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Veri�ation of pointer programs using symboli method

for de�nite iterations

�

V.A. Nepomniashy

The symboli method for verifying de�nite iterations over hierarhial data strutures [15℄ is extended to allow

a restrited hange of the strutures by the iteration body and exit from the iteration body under a ondition. A

transformation of de�nite iterations whih use exit from the iteration bodies to the standard de�nite iterations is justi�ed.

Programs over linear lists are onsidered as a ase of study. A tehnique for proving veri�ation onditions based on

both indution priniples and notions related to the problem domain is developed. Examples whih illustrate appliation

of the symboli method to pointer program veri�ation are onsidered.

1. Introdution

The axiomati and funtional styles of program veri�ation inlude the following stages: program

annotation through onstrution of pre-, post-onditions and loop invariants or funtions expressing

the loop e�et; deriving veri�ation onditions with the help of proof rules and proving them [6, 9℄.

In both approahes loop annotation is still a diÆult problem [11, 16℄. DiÆulties of pointer program

veri�ation have been noted for the axiomati approah in [3℄. Deidable logis have been proposed

to desribe speial properties of pointer programs [2, 8℄. This allows a veri�ation tehnique to be

developed for loopfree pointer programs [8℄ but does not simplify the loop annotation.

A natural method of attak on the veri�ation problem is the use of de�nite iterations, for example,

Pasal for-loops. Although the redution of for-loops to while-loops is often used for veri�ation,

attempts to use the spei� harater of for-loops in the framework of the axiomati approah should

be noted [1, 4, 5, 7℄. In the framework of the funtional approah, a general form of a de�nite iteration

as an iteration over all elements of a struture, suh as list, set, �le and tree, has been proposed in

[17℄.

A symboli method for verifying for-loops with the statement of assignment to array elements as

the loop body has been proposed in [12, 13℄. This method is based on using the symbols of invariants

instead of the invariants in veri�ation onditions and a speial tehnique for proving the onditions.

In [14℄ we extended the symboli method to de�nite iterations over data strutures without restritions

on the loop bodies. The symboli method has been developed for de�nite iterations over hierarhial

data strutures in [15℄.

The purpose of this paper is to apply the symboli method to pointer program veri�ation. A

de�nite iteration over hierarhial data strutures whih allows for a restrited hange of the stru-

tures by the iteration body, as distint from [15℄, is desribed in Setion 2. A de�nite iteration whih

uses exit from the iteration body under a ondition is de�ned in Setion 3 where its redution to the

standard de�nite iteration over suitable hierarhial data strutures is justi�ed. Proof rules without

invariants for generating veri�ation onditions and indution priniples for proving them are onsid-

ered in Setion 4. De�nite iterations over linear lists are onsidered in Setion 5 where notions for

annotating these programs and proof rules for Pasal pointer statements are disussed. Veri�ation

of two programs whih perform an in-situ reversal of a linear list and a searh in a linear list with

reordering is exempli�ed in Setion 6. In onlusion, results and prospets of the symboli veri�ation

method are disussed.

�
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2. De�nite iteration over hierarhial data strutures

We introdue the following notation. Let fs

1

; :::; s

n

g be a multiset onsisting of elements s

1

; :::; s

n

;

U

1

� U

2

be the di�erene of multisets U

1

and U

2

, U

1

[ U

2

be the union of multisets, and jU j be the

power of a �nite multiset U . Let [v

1

; :::; v

m

℄ denote a vetor onsisting of elements v

i

(1 � i � m).

Let us remind the notion of a data struture [17℄. Let memb(S) be a �nite multiset of elements

of a struture S, empty(S) be a prediate "memb(S) is empty", hoo(S) be a funtion whih returns

an element of memb(S); rest(S) be a funtion whih returns a struture S

0

suh that memb(S

0

) =

memb(S)� fhoo(S)g. The funtions hoo(S) and rest(S) will be unde�ned if and only if empty(S).

