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On the conservation laws for a family of surfaces

A.G. Megrabov

Abstract. A family {Sτ} of surfaces Sτ with the unit normal τ = τ (x, y, z) in
the Euclidean space E3 is considered. The surfaces Sτ continuously fill a domain D
in E3. For the family {Sτ} of surfaces Sτ , the law of conservation divF = 0
is proved, where the solenoidal vector field F is expressed in terms of the main
classical characteristics of the surfaces Sτ : the unit normal, the principal directions,
the principal curvatures, the mean curvature, and the Gaussian curvature.
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1. Introduction

This paper is a sequel to the previous publications [1, 2].
In mathematical physics, one sometimes has to deal with a family {Sτ} of

surfaces Sτ with the unit normal τ = τ (x, y, z) which are related to solutions
of differential equations and continuously fill the domain in question. For
example, for solutions τ of the eikonal equation τ2x + τ2y + τ2z = n2(x, y, z)
(where τ = τ(x, y, z) is the scalar time field and n is the refractive index),
which is the basic mathematical model in kinematic seismics (geometric
optics), the role of the surfaces Sτ is played by the wavefronts τ(x, y, z) =
const. The curves Lτ orthogonal to the surfaces Sτ and having the unit
tangent vector τ = τ (x, y, z)) also form a family (the family of curves {Lτ})
and continuously fill the domain under consideration. The curves Lτ are
vector lines of the physical vector fields corresponding to the solutions of the
equations of mathematical physics. For example, for the eikonal equation,
the role of the curves Lτ is played by rays –– the vector lines of the field
v = grad τ = nτ . Therefore, in this paper, we do not study the properties
of individual curves and surfaces, but the properties of their families {Lτ}
and {Sτ}.

The basic characteristics of the curves Lτ of classical differential geome-
try [2–4] are the Frenet basis (τ , ν, β), where τ is the unit tangent vector,
ν is the principal normal, and β is the binormal, the first curvature k, and
the second curvature κ being defined at each point of a given curve. The
most important classical characteristics of the surface are its unit normal τ ,
the principal directions l1 and l2, the principal curvatures k1 and k2, the

mean curvature H
def
= (k1 + k2)/2, and the Gaussian curvature K

def
= k1k2,

which are defined at each point of a given surface. For the families {Lτ}
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and {Sτ}, all the quantities τ , ν, β, k, κ and l1, l2, k1, k2, H, and K are
the vector and the scalar fields in the domain D continuously filled with the
curves Lτ and the surfaces Sτ . The symbols a ·b and a×b denote the scalar
and vector products of the vectors a and b, ∇ is the Hamiltonian operator,
(v · ∇)a is the derivative of the vector a in the direction of the vector v.

In Section 2.3 of paper [1] and in [6], the conservation laws for a family
of curves were obtained in the form of the identity divF = 0, where the
vector field F is expressed in terms of the characteristics of the curves i.e.
their Frenet basis vectors, first curvature, and second curvature.

In this paper, we prove the conservation law for a family {Sτ} of sur-
faces Sτ , i.e., a divergent identity of the form divF = 0, where the vector
field F is expressed in terms of the basic characteristics of the surfaces Sτ :
the quantities τ , l1, l2, k1, k2, H, and K. (Generally, by the conservation
law for a given mathematical object is meant a differential identity of the
form divF = 0, where the vector field F is expressed in terms of the charac-
teristics of this object. This definition agrees with the well-known concept
of conservation law for a differential equation E [7], where the field F is
expressed in terms of the solution to the equation E, the derivatives of this
solution, and the parameters of the equation. An example is the conservation
law div v = 0 for an ideal incompressible fluid, where v is the velocity [8].)

2. Conditions on the family of surfaces {Sτ} and on the
family of curves {Lτ} orthogonal to {Sτ}

Consider a domain D in the Euclidean space E3 with the Cartesian co-
ordinates x, y, z; i, j,k are the unit vectors along the axes x, y, z; τ =
τ (x, y, z) = τ1i + τ2j + τ3k is the unit vector field defined in D, τk =
τk(x, y, z) are the scalar functions (k = 1, 2, 3), |τ |2 = 1; Lτ is a vector line
of the field τ (with the unit tangent vector τ ).

