 ⇔

div
{1

2
τ divS(τ )− kν(ν · rotβ)− kβ[(β · rotβ) + κ]

}
= 0.

Everywhere here the expression in braces is equal to rotR∗; divS(τ ) =
2(τ · rotR∗); divS∗ = (1/2) divS(τ ) + k(τ · rotβ) + κ(τ · rot τ ); the fields
S(τ ), S∗, R∗, k, κ are defined in Lemmas 1, 3.

The expressions for the value divS(τ ), the first curvature k and the
second curvature κ of the curves Lτ in terms of the fields of the Frenet unit
vectors τ , ν, β are given by

Lemma 4. Under the conditions of Theorem 2, the following identities hold
in D:

k = (β · rot τ ), κ = {(τ · rot τ )− (ν · rotν)− (β · rotβ)}/2,
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divS(τ ) = 2{κ[κ − (τ · rot τ )]− (τ · [rotν × rotβ])}
= 2{(ν · rotβ)(β · rotν) + [A2 − (τ · rot τ )2]/4}

A2 +B2 = (div τ )2 + 2 divS(τ ) + (τ · rot τ )2,

where A
def
= (ν · rotν)− (β · rotβ), B

def
= (β · rotν) + (ν · rotβ).

Let us find a divergence formula (a conservation law) for the surfaces Sτ
given by some general properties in terms of their geometric characteristics.
Let {Sτ} be a family of the surfaces Sτ with the unit normal τ continuously
filling the domain D in the space of x, y, z. The principal direction on Sτ
will be represented by a unit vector li (i = 1, 2) with the corresponding
direction; li is the unit tangent vector of the curvature lines Li on Sτ [5–7].
Let:

(A) through each point (x, y, z) ∈ D there passes one and only one surface
Sτ ∈ {Sτ};

(B) at each point (x, y, z) ∈ D there exists a system (the right-hand side
one) of the mutually orthogonal unit vectors τ , l1, l2, where τ is the
unit normal, l1 and l2 are the principal directions on the surface Sτ ,
passing through this point. For this, it is sufficient that each surface
Sτ ∈ {Sτ} be C2-regular [7]. Thus, three mutually orthogonal vector
fields of the unit vectors τ (x, y, z), l1(x, y, z), l2(x, y, z) are defined in
D. Simultaneously τ = τ (x, y, z) is the tangent unit vector of the
curves Lτ , orthogonal to the family {Sτ}, that is, the vector lines of
the normal vector field τ ;

(C) τ ∈ Cn(D) (below n = 1 or 2), li ∈ C1(D), i = 1, 2.

The geometric meaning of the quantities div τ , divS(τ ) and the diver-
gent representations of the mean and the Gaussian curvatures of the surfaces
is proved in

Theorem 3 [8]. At any point (x, y, z) ∈ D under the conditions (A)–(C)
the mean curvature H for n = 1 and the Gaussian curvature K for n = 2
of the surface Sτ passing through this point are equal to the divergence (the
sources density) of the vector fields {−τ/2} and {−S(τ )/2}, respectively, at

this point : H = −1

2
div τ , K = −1

2
divS(τ ).

The geometric meaning of the conservation law of Theorem 1 explains

Corollary 1. Under the conditions of Theorem 3, the Gaussian curvature
K of the surfaces Sτ ∈ {Sτ} admits in D the divergent representation of

K = −1

2
div Φi. If the surfaces Sτ are orthogonal to the vector lines Lτ
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of the vector field v = |v|τ , |v| 6= 0 in D and v ∈ C2(D), then K =

−1

2
divT (v) = −1

2
div Φ(v). Here the fields S(τ ), T (v), Φi, Φ(v) are

defined in Lemmas 1, 2.

The connection between the characteristics l1, l2, k1, k2, H, K of the
surfaces Sτ ∈ {Sτ} and the characteristics τ , ν, β, k, κ of the curves Lτ
orthogonal to Sτ is given by

Theorem 4. Let the family {Sτ} of the surfaces Sτ with the unit normal
τ = τ (x, y, z) satisfy the conditions (A)–(C) for n = 2 and the family {Lτ}
of the curves Lτ , orthogonal to {Sτ}, satisfy the conditions (D)–(F). Then
at each point (x, y, z) ∈ D, the principal directions l1 and l2, the principal
curvatures k1 and k2, the mean curvature H and the Gaussian curvature K
of the surface Sτ passing through this point are expressed in terms of the
Frenet unit vectors τ , ν, β, the first curvature k and the second curvature
κ of the curves Lτ by the formulas:

l1 = cosω ν + sinω β, l2 = − sinω ν + cosω β,

tg 2ω = −A
B

⇔ (l1 · rot l1) = (l2 · rot l2),

k1 = −1

2
{div τ ±

√
A2 +B2 } = −(l2 · rot l1),

k2 = −1

2
{div τ ∓

√
A2 +B2 } = (l1 · rot l2),

⇒ K
def
= k1k2 =

1

4
{(div τ )2 − (A2 +B2)}

K = (τ · [rotν × rotβ])− κ2 = −
{

(ν · rotβ)(β · rotν) +
1

4
A2
}

⇒ H
def
=

1

2
(k1 + k2) = −1

2
div τ , K = −1

2
divS(τ ),

where the quantities A, B, k, κ, S(τ ), divS(τ ) are given by the formulas
of Lemmas 1, 2, 4. Let us place the sign “plus” in front of the radical for
k1 < k2 and “minus” for k1 > k2. We have H2 − K = A2 + B2 ≥ 0 ⇒
H2 ≥ K.

