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Modeling the infrasonic and seismic waves
propagation from various types of singular sources

in the Atmosphere–Earth interface∗

A.A. Mikhailov, S. Tordeux

Abstract. In this paper, we consider the results of the numerical simulation of
the propagation of seismic and acousto-gravitational waves for the spatially in-
homogeneous “Atmosphere–Earth” model. The seismic wave propagation in an
elastic half-space is described by a system of first order dynamic equations of the
elastic theory through interconnection of a component of displacement velocity vec-
tor and a component of the strain tensor. Acoustic-gravity waves propagation in
the non-ionized isothermal atmosphere is described by the linearized Navier–Stokes
equations. It is assumed that the wind is directed along the horizontal axis, and
that the speed and direction of the wind depends on the height. For the numerical
solution of the problem, the numerical method based on combining integral of the
Laguerre and the Fourier transforms with a finite difference algorithm is used.

Keywords: seismic waves, acoustic-gravitational waves, Navier–Stokes equations,
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Introduction

Currently, there are many scientific publications that show a high degree
of the relationship between waves in the lithosphere and atmosphere. The
published work [1] describes the effect of acousto-seismic induction, in which
an acoustic wave from a vibrator, due to the phenomenon of refraction in
the atmosphere, excites intense surface seismic waves at a distance of tens
of kilometers. In turn, the lithospheric seismic waves from earthquakes and
explosions generate atmospheric acoustic-gravity waves, which are especially
intense in the upper layers of the atmosphere with a low density and in the
ionosphere.

This paper considers an algorithm for solving and the results of nu-
merical modeling of the problem of propagation and mutual generation of
seismic and acoustic-gravity waves for a combined spatially inhomogeneous
“Atmosphere–Earth” model. These studies are a continuation of the stud-
ies given in [2, 3]. In this paper, in contrast to these previous ones, an
algorithm using the finite-difference approximation of the derivatives in two
spatial coordinates is proposed, in which the simulated medium is assumed
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to be inhomogeneous, and in the third homogeneous coordinate, as before,
the Fourier transform is used. This problem statement is usually called the
2.5D problem. The use of the Laguerre transform in the time coordinate for
the numerical implementation of the solution of the problem can be consid-
ered as an analogue of the well-known spectral method based on the Fourier
transform, where instead of the frequency ω we have the parameter p–– the
degree of the Laguerre polynomials. However, in contrast to the Fourier
transform, the use of the integral Laguerre transform with respect to time
makes it possible to reduce the original problem to solving a system of equa-
tions in which the separation parameter is present only on the right-hand
side of the equations and has a recurrent dependence. This method for solv-
ing dynamic problems of the theory of elasticity was first considered in [4, 5],
and then developed for viscoelasticity problems [6, 7]. In these publications,
the distinctive features of this method from the accepted approaches are
considered and the advantages of using the integral Laguerre transform in
contrast to the difference method and the Fourier transform with respect to
time are discussed.

1. Formulation of the problem

The propagation of acousto-gravitational waves in an isothermal atmosphere
is described by a linearized system of the Navier–Stokes equations in the
form of a first-order hyperbolic system for a three-dimensional Cartesian
coordinate system in the form
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Here g is the acceleration of the force of gravity, ρ0(z) is the density of the
unperturbed atmosphere, c0(z) is the speed of sound, ~u = (ux, uy, uz) is the
velocity vector of the displacement of air particles, P and ρ is, respectively,
the perturbations of pressure and density under the action of wave propaga-
tion. Zero subindices for the physical parameters of the medium mean that
their values are set for the undisturbed state of the atmosphere. The de-
pendence of the atmospheric pressure P0 and ρ0 density for an undisturbed
state of the atmosphere in a uniform gravitational field can be defined as

∂P0

∂z
= −ρ0g, ρ0(z) = ρ1 exp(−z/H),



Modeling the infrasonic and seismic waves propagation. . . 35

where H is the height of the isothermal homogeneous atmosphere, and ρ1 is
the density of the atmosphere near the Earth’s surface, i.e., at z = 0.