Let us remind a de�nition of useful funtions related to the struture S in the ase of :empty(S) and

memb(S) = fs

1

; :::; s

n

g [14℄. Let ve(S) denote a vetor [s

1

; :::; s

n

℄ suh that s

i

= hoo(rest

i�1

(S))

(i = 1; :::; n): Strutures S

1

and S

2

are reognized as equal if and only if ve(S

1

) = ve(S

2

): A

funtion head(S) returns a struture suh that ve(head(S)) = [s

1

; :::; s

n�1

℄ if ve(S) = [s

1

; :::; s

n

℄ and

n � 2. If n = 1, then empty(head(S)). Let last(S) be a partial funtion suh that last(S) = s

n

if

ve(S) = [s

1

; :::; s

n

℄. Let str(s) denote a struture S whih ontains the only element s. The funtions

ve(S); head(S) and last(S) will be unde�ned in the ase of empty(S). A onatenation operation

on(S

1

; S

2

) is de�ned in [14℄ so that on(hoo(S); rest(S)) = on(head(S); last(S)) = S if :empty(S).

We will use T (S

1

; :::; S

m

) to denote a term onstruted from data strutures S

i

(i = 1; :::;m) with

the help of the funtions hoo; last; rest; head; str; on. For a term T whih represents a data struture,

we denote the funtion jmemb(T )j by lng(T ). The funtion an be alulated by the following rules:

lng(S

i

) = jmemb(S

i

)j, lng(on(T

1

; T

2

)) = lng(T

1

)+ lng(T

2

), lng(rest(T )) = lng(head(T )) = lng(T )�

1, lng(str(s)) = 1.

Let a hierarhial data struture S = STR(S

1

; :::; S

m

) be de�ned by the funtions hoo(S) and

rest(S) onstruted with the help of onditional if�then�else, superposition and Boolean operations

from the following omponents:

| terms not ontaining S

1

; :::; S

m

;

| the prediate empty(S

i

) and the funtions hoo(S

i

); rest(S

i

); last(S

i

), head(S

i

) (i = 1; :::;m);

| terms of the form STR(T

1

; :::; T

m

) suh that

P

m

i=1

lng(T

i

) <

P

m

i=1

lng(S

i

);

| an unde�ned element !.

Note that the unde�ned value ! of the funtions hoo(S) and rest(S) means empty(S). This de�nition

of hierarhial strutures gives us more onvenient appliation of the indution priniple 1 from Setion

4 to proving the properties of the strutures.

Let us onsider a de�nite iteration of the form

for x in S do v := body (v; x) end (1)

where S is a data struture whih may be hierarhial, x is a variable alled a loop parameter, v is a

data vetor of the loop body (x 62 v). The result of this iteration is an initial value v

0

of the vetor v if

empty(S). If :empty(S) and ve(S) = [s

1

; :::; s

n

℄; the loop body v := body(v; x) iterates sequentially

for x de�ned as s

1

; :::; s

n

, and does not hange the struture rest

i

(S) when x = s

i

for all i = 1; :::; n�1.

Therefore, ve(S) = ve(S

0

) where S

0

is an initial value of the struture S.

3. De�nite iteration inluding exit statement

De�nite iteration (1) is extended so that exit is allowed from the iteration body under a ondition.

Let us onsider the statement

for x in S do v := body

1

(v; x); if ond(v; x) then EXIT ; v := body

2

(v; x) end (2)
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where S is a data struture whih may be hierarhial, x is a loop parameter, v is a data vetor (x 62 v),

and EXIT is the statement of termination of the loop. The result of iteration (2) is an initial value v

0

of the vetor v if empty(S). If :empty(S) and ve(S) = [s

1

; :::; s

n

℄, the loop body iterates sequentially

for x de�ned as s

1

; :::; s

n

while the ondition ond(body

1

(v; x); x) is false. When the ondition is �rst

true for x = s

i

, iteration (2) terminates by performing the statement v := body

1

(v; s

i

). The loop body

does not hange the struture rest

i

(S) when x = s

i

and the ondition ond(body

1

(v; x); x) is false

(i = 1; :::; n � 1).