Let {Lτ} be a family of curves Lτ which continuously fill the domain D,
and

(A) one and only one curve Lτ ∈ {Lτ} passes through each point
(x, y, z) ∈ D;

(B) at each point (x, y, z) of any curve Lτ ∈ {Lτ}, there exists a right-
hand Frenet basis (τ ,ν,β), so that three mutually orthogonal vector
fields τ , ν, and β are defined in D, and τ = ν × β, ν = β × τ ,
β = τ × ν;

(C) τ ∈ C2(D).

In the domain D, let there exist a family of surfaces Sτ orthogonal to
the family of curves {Lτ}, i.e., to the field τ . According to the Jacobi
theorem [9, Ch. 1, § 1], this is equivalent to the identity τ · rot τ = 0 in D.
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Therefore, {Lτ} is the family of vector lines of the field of normals τ to
the surfaces Sτ . Let {Sτ} be a family of surfaces Sτ with the unit normal
τ = τ (x, y, z) which continuously fill the domain D in the space of variables
x, y, z. The principal direction will be represented by the unit vector li
(i = 1, 2) with the corresponding direction; the vector li is the unit tangent
vector of the curvature line Li on Sτ , and at a point (x, y, z) ∈ Sτ it is
equal to the derivative of the radius vector r = r(x, y, z) of the point of the
surface Sτ in the principal direction at the point (x, y, z).

(D) Let one and only one surface Sτ ∈ {Sτ} pass through each point
(x, y, z) ∈ D.

(E) At each point (x, y, z) ∈ D, let there exist a right-hand system of
mutually orthogonal unit vectors τ , l1, and l2, where τ is the unit
normal and l1 and l2 are the principal directions at the surface Sτ
passing through this point. For this, it is sufficient that each surface
Sτ ∈ {Sτ} be C2-regular [4]. Thus, in the domain D, we have defined
three mutually orthogonal unit vector fields τ (x, y, z), l1(x, y, z), and
l2(x, y, z); l1 = l2 × τ , l2 = τ × l1, τ = l1 × l2;

(F) τ ∈ C2(D), l1, l2 ∈ C1(D).

Remark 1. As the initial object it is possible to take the family {Sτ} of
surfaces Sτ with properties(D)–(F) which has the unit normal vector field τ
and to define the curves Lτ as the vector lines of this field τ . Obviously, the
families {Sτ} and {Lτ} are mutually orthogonal.

3. Subsidiary propositions

We introduce the vector field

S(τ )
def
= rot τ × τ − τ div τ = Kτ − τ div τ , (1)

where Kτ = kν = rot τ × τ = (τ · ∇)τ =
dτ

ds
= τs is the curvature vector

of the curve Lτ with the unit tangent vector τ and the principal normal ν,
Lτ is a streamline or a vector line of the field τ , k is its first curvature,
d/ds is the differentiation operator with respect to the natural parameter s
in the direction of τ (along the curve Lτ ).

Lemma 1 [1]. Let a family {Lτ} of curves Lτ with the Frenet basis vectors
τ , ν, and β, the first curvature k, and the second curvature κ in the
domain D satisfy conditions (A)–(C). Let the field S∗ be the sum of the
three curvature vectors:
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S∗ def
= Kτ +Kν +Kβ = (τ · ∇)τ + (ν · ∇)ν + (β · ∇)β

= rot τ × τ + rotν × ν + rotβ × β
= −(τ div τ + ν div ν + β divβ) = [S(τ ) + S(ν) + S(β)]/2. (2)

Here Kτ = (τ · ∇)τ = rot τ × τ = kν, Kν = (ν · ∇)ν = rotν × ν, and
Kβ = (β · ∇)β = rotβ× β are the curvature vectors of the vector lines Lτ ,
Lν , and Lβ of the fields τ , ν, and β, respectively. Then, in D,

S∗ = S(τ ) + τ ×R∗, (3)

where the vector field R∗ is represented by any of the formulas

R∗ def
= κτ + kβ + β div ν − ν divβ, (4)

R∗ = Φ + S∗ × τ , (5)

R∗ = κτ + (τ · rotν)ν + (τ · rotβ)β, (6)

R∗ = (κ − τ · rot τ )τ +∇(ν,β). (7)

Here Φ
def
= κτ + kβ is the Darboux vector [10], ∇(ν,β)

def
= (β · ∇)ν −

(ν · ∇)β is the Poisson bracket [9] for ν and β.

