On the conservation laws for a family of surfaces

A.G. Megrabov

Abstract

A family $\left\{S_{\tau}\right\}$ of surfaces S_{τ} with the unit normal $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$ in the Euclidean space E^{3} is considered. The surfaces S_{τ} continuously fill a domain D in E^{3}. For the family $\left\{S_{\tau}\right\}$ of surfaces S_{τ}, the law of conservation $\operatorname{div} \boldsymbol{F}=0$ is proved, where the solenoidal vector field \boldsymbol{F} is expressed in terms of the main classical characteristics of the surfaces S_{τ} : the unit normal, the principal directions, the principal curvatures, the mean curvature, and the Gaussian curvature.

Keywords: vector field, family of surfaces, conservation law.

1. Introduction

This paper is a sequel to the previous publications [1, 2].
In mathematical physics, one sometimes has to deal with a family $\left\{S_{\tau}\right\}$ of surfaces S_{τ} with the unit normal $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$ which are related to solutions of differential equations and continuously fill the domain in question. For example, for solutions τ of the eikonal equation $\tau_{x}^{2}+\tau_{y}^{2}+\tau_{z}^{2}=n^{2}(x, y, z)$ (where $\tau=\tau(x, y, z)$ is the scalar time field and n is the refractive index), which is the basic mathematical model in kinematic seismics (geometric optics), the role of the surfaces S_{τ} is played by the wavefronts $\tau(x, y, z)=$ const. The curves L_{τ} orthogonal to the surfaces S_{τ} and having the unit tangent vector $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$) also form a family (the family of curves $\left\{L_{\tau}\right\}$) and continuously fill the domain under consideration. The curves L_{τ} are vector lines of the physical vector fields corresponding to the solutions of the equations of mathematical physics. For example, for the eikonal equation, the role of the curves L_{τ} is played by rays - the vector lines of the field $\boldsymbol{v}=\operatorname{grad} \tau=n \boldsymbol{\tau}$. Therefore, in this paper, we do not study the properties of individual curves and surfaces, but the properties of their families $\left\{L_{\tau}\right\}$ and $\left\{S_{\tau}\right\}$.

The basic characteristics of the curves L_{τ} of classical differential geometry [2-4] are the Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})$, where $\boldsymbol{\tau}$ is the unit tangent vector, $\boldsymbol{\nu}$ is the principal normal, and $\boldsymbol{\beta}$ is the binormal, the first curvature k, and the second curvature \varkappa being defined at each point of a given curve. The most important classical characteristics of the surface are its unit normal $\boldsymbol{\tau}$, the principal directions \boldsymbol{l}_{1} and \boldsymbol{l}_{2}, the principal curvatures k_{1} and k_{2}, the mean curvature $H \stackrel{\text { def }}{=}\left(k_{1}+k_{2}\right) / 2$, and the Gaussian curvature $K \stackrel{\text { def }}{=} k_{1} k_{2}$, which are defined at each point of a given surface. For the families $\left\{L_{\tau}\right\}$
and $\left\{S_{\tau}\right\}$, all the quantities $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}, k, \varkappa$ and $\boldsymbol{l}_{1}, \boldsymbol{l}_{2}, k_{1}, k_{2}, H$, and K are the vector and the scalar fields in the domain D continuously filled with the curves L_{τ} and the surfaces S_{τ}. The symbols $\boldsymbol{a} \cdot \boldsymbol{b}$ and $\boldsymbol{a} \times \boldsymbol{b}$ denote the scalar and vector products of the vectors \boldsymbol{a} and \boldsymbol{b}, ∇ is the Hamiltonian operator, $(\boldsymbol{v} \cdot \nabla) \boldsymbol{a}$ is the derivative of the vector \boldsymbol{a} in the direction of the vector \boldsymbol{v}.

In Section 2.3 of paper [1] and in [6], the conservation laws for a family of curves were obtained in the form of the identity $\operatorname{div} \boldsymbol{F}=0$, where the vector field \boldsymbol{F} is expressed in terms of the characteristics of the curves i.e. their Frenet basis vectors, first curvature, and second curvature.