Our purpose is to eliminate the output statement from iteration (2) by its transformation to an

equivalent program whih inludes iteration (1). Suh a transformation is realized in two stages: a

hange of the ondition ond(v; x) by the ondition ond(v

0

; x) in iteration (2); elimination of the exit

statement with the help of a hierarhial struture whih depends on v

0

, the ondition ond(v

0

; x) and

the struture S.

At �rst, we will de�ne restritions to the iteration (2) whih allows us to eliminate the exit state-

ment. For a struture S suh that :empty(S) and ve(S) = [s

1

; :::; s

n

℄, we use S

0

to denote a struture

suh that :empty(S

0

) and ve(S

0

) = [(s

1

; 1); :::; (s

n

; n)℄. A funtion body(v; x) preserves a ondition

ond(v; x) with respet to a struture S if in the ase of :empty(S); ond(body(v; x

0

); x) = ond(v; x)

for all v; x; x

0

, for whih there exist integers i; j suh that j � i and (x; i); (x

0

; j) 2 memb(S

0

). A

funtion body(v; x) weakly preserves a ondition ond(v; x) with respet to a struture S if in the ase

of :empty(S); ond(body(v; x

0

); x) = ond(v; x) for all v; x; x

0

, for whih there exist integers i; j suh

that j < i and (x; i); (x

0

; j) 2 memb(S

0

). It should be noted that if all elements of a struture S are

di�erent, then in these de�nitions the struture S an be used instead of the struture S

0

. In this ase

x; x

0

2 memb(S) and relations j � i; j < i are replaed by relations x

0

� x; x

0

< x, respetively, where

x

0

� x denotes that x

0

does not sueed x in ve(S), and x

0

< x denotes that x

0

preedes x in ve(S).

Lemma 1. If the funtion body

1

(v; x) preserves and the funtion body

2

(v; x) weakly preserves the

ondition ond(v; x) with respet to the struture S, then iteration (2) with an initial value v

0

of the

vetor v is equivalent to the iteration

for x in S dov := body

1

(v; x); if ond(v

0

; x) then EXIT ; v := body

2

(v; x) end: (3)

Proof. Lemma 1 is evident if empty(S). Let us suppose :empty(S) and ve(S) = [s

1

; :::; s

n

℄. Let

v

2i�1

= body

1

(v

2i�2

; s

i

); v

2i

= body

2

(v

2i�1

; s

i

) (i = 1; :::; n). We use m to denote an integer suh

that 1 � m � n and the body of iteration (2) is performed for x de�ned as s

1

; :::; s

m

. Two ases

are possible. In the �rst ase :ond(v

2i�1

; s

i

) for all i = 1; :::; n and m = n. In the seond ase

:ond(v

2i�1

; s

i

) for all i = 1; :::;m � 1 and ond(v

2m�1

; s

m

). Lemma 1 immediately follows from the

ondition 8j (1 � j � m ! ond(v

2j�1

; s

j

) = ond(v

0

; s

j

)): This ondition results from the following

more general ondition for i = j:

8j (1 � j � m! 8i (1 � i � j ! ond(v

2i�1

; s

j

) = ond(v

0

; s

j

))): (4)

To prove ondition (4), we use indution on i = 1; :::; j for a �xed integer j (1 � j � m). The

funtion body

1

preserves the ondition ond with respet to the struture S, and 1 � j holds for

(s

1

; 1); (s

j

; j) 2 S

0

. It follows from this that ond(v

1

; s

j

) = ond(body

1

(v

0

; s

1

); s

j

) = ond(v

0

; s

j

).