The propagation of seismic waves in an elastic medium is written down
by the well-known system of equations of the first order of the theory of elas-
ticity through the relationship between the components of the displacement
velocity vector and the components of the stress tensor
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+ Fif(t), (4)
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Here δik is the Kronecker symbol, λ(x1, x2, x3) and µ(x1, x2, x3) are the
elastic parameters of the medium, ρ0(x1, x2, x3) is the density of the medium,
~u = (u1, u2, u3) is the displacement velocity vector, and σij are the stress

tensor components. The components Fi of the force vector ~F (x, y, z) =
F1~ex + F2~ey + F3~ez describe the action of a source localized in space, and
f(t) is a given time signal in the source.

The values of the components Fi depend on the type of the simulated
source:

1. For a source of the “vertical force” type

F1 = F2 = 0, F3 = δ(x1 − x0)δ(x2 − y0)δ(x3 − z0);

2. For a source of the “center of pressure” type

F1 =
∂δ(x1 − x0)

∂x1
δ(x2 − y0)δ(x3 − z0),

F2 = δ(x1 − x0)
∂δ(x2 − y0)

∂x2
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F3 = δ(x1 − x0)δ(x2 − y0)
∂δ(x3 − z0)

∂x3
;

3. For a source of the “dipole without moment” type

F1 = F2 = 0, F3 = δ(x1 − x0)δ(x2 − y0)
∂δ(x3 − z0)

∂x3
.

Here x0, y0, z0 are the spatial coordinates of the source.
We assume that the interface between the atmosphere and the elastic

half-space passes along the plane z = 0. In this case, the condition of
contact of two media at z = 0 is written down as
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The problem is solved with zero initial data

ui|t=0 = σij |t=0 = P |t=0 = ρ|t=0 = 0, i = 1, 2, 3, j = 1, 2, 3. (7)

2. Solution algorithm

At the first stage of the solution, following [2, 3], we use the finite cosine-sine
Fourier transform in the spatial coordinate, in whose direction the medium
is considered to be homogeneous. For each component of the system, we
introduce the corresponding cosine or sine transformation:
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Let us choose the distance a to be large enough and consider the wave
field up to the time instant t < T , where T is the minimum propagation time
of the longitudinal wave to the boundary r = a. As a result of this trans-
formation, we obtain N + 1 independent of two-dimensional non-stationary
problems with respect to space.

At the second stage of the solution, to the independent N + 1 problems
obtained in this way, we apply the integral Laguerre transform with respect
to time of the form:
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where lαp (ht) are the orthogonal Laguerre functions.

The Laguerre functions lαp (ht) are expressed in terms of the classical or-
thonormal Laguerre polynomials Lαp (ht) [8]. Here we choose α (the order of
the Laguerre functions) integer and positive, then the following representa-
tion takes place:

lαp (ht) = (ht)α/2e−ht/2Lαp (ht).

To satisfy the initial conditions (7), it is necessary and sufficient to set α ≥ 1.
In addition, a shift parameter h > 0 has been introduced, whose meaning
and efficiency is discussed in detail in [5, 6].

As a result of these transformations, the solution to the original prob-
lem (4)–(7) is reduced to the solution of N + 1 independent of the two-
dimensional differential problems in the spectral domain of the form:

h

2
upx −

1

ρ0

(
∂σpxz
∂z

+
∂σpxx
∂x

+ knσ
p
xy

)
= Fx(n)fp − h

p−1∑
j=0

ujx, (11)

h

2
upy −

1

ρ0

(
∂σpyz
∂z

+
∂σpxy
∂x
− knσpyy

)
= Fy(n)fp − h

p−1∑
j=0

ujC , (12)

h

2
upz −

1

ρ0

(
∂σpzz
∂z

+
∂σpxz
∂x

+ knσ
p
yz

)
+Katm

g

ρ0
ρp = Fz(n)fp − h

p−1∑
j=0

ujz,

(13)

h

2
σpxx − λ

(
∂upz
∂z

+ knu
p
y

)
− (λ+ 2µ)