In this paper, we prove the conservation law for a family $\left\{S_{\tau}\right\}$ of surfaces S_{τ}, i.e., a divergent identity of the form $\operatorname{div} \boldsymbol{F}=0$, where the vector field \boldsymbol{F} is expressed in terms of the basic characteristics of the surfaces S_{τ} : the quantities $\boldsymbol{\tau}, \boldsymbol{l}_{1}, \boldsymbol{l}_{2}, k_{1}, k_{2}, H$, and K. (Generally, by the conservation law for a given mathematical object is meant a differential identity of the form $\operatorname{div} \boldsymbol{F}=0$, where the vector field \boldsymbol{F} is expressed in terms of the characteristics of this object. This definition agrees with the well-known concept of conservation law for a differential equation $E[7]$, where the field \boldsymbol{F} is expressed in terms of the solution to the equation E, the derivatives of this solution, and the parameters of the equation. An example is the conservation law $\operatorname{div} \boldsymbol{v}=0$ for an ideal incompressible fluid, where \boldsymbol{v} is the velocity [8].)

2. Conditions on the family of surfaces $\left\{S_{\tau}\right\}$ and on the family of curves $\left\{L_{\tau}\right\}$ orthogonal to $\left\{S_{\tau}\right\}$

Consider a domain D in the Euclidean space E^{3} with the Cartesian coordinates $x, y, z ; \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ are the unit vectors along the axes $x, y, z ; \boldsymbol{\tau}=$ $\boldsymbol{\tau}(x, y, z)=\tau_{1} \boldsymbol{i}+\tau_{2} \boldsymbol{j}+\tau_{3} \boldsymbol{k}$ is the unit vector field defined in $D, \tau_{k}=$ $\tau_{k}(x, y, z)$ are the scalar functions $(k=1,2,3),|\boldsymbol{\tau}|^{2}=1 ; L_{\tau}$ is a vector line of the field $\boldsymbol{\tau}$ (with the unit tangent vector $\boldsymbol{\tau}$).

Let $\left\{L_{\tau}\right\}$ be a family of curves L_{τ} which continuously fill the domain D, and
(A) one and only one curve $L_{\tau} \in\left\{L_{\tau}\right\}$ passes through each point $(x, y, z) \in D ;$
(B) at each point (x, y, z) of any curve $L_{\tau} \in\left\{L_{\tau}\right\}$, there exists a righthand Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})$, so that three mutually orthogonal vector fields $\boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$ are defined in D, and $\boldsymbol{\tau}=\boldsymbol{\nu} \times \boldsymbol{\beta}, \boldsymbol{\nu}=\boldsymbol{\beta} \times \boldsymbol{\tau}$, $\boldsymbol{\beta}=\boldsymbol{\tau} \times \boldsymbol{\nu} ;$
(C) $\boldsymbol{\tau} \in C^{2}(D)$.

In the domain D, let there exist a family of surfaces S_{τ} orthogonal to the family of curves $\left\{L_{\tau}\right\}$, i.e., to the field $\boldsymbol{\tau}$. According to the Jacobi theorem $[9, \mathrm{Ch} .1, \S 1]$, this is equivalent to the identity $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}=0$ in D.

Therefore, $\left\{L_{\tau}\right\}$ is the family of vector lines of the field of normals $\boldsymbol{\tau}$ to the surfaces S_{τ}. Let $\left\{S_{\tau}\right\}$ be a family of surfaces S_{τ} with the unit normal $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$ which continuously fill the domain D in the space of variables x, y, z. The principal direction will be represented by the unit vector \boldsymbol{l}_{i} ($i=1,2$) with the corresponding direction; the vector \boldsymbol{l}_{i} is the unit tangent vector of the curvature line L_{i} on S_{τ}, and at a point $(x, y, z) \in S_{\tau}$ it is equal to the derivative of the radius vector $\boldsymbol{r}=\boldsymbol{r}(x, y, z)$ of the point of the surface S_{τ} in the principal direction at the point (x, y, z).
(D) Let one and only one surface $S_{\tau} \in\left\{S_{\tau}\right\}$ pass through each point $(x, y, z) \in D$.
(E) At each point $(x, y, z) \in D$, let there exist a right-hand system of mutually orthogonal unit vectors $\boldsymbol{\tau}, \boldsymbol{l}_{1}$, and \boldsymbol{l}_{2}, where $\boldsymbol{\tau}$ is the unit normal and \boldsymbol{l}_{1} and \boldsymbol{l}_{2} are the principal directions at the surface S_{τ} passing through this point. For this, it is sufficient that each surface $S_{\tau} \in\left\{S_{\tau}\right\}$ be C^{2}-regular [4]. Thus, in the domain D, we have defined three mutually orthogonal unit vector fields $\boldsymbol{\tau}(x, y, z), \boldsymbol{l}_{1}(x, y, z)$, and $\boldsymbol{l}_{2}(x, y, z) ; \boldsymbol{l}_{1}=\boldsymbol{l}_{2} \times \boldsymbol{\tau}, \boldsymbol{l}_{2}=\boldsymbol{\tau} \times \boldsymbol{l}_{1}, \boldsymbol{\tau}=\boldsymbol{l}_{1} \times \boldsymbol{l}_{2} ;$
(F) $\boldsymbol{\tau} \in C^{2}(D), \boldsymbol{l}_{1}, \boldsymbol{l}_{2} \in C^{1}(D)$.