Therefore, ondition (4) holds for i = 1. Let us onsider the ase i > 1. From the indutive hypothesis,

the premise of Lemma 1 and i � j, it follows that ond(v

2i�1

; s

j

) = ond(body

1

(v

2i�2

; s

i

); s

j

) =

ond(v

2i�2

; s

j

) = ond(body

2

(v

2i�3

; s

i�1

); s

j

) = ond(v

2i�3

; s

j

) = ond(v

0

; s

j

). Therefore, ondition

(4) holds.

Let us de�ne a hierarhial struture ET (S) from the struture S, the ondition ond and the

initial value v

0

of the vetor v as
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(hoo(ET (S)); rest(ET (S))) =

if empty(S) _ ond(v

0

; hoo(S)) then (!; !) else (hoo(S); ET (rest(S))).

The following lemma desribes elementary properties of the struture ET (S).

Lemma 2.

2.1. If :empty(ET (S)), then the vetor ve(ET (S)) is an initial segment of the vetor ve(S).

2.2. The ondition :ond(v

0

; s) holds for all s 2 memb(ET (S)).

2.3. If ET (S) 6= S, ve(S) = [s

1

; :::; s

n

℄ and k = jmemb(ET (S))j + 1, then the ondition ond(v

0

; s

k

)

holds.

2.4. If ET (S) 6= S, then ET (S) = ET (head(S)).

Proof. We will use indution on n = jmemb(S)j. If n = 0, then empty(S), empty(ET (S)) and

Lemma 2 is evident. Let us suppose that n > 0 and Lemma 2 holds for jmemb(S)j < n. In the ase

of ond(v

0

; s

1

), it is evident that empty(ET (S)); k = 1, empty(ET (head(S))), and, therefore, Lemma

2 holds. Let us onsider the ase :ond(v

0

; s

1

). Then ET (S) = on(s

1

; ET (rest(S))), and assertions

2.1, 2.2 of the lemma follow from the indutive hypothesis. If ET (S) 6= S, then n > 1; ET (rest(S)) 6=

rest(S), and it follows from the indutive hypothesis that ond(v

0

; s

k

) for ve(rest(S)) = [s

2

; :::; s

n

℄

and k = jmemb(ET (rest(S)))j + 2 = jmemb(ET (S))j + 1. Therefore, assertion 2.3 of the lemma

holds. In the ase of ET (S) 6= S it follows from the indutive hypothesis that ET (rest(S)) =

ET (head(rest(S))), and, therefore, ET (S) = on(s

1

; ET (head(rest(S)))). To prove assertion 2.4 of

the lemma, it remains to notie that ET (head(S)) = on(s

1

; ET (rest(head(S)))) and head(rest(S)) =

rest(head(S)):

Lemma 3. Iteration (3) with the initial value v

0

of the vetor v is equivalent to the program

for x in ET (S) do v := body

1

(v; x); v := body

2

(v; x) end; if ET (S) 6= S then v := body

1

(v; s

k

) (5)

where k = jmemb(ET (S))j + 1 and ve(S) = [s

1

; :::; s

n

℄.

Proof. We will use indution on n = jmemb(S)j. If n = 0, then empty(S), ET (S) = S and Lemma

3 is evident. Let us suppose that n > 0 and Lemma 3 holds for jmemb(S)j < n. In the ase of

:ond(v

0

; s

i

) for all i = 1; :::; n, Lemma 3 follows from Lemma 2.3 and ET (S) = S. Otherwise, let us

�x the least integer i (1 � i � n) suh that ond(v

0

; s

i

). From Lemma 2 it follows that ET (S) 6= S

and ET (S) = ET (head(S)). Two ases are possible:

1. 1 � i � n� 1. Then iteration (3) is equivalent to the iteration

for x in head(S) do v := body

1

(v; x); if ond(v

0

; x) then EXIT ; v := body

2

(v; x) end

whih, by the indutive hypothesis, is equivalent to the program

for x in ET (head(S)) do v := body

1

(v; x); v := body

2

(v; x) end;

if ET (head(S)) 6= head(S) then v := body

1

(v; s

k

)

where k = jmemb(ET (head(S)))j+1. It remains to notie that ET (S) 6= head(S) follows from Lemma

2.2.