∂upx
∂x

+Katmρ0gu
p
z = −h

p−1∑
j=0

σjxx, (14)

h

2
σpyy − λ

(
∂upz
∂z

+
∂upx
∂x

)
− (λ+ 2µ)knu

p
y +Katmρ0gu

p
z = −h

p−1∑
j=0

σjyy, (15)

h

2
σpzz − λ

(
∂upx
∂x

+ knu
p
y

)
− (λ+ 2µ)

∂upz
∂z

+Katmρ0gu
p
z = −h

p−1∑
j=0

σjzz, (16)

h

2
σpxy − µ

(
∂upy
∂x

+ knu
p
x

)
= −h

p−1∑
j=0

σjxy, (17)

h

2
σpxz − µ

(
∂upx
∂z
− ∂upz

∂x

)
= −h

p−1∑
j=0

σjxz, (18)

h

2
σpyz − µ

(
∂upy
∂z

+ knu
p
z

)
= −h

p−1∑
j=0

σjyz, (19)



38 A.A. Mikhailov, S. Tordeux
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where fp are the Laguerre coefficients of the source function f(t). The
coefficients upx, upy, u

p
z, σ

p
xx, σpyy, σ

p
zz, σ

p
xy, σ

p
xz, σ

p
yz, ρp in formulas (11)–(20)

are functions of the variables (n, x, z).
System (1)–(3) for the atmosphere is obtained from system (11)–(20) if

we assume σxx = σyy = σzz = −P , µ = 0, λ = c2
0ρ0, σ12 = σ13 = σ23 = 0,

Katm = 1. Assuming in system (11)–(20) Katm = 0, we obtain the system of
equations (4), (5) for the propagation of seismic waves in an elastic medium.

It is easy to see that the Laguerre transform parameter p is present only
in the right-hand side of the equations and the spectral harmonics for all
field components having a recurrent dependence. The condition of contact
of two media at z = 0 is written down as
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To solve the transformed problem (11)–(21), in contrast to the algorithm
in [2, 3], we use the finite difference approximation of derivatives with respect
to spatial coordinates on staggered grids with the 4th order of accuracy [9].
To do this, in the computational domain, we introduce in the direction z of
the grid coordinates ωzj and ωzj+1/2 with a sampling step ∆z, staggered
grids relative to each other by ∆z/2:

ωzj = (x, j∆z), ωzj+1/2 = (x, j∆z + ∆z/2), j = 0, . . . ,M.

Similarly, we introduce in the direction x of the grid coordinates ωxi and
ωxi+1/2 with a sampling step ∆x, staggered grids relative to each other by
∆x/2:

ωxi = (i∆x, z), ωxi+1/2 = (i∆x+ ∆x/2, z), i = 0, . . . ,K.

On these grids, we introduce the differentiation operators Dx and Dz,

which approximate the derivatives
∂
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We define the sought-for components of the solution vector at the following
grid nodes:
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As a result of the finite-difference approximation of problem (11)–(21), we
obtain a system of linear algebraic equations. We represent the required
solution vector ~W in the following form:
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Then, for each nth Fourier harmonic (n = 0, . . . , N), the system of linear
algebraic equations in the vector form can be written down as

(
A∆ +

h

2
E
)
~W (p) = ~F (p− 1). (22)

A sequence of the wave field components in the solution vector ~V is selected
taking into account the minimization of the number of diagonals in the
matrix A∆. In this case, on the main diagonal of the matrix, the components
included in the equations of the system as terms with a parameter as a
factor h (the parameter of the Laguerre transform) are specially located. It
should be noted that due to the choice of the parameter h, it is possible to
significantly improve the conditionality of the system matrix. Having solved
the system of linear algebraic equations (22), one can determine the spectral

values for all components of the wave field ~W (p). Then, using the inversion
formulas for the Fourier transform (8), (9) and the Laguerre transform (10),
we obtain a solution to the original problem.
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3. Numerical results