Lemma 5. Let the conditions of Theorem 4 be valid and the field S∗
l be the

sum of the three curvature vectors:

S∗
l

def
= Kτ +K1 +K2 = (τ · ∇)τ + (l1 · ∇)l1 + (l2 · ∇)l2

= rot τ × τ + rot l1 × l1 + rot l2 × l2
= −{τ div τ + l1 div l1 + l2 div l2} = {S(τ ) + S(l1) + S(l2)}/2.
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Here Kτ = (τ · ∇)τ = rot τ × τ = kν is the curvature vector of the vector
line Lτ of the normal field τ of the surfaces Sτ , Ki = (li · ∇)li = rot li × li
is the curvature vector of the curvature lines Li on Sτ (i = 1, 2). Then in D

S∗
l = S∗ + τ × gradw, S∗

l = S(τ ) + τ ×R∗
l ⇒

R∗
l
def
= gradw +R∗ = κlτ + kβ + S∗

l × τ
= κlτ + rot τ − (l1 div l2 − l2 div l1)

= κlτ + l1(τ · rot l1) + l2(τ · rot l2),

where S∗, R∗, w are defined in Theorems 2, 4, and

κl
def
= −{(l1 · rot l1) + (l2 · rot l2)}/2 = −(li · rot li), i = 1, 2.

The expression of the conservation law of Theorem 2 in terms of the
characteristics of the surfaces Sτ is given by

Theorem 5. With the conditions and notations of Lemma 5 and Theo-
rem 4 for the family {Sτ} of the surfaces Sτ in D there holds the divergent
identity (conservation law):

div {Kτ + k2(l2 · rot τ )l1 − k1(l1 · rot τ )l2} = 0

⇔ div {Kτ + (H +B/2)Kτ −A rot τ/2} = 0

⇔ div{−τ divS∗
l + (l1 · rot τ ) rot l1 + (l2 · rot τ ) rot l2 + κl rot τ}.

Here, the expression in braces { } in everywhere equal to {− rotR∗
l } =

− rotR∗; K = −(τ · rotR∗
l ); divS∗

l = −K + (l1 · rot τ )(τ · rot l1) + (l2 ·
rot τ )(τ · rot l2).

Remark 1. The Frenet unit vectors ν, β and the first curvature k of the
curves Lτ can be expressed in terms of τ : ν = (rot τ × τ )/k, β = τ × ν,
k = | rot τ × τ |. Since by the formulas of Lemma 4 and Theorem 4 the
quantities l1, l2, k1, k2, κ, S(τ ), H, K are expressed in terms of the orts τ ,
ν, β of the curves Lτ , then finally, all these quantities can be expressed only
through the field τ . Therefore, all the formulas of Theorems 2, 4, 5 and
Lemmas 3–5 can be only expressed through the field τ (the unit tangent
vectors of the curves Lτ or normals to Sτ ).

Let us apply the general formulas obtained to the solutions of the math-
ematical physics equations. Theorem 1 implies

Corollary 2. Let τ = τ(x, y, z) be the solution of the eikonal equation
τ2x + τ2y + τ2z = n2(x, y, z) in D, the time field τ ∈ C3(D), the refractive

index n ∈ C2(D). Then in D the following conservation law holds:
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div{T −Φi(τ)} = 0, i = 1, 2,

where T = grad lnn−∆τ grad τ/n2, Φi(τ) are obtained from the values Φi

of Lemma 2 by substitution cosα1 = τx/n, cosα2 = τy/n, cosα3 = τz/n.

Corollary 3. Let u = u(x, y, z) be the solution of the Poisson equation
∆u = −4πρ(x, y, z) in D, | gradu| 6= 0 in D, the potential u ∈ C3(D), the
density ρ ∈ C1(D). Then, in D the conservation law div{T − Φi(u)} = 0
holds, where T = grad ln | gradu|+4πρ gradu/| gradu|2, the fields Φi(u) are
defined in Corollary 2 by replacing τ by u.

Corollary 4. Let v = v(z, y, z) = vτ be the velocity in Euler’s hydrody-
namic equations vt + grad v2/2 − v × rotv = F − grad p/ρ, which can be

written down in D as G = −T (v) (= −S(τ )), where G
def
= {vt + v div v +

grad p/ρ − F }/v2; v
def
= |v| 6= 0 in D, v ∈ C2(D), the pressure p ∈ C2(D),

the density ρ ∈ C1(D), the body force per unit of mass F ∈ C1(D). Then in
D the conservation law div{G + Φi(v)} = 0, i = 1, 2, holds, where the
field Φi(v) is defined in Theorem 1.

Similarly by virtue of Theorems 2, 5, Remark 1, and the equality τ =
v/|v|, we obtain for the above equations for the conservations laws of a
higher order. In this case, the role of mutually orthogonal families of the
curves Lτ and the surfaces Sτ for the eikonal equation is played by rays (the
vector lines of the field v = grad τ) and by the fronts τ(x, y, z) = const; for
the Poisson equation–– by the vector (force) lines of the field v = gradu and
by the equipotential surfaces u(x, y, z) = const; for Euler’s hydrodynamic
equations –– by the streamlines (the vector lines of the velocity field v at
t = const) and by surfaces orthogonal to them. In the plane case, when
all the quantities are independent of z, from Theorems 1, 2, 5 and from
the Corollaries 2, 4 follow the conservation laws divS(τ ) = divS∗ = 0,
divT = 0, and divG = 0 obtained in [2–4].
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