2. i = n. Then iteration (3) is equivalent to the program

for x in head(S) do v := body

1

(v; x); v := body

2

(v; x) end; v := body

1

(v; s

n

).

It remains to notie that n = jmemb(head(S))j + 1 and ET (S) = head(S) follows from Lemma 2.

The following theorem immediately follows from Lemmas 1, 3.

Theorem 1. If the funtion body

1

(v; x) preserves and the funtion body

2

(v; x) weakly preserves the

ondition ond(v; x) with respet to the struture S, then iteration (2) with an initial value v

0

of the

vetor v is equivalent to program (5).
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Corollary 1. If the funtion body(v; x) weakly preserves the ondition ond(v; x) with respet to the

struture S, then the iteration

for x in S do if ond(v; x) then EXIT ; v := body(v; x) end

with an initial value v

0

of the vetor v is equivalent to the iteration

for x in ET (S) do v := body(v; x) end.

Notie that Corollary 1 extends the theorem Th 7 [15℄.

Corollary 2. If the funtion body(v; x) preserves the ondition ond(v; x) with respet to the struture

S, then the iteration

for x in S do v := body(v; x); if ond(v; x) then EXIT end

with an initial value v

0

of the vetor v is equivalent to the program

for x in ET (S) do v := body(v; x) end; if ET (S) 6= S then v := body(v; s

k

)

where k = jmemb(ET (S))j + 1 and ve(S) = [s

1

; :::; s

n

℄.

4. Generating and proving veri�ation onditions

Let R(y  exp) be a result of substitution of an expression exp for all ourrenes of a variable

y into a formula R. Let R(ve  vexp) denote the result of a synhronous substitution of the

omponents of an expression vetor vexp for all ourrenes of orresponding omponents of a vetor

ve into a formula R. The proof rule rl1 [10℄ for de�nite iteration (1) uses the replaement operation

rep(v; S; body) where body is the funtion assoiated with the right side of the iteration body. The

replaement operation presents the e�et of iteration (1) [14℄. Theorem 6 [14℄ laims that iteration (1)

is equivalent to the multiple assignment v := rep(v; S; body). The rule rl1 replaes the post-ondition

Q by Q(v  rep(v; S; body)). To prove the veri�ation onditions inluding the replaement operation

rep(v; S; body) with the hierarhial struture S, we present two indution priniples.

Let prop(STR(S

1

; :::; S

m

)) denote a property expressed by a �rst-order logi formula only with

free variables S

1

; :::; S

m

. The formula is onstruted from funtional symbols, variables and on-

stants by means of Boolean operations and �rst-order quanti�ers. The funtional symbols inlude

memb; empty; ve; hoo; rest; last; head; str; on.

The following priniple is easily proved by indution on k =

P

m

i=1

lng(S

i

).

Indution priniple 1. The property prop(STR(S

1

; :::; S

m

)) holds for all strutures S

1

; :::; S

m

if

there exists an integer  � 0 suh that the following onditions hold:

(1) for all strutures S

1

; :::; S

m

suh that

P

m

i=1

lng(S

i

) � , the property prop(STR(S

1

; :::; S

m

))

holds;

(2) for all strutures S

1

; :::; S

m

suh that

P

m

i=1

lng(S

i

) > , there exist terms T

1

; :::; T

m

for whih

P

m

i=1

lng(T

i

) <

P

m

i=1

lng(S

i

) and prop(STR(T

1

; :::; T

m

))! prop(STR(S

1

; :::; S

m

)).

Let prop(rep(v; S; body)) denote a property expressed by a �rst-order logi formula with the only

free variable S. The formula is onstruted from the replaement operation rep(v; S; body), funtional

symbols, variables and onstants by means of Boolean operations, �rst-order quati�ers and substitution

of onstants for variables from v.

The following priniple is easily proved by indution on k = lng(S).