Remark 1. As the initial object it is possible to take the family $\left\{S_{\tau}\right\}$ of surfaces S_{τ} with properties(D)-(F) which has the unit normal vector field τ and to define the curves L_{τ} as the vector lines of this field $\boldsymbol{\tau}$. Obviously, the families $\left\{S_{\tau}\right\}$ and $\left\{L_{\tau}\right\}$ are mutually orthogonal.

3. Subsidiary propositions

We introduce the vector field

$$
\begin{equation*}
\boldsymbol{S}(\boldsymbol{\tau}) \stackrel{\text { def }}{=} \operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}-\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}=\boldsymbol{K}_{\tau}-\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau} \tag{1}
\end{equation*}
$$

where $\boldsymbol{K}_{\tau}=k \boldsymbol{\nu}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\frac{d \boldsymbol{\tau}}{d s}=\boldsymbol{\tau}_{s}$ is the curvature vector of the curve L_{τ} with the unit tangent vector $\boldsymbol{\tau}$ and the principal normal $\boldsymbol{\nu}$, L_{τ} is a streamline or a vector line of the field $\boldsymbol{\tau}, k$ is its first curvature, $d / d s$ is the differentiation operator with respect to the natural parameter s in the direction of $\boldsymbol{\tau}$ (along the curve L_{τ}).

Lemma 1 [1]. Let a family $\left\{L_{\tau}\right\}$ of curves L_{τ} with the Frenet basis vectors $\boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$, the first curvature k, and the second curvature \varkappa in the domain D satisfy conditions (A)-(C). Let the field \boldsymbol{S}^{*} be the sum of the three curvature vectors:

$$
\begin{align*}
\boldsymbol{S}^{*} & \stackrel{\text { def }}{=} \boldsymbol{K}_{\tau}+\boldsymbol{K}_{\nu}+\boldsymbol{K}_{\beta}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}+(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\nu}+(\boldsymbol{\beta} \cdot \nabla) \boldsymbol{\beta} \\
& =\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}+\operatorname{rot} \boldsymbol{\nu} \times \boldsymbol{\nu}+\operatorname{rot} \boldsymbol{\beta} \times \boldsymbol{\beta} \\
& =-(\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}+\boldsymbol{\nu} \operatorname{div} \boldsymbol{\nu}+\boldsymbol{\beta} \operatorname{div} \boldsymbol{\beta})=[\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{S}(\boldsymbol{\nu})+\boldsymbol{S}(\boldsymbol{\beta})] / 2 . \tag{2}
\end{align*}
$$

Here $\boldsymbol{K}_{\tau}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}=k \boldsymbol{\nu}, \boldsymbol{K}_{\nu}=(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\nu}=\operatorname{rot} \boldsymbol{\nu} \times \boldsymbol{\nu}$, and $\boldsymbol{K}_{\beta}=(\boldsymbol{\beta} \cdot \nabla) \boldsymbol{\beta}=\operatorname{rot} \boldsymbol{\beta} \times \boldsymbol{\beta}$ are the curvature vectors of the vector lines L_{τ}, L_{ν}, and L_{β} of the fields $\boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$, respectively. Then, in D,