Calculations of the wave field were applied for two models of the medium.
The first model consists of a homogeneous elastic layer and an atmosphere
separated by a flat boundary. The physical characteristics of the layers were
set as follows:

1. The atmosphere: speed of sound cp = 340 m/s. The density de-
pending on the coordinate z was calculated by the formula ρ0(z) =
ρ1 exp(−z/H), where ρ1 = 1.225 · 10−3 g/cm3, H = 6700 m;

2. The elastic layer: the longitudinal wave velocity cp = 800 m/s, trans-
verse wave velocity cs = 500 m/s, the density ρ0 = 1.2 g/cm3.

For the calculations, we used a limited area of the medium with a dimen-
sion 80×80×40 km3. A wave field was simulated from a point source of the
pressure center type located in an elastic medium at a depth of 1/4 of the
longitudinal wave length with the coordinates (x0, y0, z0) = (40, 40,−0.2).
The time signal in the sources was set in the form of the Puzyrev pulse:

f(t) = exp

(
−2πf0(t− t0)2

γ2

)
sin(2πf0(t− t0)), (23)

where γ = 4, f0 = 1 Hz, t0 = 1.5 s.
Figure 1 shows the wavefield ux(x, y, z) snapshots for the in-plane XZ

component at y = y0 = 40 km. The interface between the elastic medium
and the atmosphere is shown by a solid line. It can be seen from the figure
that in an elastic medium, together with a spherical longitudinal wave P and
a conical shear wave S, a “non-ray” spherical wave S∗ propagates, followed
by the surface Stoneley–Scholte wave R. Acoustic-gravity waves propagate
in the atmosphere –– the conical PP , SP and spherical P , followed by the
Stoneley–Sholte surface wave.

Figure 1. Snapshots of the horizontal velocity component ux in the plane (XZ)
at the time instant t = 30 (left) and 50 (right) seconds
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Figure 2. Snapshots of the horizontal velocity component ux in the plane (XZ)
at the time instant t = 2 (left) and 3 (right) seconds

Figure 2 shows snapshots of the wave field for the second model of the
medium, in which the elastic medium consists of two layers, separated by a
curved boundary in the form of a protrusion. The physical characteristics
of the layers were set as follows:

1. The atmosphere: velocity of sound cp = 340 m/s. The density depend-
ing on the height was calculated by the formula ρ0(z) = ρ1 exp(−z/H),
where ρ1 = 1.225 · 10−3 g/cm3;

2. The upper elastic layer: the longitudinal wave velocity cp = 450 m/s,
the transverse wave velocity cs = 320 m/s, the density ρ0 = 1.5 g/cm3;

3. The lower elastic layer: longitudinal wave velocity cp = 600 m/s, the
transverse wave velocity cs = 400 m/s, the density ρ0 = 1.2 g/cm3.

A wave field was simulated from a point source of the vertical force
type located in an elastic medium with the coordinates (x0, y0, z0) =
(1.5, 1.5,−0.02). The time signal in the sources was specified by (23) for
the frequency f0 = 8 Hz.

From the snapshots of the wave field shown in the figure, it can be seen
that seismic waves propagating in the lithosphere, falling on the curvilin-
ear interface between the layers, generate the corresponding reflected and
diffraction waves from this boundary.

Conclusion

The approach proposed to the formulation and solution of the considered
problem allows one to simulate the effects of wave field propagation for a
unified mathematical model of the “Earth–Atmosphere” medium and to
study the processes of the appearance of converted waves at their interface.
The numerical modeling of such processes makes it possible to study the
features of the influence of the medium inhomogeneity on the propagation
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of acoustic-gravity and seismic waves and the occurrence of the Stoneley
surface waves.
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