Thus, Lemma 1 determines the relation between the fields S∗ and S(τ );
the vector field R∗ is a measure of a difference between S∗ and S(τ ). In [2],
the following theorem on the relationship between the characteristics l1 and
l2 of surfaces Sτ ∈ {Sτ} and the characteristics ν and β of the curves Lτ
orthogonal to Sτ was obtained.

Theorem 1. Let the family {Sτ} of surfaces Sτ with the unit normal τ =
τ (x, y, z) satisfy conditions (D)–(F) and let the family {Lτ} of curves Lτ
orthogonal to {Sτ} satisfy conditions (A)–(C). Then at each point (x, y, z) ∈
D, the principal directions l1 and l2 of the surface Sτ passing through this
point are expressed in terms of the Frenet basis vectors ν and β of the
curves Lτ according to the formulas

l1 = ν cosω + β sinω, l2 = −ν sinω + β cosω, (8)

where ω = ω(x, y, z) is a scalar function (ω is the angle between the vec-
tors l1 and ν or between l2 and β). In addition, the fields of the principal
directions l1 and l2 in the domain D satisfy the identity

l1 · rot l1 = l2 · rot l2. (9)

In terms of the geometry of vector fields [9, Ch. 1, § 1], identity (9) implies
that the non-holonomicity values of the vector fields of the principal direc-
tions l1 and l2 are equal in D. Identity (9) is equivalent to the condition
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tg 2ω = −A
B
, (10)

in D, which defines the function ω in terms of ν and β. Here A
def
=

ν · rotν−β · rotβ and B
def
= β · rotν+ν · rotβ. The principal curvatures k1

and k2 of the surfaces Sτ are given by the formulas

k1 = − rot l1 · l2, k2 = rot l2 · l1. (11)

The following statement is an analog to Lemma 1 for a family of sur-
faces {Sτ}.

Lemma 2. Let the conditions of Theorem 1 be satisfied and let the field S∗
l

be the sum of the three curvature vectors:

S∗
l

def
= Kτ +K1 +K2 = (τ · ∇)τ + (l1 · ∇)l1 + (l2 · ∇)l2 (12)

= rot τ × τ + rot l1 × l1 + rot l2 × l2 (13)

= −(τ div τ + l1 div l1 + l2 div l2) (14)

= {S(τ ) + S(l1) + S(l2)}/2.

Here Kτ = (τ · ∇)τ = rot τ × τ = kν is the curvature vector of the vector
line Lτ of the normal field τ of the surfaces Sτ and Ki = (li · ∇)li =
rot li × li is the curvature vector of the curvature line Li on Sτ (i = 1, 2).
Then, in the domain D,

S∗
l = S∗ + τ × gradw, S∗

l = S(τ ) + τ ×R∗
l , (15)

where the vector field R∗
l can be represented by any of the formulas

R∗
l
def
= gradw +R∗, (16)

R∗
l = κlτ + kβ + S∗

l × τ , (17)

R∗
l = κlτ + rot τ − (l1 div l2 − l2 div l1), (18)

R∗
l = κlτ + l1(τ · rot l1) + l2(τ · rot l2), (19)

κl
def
= −(l1 · rot l1 + l2 · rot l2)/2 = −li · rot li, i = 1, 2, (20)

and the quantities S(τ ), S∗, R∗, and w are given by formulas (1)–(10).

Proof. Using the well-known formula rot(ϕa) = ϕ rota + gradϕ × a [3],
from equalities (8), we obtain
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rot l1 = cosw rotν + sinw rotβ + gradw × l2,
rot l2 = − sinw rotν + cosw rotβ − gradw × l1.

(21)

From this, using the well-known formulas a × b = −b × a, a × (b × c) =
b(a · c) − c(a · b) [3] and τ = l1 × l2, we obtain K1 +K2 = rot l1 × l2 +
rot l2× l2 = rotν ×ν + rotβ×β+ τ × gradw = Kν +Kβ + τ × gradw. In
view of definitions (2) and (12) of the vectors S∗ and S∗

l and identity (3),
the latter equality brings about identities (15), where the vector field R∗

l is
given by formula (16).