$$
\begin{equation*}
S^{*}=S(\tau)+\tau \times R^{*}, \tag{3}
\end{equation*}
$$

where the vector field \boldsymbol{R}^{*} is represented by any of the formulas

$$
\begin{gather*}
\boldsymbol{R}^{*} \stackrel{\text { def }}{=} \varkappa \boldsymbol{\tau}+k \boldsymbol{\beta}+\boldsymbol{\beta} \operatorname{div} \boldsymbol{\nu}-\boldsymbol{\nu} \operatorname{div} \boldsymbol{\beta}, \tag{4}\\
\boldsymbol{R}^{*}=\boldsymbol{\Phi}+\boldsymbol{S}^{*} \times \boldsymbol{\tau}, \tag{5}\\
\boldsymbol{R}^{*}=\varkappa \boldsymbol{\tau}+(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\nu}) \boldsymbol{\nu}+(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta}) \boldsymbol{\beta}, \tag{6}\\
\boldsymbol{R}^{*}=(\varkappa-\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}) \boldsymbol{\tau}+\nabla(\boldsymbol{\nu}, \boldsymbol{\beta}) . \tag{7}
\end{gather*}
$$

Here $\boldsymbol{\Phi} \stackrel{\text { def }}{=} \varkappa \boldsymbol{\tau}+k \boldsymbol{\beta}$ is the Darboux vector $[10], \nabla(\boldsymbol{\nu}, \boldsymbol{\beta}) \stackrel{\text { def }}{=}(\boldsymbol{\beta} \cdot \nabla) \boldsymbol{\nu}-$ $(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\beta}$ is the Poisson bracket [9] for $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$.

Thus, Lemma 1 determines the relation between the fields \boldsymbol{S}^{*} and $\boldsymbol{S}(\boldsymbol{\tau})$; the vector field \boldsymbol{R}^{*} is a measure of a difference between \boldsymbol{S}^{*} and $\boldsymbol{S}(\boldsymbol{\tau})$. In [2], the following theorem on the relationship between the characteristics \boldsymbol{l}_{1} and \boldsymbol{l}_{2} of surfaces $S_{\tau} \in\left\{S_{\tau}\right\}$ and the characteristics $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$ of the curves L_{τ} orthogonal to S_{τ} was obtained.

Theorem 1. Let the family $\left\{S_{\tau}\right\}$ of surfaces S_{τ} with the unit normal $\boldsymbol{\tau}=$ $\boldsymbol{\tau}(x, y, z)$ satisfy conditions $(\mathrm{D})-(\mathrm{F})$ and let the family $\left\{L_{\tau}\right\}$ of curves L_{τ} orthogonal to $\left\{S_{\tau}\right\}$ satisfy conditions (A)-(C). Then at each point $(x, y, z) \in$ D, the principal directions \boldsymbol{l}_{1} and \boldsymbol{l}_{2} of the surface S_{τ} passing through this point are expressed in terms of the Frenet basis vectors $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$ of the curves L_{τ} according to the formulas

$$
\begin{equation*}
\boldsymbol{l}_{1}=\boldsymbol{\nu} \cos \omega+\boldsymbol{\beta} \sin \omega, \quad \boldsymbol{l}_{2}=-\boldsymbol{\nu} \sin \omega+\boldsymbol{\beta} \cos \omega, \tag{8}
\end{equation*}
$$

where $\omega=\omega(x, y, z)$ is a scalar function (ω is the angle between the vectors \boldsymbol{l}_{1} and $\boldsymbol{\nu}$ or between \boldsymbol{l}_{2} and $\boldsymbol{\beta}$). In addition, the fields of the principal directions \boldsymbol{l}_{1} and \boldsymbol{l}_{2} in the domain D satisfy the identity

$$
\begin{equation*}
\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{l}_{1}=\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{l}_{2} \tag{9}
\end{equation*}
$$

In terms of the geometry of vector fields [9, Ch. 1, §1], identity (9) implies that the non-holonomicity values of the vector fields of the principal directions \boldsymbol{l}_{1} and \boldsymbol{l}_{2} are equal in D. Identity (9) is equivalent to the condition

$$
\begin{equation*}
\operatorname{tg} 2 \omega=-\frac{A}{B} \tag{10}
\end{equation*}
$$

in D, which defines the function ω in terms of $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$. Here $A \xlongequal{=}$ $\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\nu}-\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}$ and $B \stackrel{\text { def }}{=} \boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\nu}+\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta}$. The principal curvatures k_{1} and k_{2} of the surfaces S_{τ} are given by the formulas

$$
\begin{equation*}
k_{1}=-\operatorname{rot} \boldsymbol{l}_{1} \cdot \boldsymbol{l}_{2}, \quad k_{2}=\operatorname{rot} \boldsymbol{l}_{2} \cdot \boldsymbol{l}_{1} . \tag{11}
\end{equation*}
$$

The following statement is an analog to Lemma 1 for a family of surfaces $\left\{S_{\tau}\right\}$.

Lemma 2. Let the conditions of Theorem 1 be satisfied and let the field \boldsymbol{S}_{l}^{*} be the sum of the three curvature vectors:

$$
\begin{align*}
\boldsymbol{S}_{l}^{*} & \stackrel{\text { def }}{=} \boldsymbol{K}_{\tau}+\boldsymbol{K}_{1}+\boldsymbol{K}_{2}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}+\left(\boldsymbol{l}_{1} \cdot \nabla\right) \boldsymbol{l}_{1}+\left(\boldsymbol{l}_{2} \cdot \nabla\right) \boldsymbol{l}_{2} \tag{12}\\
& =\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}+\operatorname{rot} \boldsymbol{l}_{1} \times \boldsymbol{l}_{1}+\operatorname{rot} \boldsymbol{l}_{2} \times \boldsymbol{l}_{2} \tag{13}\\
& =-\left(\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}+\boldsymbol{l}_{1} \operatorname{div} \boldsymbol{l}_{1}+\boldsymbol{l}_{2} \operatorname{div} \boldsymbol{l}_{2}\right) \tag{14}\\
& =\left\{\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{S}\left(\boldsymbol{l}_{1}\right)+\boldsymbol{S}\left(\boldsymbol{l}_{2}\right)\right\} / 2 .
\end{align*}
$$

Here $\boldsymbol{K}_{\tau}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}=k \boldsymbol{\nu}$ is the curvature vector of the vector line L_{τ} of the normal field $\boldsymbol{\tau}$ of the surfaces S_{τ} and $\boldsymbol{K}_{i}=\left(\boldsymbol{l}_{i} \cdot \nabla\right) \boldsymbol{l}_{i}=$ $\operatorname{rot} \boldsymbol{l}_{i} \times \boldsymbol{l}_{i}$ is the curvature vector of the curvature line L_{i} on $S_{\tau}(i=1,2)$. Then, in the domain D,

$$
\begin{equation*}
\boldsymbol{S}_{l}^{*}=\boldsymbol{S}^{*}+\boldsymbol{\tau} \times \operatorname{grad} w, \quad \boldsymbol{S}_{l}^{*}=\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{\tau} \times \boldsymbol{R}_{l}^{*}, \tag{15}
\end{equation*}
$$

where the vector field \boldsymbol{R}_{l}^{*} can be represented by any of the formulas

$$
\begin{gather*}
\boldsymbol{R}_{l}^{*} \stackrel{\text { def }}{=} \operatorname{grad} w+\boldsymbol{R}^{*}, \tag{16}\\
\boldsymbol{R}_{l}^{*}=\varkappa_{l} \boldsymbol{\tau}+k \boldsymbol{\beta}+\boldsymbol{S}_{l}^{*} \times \boldsymbol{\tau}, \tag{17}\\
\boldsymbol{R}_{l}^{*}=\varkappa_{l} \boldsymbol{\tau}+\operatorname{rot} \boldsymbol{\tau}-\left(\boldsymbol{l}_{1} \operatorname{div} \boldsymbol{l}_{2}-\boldsymbol{l}_{2} \operatorname{div} \boldsymbol{l}_{1}\right), \tag{18}\\
\boldsymbol{R}_{l}^{*}=\varkappa_{l} \boldsymbol{\tau}+\boldsymbol{l}_{1}\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{l}_{1}\right)+\boldsymbol{l}_{2}\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right), \tag{19}\\
\varkappa_{l} \stackrel{\text { def }}{=}-\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{l}_{1}+\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right) / 2=-\boldsymbol{l}_{i} \cdot \operatorname{rot} \boldsymbol{l}_{i}, \quad i=1,2, \tag{20}
\end{gather*}
$$

and the quantities $\boldsymbol{S}(\boldsymbol{\tau}), \boldsymbol{S}^{*}, \boldsymbol{R}^{*}$, and w are given by formulas (1)-(10).
Proof. Using the well-known formula $\operatorname{rot}(\varphi \boldsymbol{a})=\varphi \operatorname{rot} \boldsymbol{a}+\operatorname{grad} \varphi \times \boldsymbol{a}$ [3], from equalities (8), we obtain