Using equalities (5) and S∗ × τ = S∗
l × τ + τ × (τ × gradw), from (16)

we obtain R∗
l = gradw+R∗ = gradw+κτ +kβ+S∗×τ = gradw+κτ +

kβ + S∗
l × τ + τ (gradw · τ ) − gradw = τ (κ + gradw · τ ) + kβ + S∗

l × τ .
Then we have the equality κ + gradw · τ = κl, where the quantity κl is
given by formula (20). This equality follows from the well-known formula

κ =
1

2
(τ · rot τ − ν · rotν − β · rotβ) [9, Ch. 1, § 15], given the identity

τ · rot τ = 0, equalities (8) and (9), and the formulas

rotν = cosw rot l1 − sinw rot l2 − gradw × β,
rotβ = sinw rot l1 + cosw rot l2 + gradw × ν,

(22)

implied by (21). As a result, we obtain formula (17) for R∗
l . From this,

using (13) and (14) and the equality kβ = rot τ , we obtain formulas (19)
and (18), respectively.

Note that equalities (18) and (19) are formally obtained from formu-
las (4) and (6), respectively, by replacing R∗ → R∗

l , κ → κl, ν → l1, and
β → l2.

4. Conservation law for a family of surfaces

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then a fam-
ily {Sτ} of surfaces Sτ in the domain D satisfies the divergent identity (con-
servation law)

div{Kτ + k2(l2 · rot τ )l1 − k1(l1 · rot τ )l2} = 0 (23)

⇔ div{Kτ + (H +B/2)Kτ −A rot τ/2} = 0 (24)

⇔ div{−τ divS∗
l + (l1 · rot τ ) rot l1 + (l2 · rot τ ) rot l2 + κl rot τ} = 0.

(25)

Here the expression in braces { } is everywhere equal to − rotR∗
l = − rotR∗;

K = −τ · rotR∗
l ;

divS∗
l = −K + (l1 · rot τ )(τ · rot l1) + (l2 · rot τ )(τ · rot l2). (26)
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Proof. Formula (14) of the form

rotR∗ =
1

2
τ divS(τ )− kν(ν · rotβ)− kβ(κ + β · rotβ) (27)

was obtained in [1]. Using the equalities ν = l1 cosw − l2 sinw and β =
l1 sinw + l2 cosw, implied by (8), formulas (22), equality (9), and the well-

known formula κ = −1

2
(ν · rotν + β · rotβ) [9], we obtain

ν · rotβ = (l1 · rot l2) cos2w − (l2 · rot l1) sin2w,

β · rotβ + κ = (l2 · rot l1 + l1 · rot l2) sinw cosw.

From this it follows that kν(ν · rotβ) + kβ(β · rotβ + κ) =
k(l1 · rot l2)l1 cosw + k(l2 · rot l1)l2 sinw. Next we use equalities (11), the
formulas k sinw = l1 · rot τ and k cosw = l2 · rot τ implied by (8) in
view of the equalities ν · rot τ = 0 and β · rot τ = k, and the formula

K = −1

2
divS(τ ) for the Gaussian curvature K of the surface Sτ [9, Ch. 1,

§ 8]. As a result, from formula (27), we obtain the identity rotR∗
l = rotR∗ =

−{Kτ + k2(l2 · rot τ )l1 − k1(l1 · rot τ )l2}, which implies the conservation
law (23).

Using the formulas kν = Kτ , kβ = rot τ , div τ = div(ν × β) =
rotν · β − ν · rotβ, div τ = −2H [9, Ch. 1, § 5], and ν · rotβ = H + B/2,
and κ+β · rotβ = −A/2, from (27) we have the identity rotR∗

l = rotR∗ =
−{Kτ + (H +B/2)Kτ −A rot τ/2}, which leads to the conservation law in
the form of (24).

Formula (26) follows from (15) and the equalities divS∗
l = divS(τ ) +

rot τ · R∗
l − rotR∗

l · τ , rotR∗
l · τ = rotR∗ · τ =

1

2
divS(τ ) = −K, and

rot τ ·R∗
l = (rot l1 · τ )(rot τ · l1) + (rot l2 · τ )(rot τ · l2) (in view of (19)).

Expressing the quantity K from (26) and substituting it into (23), with the
use of equalities (9) and (11), we obtain the conservation law in the form
of (25).

Remark 2. As shown in Section 3.3 in [1], the vector field S(τ ), as well
as the fields S∗ and S∗

l , is the sum of three curvature vectors of some three
curves mutually orthogonal at each point of the domain D.
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