$$
\begin{align*}
& \operatorname{rot} \boldsymbol{l}_{1}=\cos w \operatorname{rot} \boldsymbol{\nu}+\sin w \operatorname{rot} \boldsymbol{\beta}+\operatorname{grad} w \times \boldsymbol{l}_{2} \tag{21}\\
& \operatorname{rot} \boldsymbol{l}_{2}=-\sin w \operatorname{rot} \boldsymbol{\nu}+\cos w \operatorname{rot} \boldsymbol{\beta}-\operatorname{grad} w \times \boldsymbol{l}_{1} .
\end{align*}
$$

From this, using the well-known formulas $\boldsymbol{a} \times \boldsymbol{b}=-\boldsymbol{b} \times \boldsymbol{a}, \boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=$ $\boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c})-\boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b})[3]$ and $\boldsymbol{\tau}=\boldsymbol{l}_{1} \times \boldsymbol{l}_{2}$, we obtain $\boldsymbol{K}_{1}+\boldsymbol{K}_{2}=\operatorname{rot} \boldsymbol{l}_{1} \times \boldsymbol{l}_{2}+$ $\operatorname{rot} \boldsymbol{l}_{2} \times \boldsymbol{l}_{2}=\operatorname{rot} \boldsymbol{\nu} \times \boldsymbol{\nu}+\operatorname{rot} \boldsymbol{\beta} \times \boldsymbol{\beta}+\boldsymbol{\tau} \times \operatorname{grad} w=\boldsymbol{K}_{\nu}+\boldsymbol{K}_{\beta}+\boldsymbol{\tau} \times \operatorname{grad} w$. In view of definitions (2) and (12) of the vectors \boldsymbol{S}^{*} and \boldsymbol{S}_{l}^{*} and identity (3), the latter equality brings about identities (15), where the vector field \boldsymbol{R}_{l}^{*} is given by formula (16).

Using equalities (5) and $\boldsymbol{S}^{*} \times \boldsymbol{\tau}=\boldsymbol{S}_{l}^{*} \times \boldsymbol{\tau}+\boldsymbol{\tau} \times(\boldsymbol{\tau} \times \operatorname{grad} w)$, from (16) we obtain $\boldsymbol{R}_{l}^{*}=\operatorname{grad} w+\boldsymbol{R}^{*}=\operatorname{grad} w+\varkappa \boldsymbol{\tau}+k \boldsymbol{\beta}+\boldsymbol{S}^{*} \times \boldsymbol{\tau}=\operatorname{grad} w+\varkappa \boldsymbol{\tau}+$ $k \boldsymbol{\beta}+\boldsymbol{S}_{l}^{*} \times \boldsymbol{\tau}+\boldsymbol{\tau}(\operatorname{grad} w \cdot \boldsymbol{\tau})-\operatorname{grad} w=\boldsymbol{\tau}(\varkappa+\operatorname{grad} w \cdot \boldsymbol{\tau})+k \boldsymbol{\beta}+\boldsymbol{S}_{l}^{*} \times \boldsymbol{\tau}$. Then we have the equality $\varkappa+\operatorname{grad} w \cdot \boldsymbol{\tau}=\varkappa_{l}$, where the quantity \varkappa_{l} is given by formula (20). This equality follows from the well-known formula $\varkappa=\frac{1}{2}(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}-\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\nu}-\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta})[9$, Ch. 1, §15], given the identity $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}=0$, equalities (8) and (9), and the formulas

$$
\begin{align*}
& \operatorname{rot} \boldsymbol{\nu}=\cos w \operatorname{rot} \boldsymbol{l}_{1}-\sin w \operatorname{rot} \boldsymbol{l}_{2}-\operatorname{grad} w \times \boldsymbol{\beta} \\
& \operatorname{rot} \boldsymbol{\beta}=\sin w \operatorname{rot} \boldsymbol{l}_{1}+\cos w \operatorname{rot} \boldsymbol{l}_{2}+\operatorname{grad} w \times \boldsymbol{\nu} \tag{22}
\end{align*}
$$

implied by (21). As a result, we obtain formula (17) for \boldsymbol{R}_{l}^{*}. From this, using (13) and (14) and the equality $k \boldsymbol{\beta}=\operatorname{rot} \boldsymbol{\tau}$, we obtain formulas (19) and (18), respectively.

Note that equalities (18) and (19) are formally obtained from formulas (4) and (6), respectively, by replacing $\boldsymbol{R}^{*} \rightarrow \boldsymbol{R}_{l}^{*}, \varkappa \rightarrow \varkappa_{l}, \boldsymbol{\nu} \rightarrow \boldsymbol{l}_{1}$, and $\boldsymbol{\beta} \rightarrow \boldsymbol{l}_{2}$.

4. Conservation law for a family of surfaces

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then a family $\left\{S_{\tau}\right\}$ of surfaces S_{τ} in the domain D satisfies the divergent identity (conservation law)

$$
\begin{gather*}
\operatorname{div}\left\{K \boldsymbol{\tau}+k_{2}\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \boldsymbol{l}_{1}-k_{1}\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \boldsymbol{l}_{2}\right\}=0 \tag{23}\\
\Leftrightarrow \operatorname{div}\left\{K \boldsymbol{\tau}+(H+B / 2) \boldsymbol{K}_{\tau}-A \operatorname{rot} \boldsymbol{\tau} / 2\right\}=0 \tag{24}\\
\Leftrightarrow \operatorname{div}\left\{-\boldsymbol{\tau} \operatorname{div} \boldsymbol{S}_{l}^{*}+\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \operatorname{rot} \boldsymbol{l}_{1}+\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \operatorname{rot} \boldsymbol{l}_{2}+\varkappa_{l} \operatorname{rot} \boldsymbol{\tau}\right\}=0 \tag{25}
\end{gather*}
$$

Here the expression in braces $\left\}\right.$ is everywhere equal to $-\operatorname{rot} \boldsymbol{R}_{l}^{*}=-\operatorname{rot} \boldsymbol{R}^{*}$; $K=-\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{R}_{l}^{*} ;$

$$
\begin{equation*}
\operatorname{div} \boldsymbol{S}_{l}^{*}=-K+\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{\tau}\right)\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{l}_{1}\right)+\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{\tau}\right)\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right) \tag{26}
\end{equation*}
$$

Proof. Formula (14) of the form

$$
\begin{equation*}
\operatorname{rot} \boldsymbol{R}^{*}=\frac{1}{2} \boldsymbol{\tau} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})-k \boldsymbol{\nu}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})-k \boldsymbol{\beta}(\varkappa+\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}) \tag{27}
\end{equation*}
$$

was obtained in [1]. Using the equalities $\boldsymbol{\nu}=\boldsymbol{l}_{1} \cos w-\boldsymbol{l}_{2} \sin w$ and $\boldsymbol{\beta}=$ $\boldsymbol{l}_{1} \sin w+\boldsymbol{l}_{2} \cos w$, implied by (8), formulas (22), equality (9), and the wellknown formula $\varkappa=-\frac{1}{2}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\nu}+\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta})[9]$, we obtain

$$
\begin{aligned}
& \boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta}=\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right) \cos ^{2} w-\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{l}_{1}\right) \sin ^{2} w, \\
& \boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}+\boldsymbol{\varkappa}=\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{l}_{1}+\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right) \sin w \cos w .
\end{aligned}
$$

From this it follows that $k \boldsymbol{\nu}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})+k \boldsymbol{\beta}(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}+\varkappa)=$ $k\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{l}_{2}\right) \boldsymbol{l}_{1} \cos w+k\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{l}_{1}\right) \boldsymbol{l}_{2} \sin w$. Next we use equalities (11), the formulas $k \sin w=\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{\tau}$ and $k \cos w=\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{\tau}$ implied by (8) in view of the equalities $\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\tau}=0$ and $\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\tau}=k$, and the formula $K=-\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ for the Gaussian curvature K of the surface $S_{\tau}[9$, Ch. 1, § 8]. As a result, from formula (27), we obtain the identity $\operatorname{rot} \boldsymbol{R}_{l}^{*}=\operatorname{rot} \boldsymbol{R}^{*}=$ $-\left\{K \boldsymbol{\tau}+k_{2}\left(\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \boldsymbol{l}_{1}-k_{1}\left(\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{\tau}\right) \boldsymbol{l}_{2}\right\}$, which implies the conservation law (23).

Using the formulas $k \boldsymbol{\nu}=\boldsymbol{K}_{\tau}, k \boldsymbol{\beta}=\operatorname{rot} \boldsymbol{\tau}, \operatorname{div} \boldsymbol{\tau}=\operatorname{div}(\boldsymbol{\nu} \times \boldsymbol{\beta})=$ $\operatorname{rot} \boldsymbol{\nu} \cdot \boldsymbol{\beta}-\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta}, \operatorname{div} \boldsymbol{\tau}=-2 H[9$, Ch. 1, §5], and $\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta}=H+B / 2$, and $\varkappa+\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}=-A / 2$, from (27) we have the identity $\operatorname{rot} \boldsymbol{R}_{l}^{*}=\operatorname{rot} \boldsymbol{R}^{*}=$ $-\left\{K \boldsymbol{\tau}+(H+B / 2) \boldsymbol{K}_{\tau}-A \operatorname{rot} \boldsymbol{\tau} / 2\right\}$, which leads to the conservation law in the form of (24).

Formula (26) follows from (15) and the equalities $\operatorname{div} \boldsymbol{S}_{l}^{*}=\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})+$ $\operatorname{rot} \boldsymbol{\tau} \cdot \boldsymbol{R}_{l}^{*}-\operatorname{rot} \boldsymbol{R}_{l}^{*} \cdot \boldsymbol{\tau}, \operatorname{rot} \boldsymbol{R}_{l}^{*} \cdot \boldsymbol{\tau}=\operatorname{rot} \boldsymbol{R}^{*} \cdot \boldsymbol{\tau}=\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=-K$, and $\operatorname{rot} \boldsymbol{\tau} \cdot \boldsymbol{R}_{l}^{*}=\left(\operatorname{rot} \boldsymbol{l}_{1} \cdot \boldsymbol{\tau}\right)\left(\operatorname{rot} \boldsymbol{\tau} \cdot \boldsymbol{l}_{1}\right)+\left(\operatorname{rot} \boldsymbol{l}_{2} \cdot \boldsymbol{\tau}\right)\left(\operatorname{rot} \boldsymbol{\tau} \cdot \boldsymbol{l}_{2}\right)($ in view of (19) $)$. Expressing the quantity K from (26) and substituting it into (23), with the use of equalities (9) and (11), we obtain the conservation law in the form of (25).

Remark 2. As shown in Section 3.3 in [1], the vector field $\boldsymbol{S}(\boldsymbol{\tau})$, as well as the fields \boldsymbol{S}^{*} and \boldsymbol{S}_{l}^{*}, is the sum of three curvature vectors of some three curves mutually orthogonal at each point of the domain D.

References

[1] Megrabov A.G. Some formulas for families of curves and surfaces and their applications // This issue.
[2] Megrabov A.G. Relationships between the characteristics of mutually orthogonal families of curves and surfaces // This issue.
[3] Kochin N.E. Vectorial Calculus and the Fundamentals of Tensor Calculus.Leningrad: GONTI, 1938 (In Russian).
[4] Poznyak E.G., Shikin E.V. Differential Geometry. The First Acquaintance.Moscow: Moscow State University, 1990 (In Russian).
[5] Finikov S.P. Differential Geometry Course.- Moscow: GITTL, 1952 (In Russian).
[6] Megrabov A.G. Divergence formulas (conservation laws) in the differential geometry of plane curves and their applications // Dokl. Math.-2011.- Vol. 84, No. 3. - P. 857-861. [Dokl. Acad. Nauk. - 2011. - Vol. 441, No. 3. - P. 313317].
[7] Rozhdestvenskii B.L., Yanenko N.N. Systems of Quasilinear Equations and Their Applications to Gas Dynamics. - Moscow: Nauka 1978; Providence: Am. Math. Soc., 1983.
[8] Kochin N.E., Kibel I.A., Roze N.V. Theoretical Hydromechanics. - Moscow: Fizmatgiz, 1963; New York: Interscience, 1964, Vol. 1.
[9] Aminov Yu.A. The Geometry of Vector Fields.-Moscow: Nauka, 1990; Gordon and Breach Science Publishers, 2000.
[10] Vygodskii M.Ya. Differential Geometry. - Moscow, Leningrad: GITTL, 1949 (In Russian).