Indution priniple 2. The property prop(rep(v; S; body)) holds for eah struture S if there

exists an integer  � 0 suh that the following onditions hold:

(1) for eah struture S suh that lng(S) � , the property prop(rep(v; S; body)) holds;
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(2) for eah struture S suh that lng(S) > , there exists a term T (S) for whih lng(T (S)) < lng(S)

and prop(rep(v; T (S); body)) ! prop(rep(v; S; body)).

Notie that indution priniples [14, 15℄ are the speial ases of the priniples when  = 0.

5. Case of study: programs over linear lists

Let us onsider Pasal pointer programs. We will use the method from [10℄ to desribe axiomati

semantis of these programs. Let L be a set of elements to whih pointers an refer. An element

to whih a pointer p refers is denoted by p" in programs or by �p� in spei�ations, or by L�p�

in spei�ations when it belongs to the set L. We will denote the prediate �p�2 L as pnto(L; p).

Let upd(L;�p�; e) be a set resulted from the set L by replaing its element to whih the pointer p

refers with the value of the expression e. In the ase when the set L onsists of reords with the �elds

k

i

(i = 1; :::;m), we use upd(L;�p�; (k

1

; :::; k

m

); (e

1

; :::; e

m

)) to denote a set resulted from the set L

by replaing its element to whih the pointer p refers with an element suh that its �eld k

i

is the

previously alulated value of the expression e

i

(i = 1; :::;m), and the other �elds are not hanged.

To generate veri�ation onditions for programs whih ontain statements over the set L, suh

as q":= e; new(p); dispose(r), we use their equivalent forms: L := upd(L;�q�; e) when pnto(L; q),

L := L [ f�p�g when :pnto(L; p), L := L � f�r�g when pnto(L; r), respetively. Let us extend

Pasal programs by a statement q":(k

1

; :::; k

m

) := (e

1

; :::; e

m

) whih is de�ned when pnto(L; q) and

is equivalent to the statement L := upd(L;�q�; (k

1

; :::; k

m

); (e

1

; :::; e

m

)). This statement realizes the

synhronous assignment of the values of expressions e

1

; :::; e

m

to the orresponding �elds k

1

; :::; k

m

of

the element �q�. In the ase of m = 1, the statement has the form q":k := e whih is equivalent to

the statement L := upd(L;�q�; k; e).

In the rest of this paper we assume that the set L onsists of reords with the �elds key; ount

and next. The key �eld ontains the identi�ation name for an element, and, therefore, the names are

di�erent for di�erent elements. The ount �eld ontaining a positive integer is used for alulation of

the number of idential elements belonging to input data. The ount �eld an be omitted. The next

�eld ontains a pointer or nil.

The prediate reah(L; p; q) means that the element �q� is reahed from the element �p� in the

set L [10℄. Let p = root(L) be a pointer to a head element of the set L, i.e. suh an element from

whih other elements of the set L an be reahed. Thus, the relation p = root(L) is de�ned by the

formula pnto(L; p) ^ 8q(pnto(L; q)^ �q�6=�p�! reah(L; p; q)). Let l = last(L) be suh an element

of the set L that the �eld l:next ontains nil or a pointer to an element whih does not belong to the

set L. The prediate linset(L) means that the set L is linear, i.e. L is a nonempty set for whih there

exists a pointer p = root(L) and an element l = last(L). Notie that there exists the only pointer

root(L) and the only element last(L) for the linear set L.

Let us de�ne several useful operations over linear sets. A linear set whih ontains the only

element l is denoted by set(l). Let us assume that L

1

and L

2

are disjoint linear sets suh that if

the �eld last(L

2

):next ontains a pointer p, then :pnto(L

1

; p). We de�ne their onatenation as a

linear set L = on(L

1

; L

2

) suh that L = L

1

[ L

2

, root(L) = root(L

1

), last(L) = last(L

2

), and

the pointer root(L

2

) is in the �eld last(L

1

):next. We onsider on(L; l) and on(l; L) to be a short

form for on(L; set(l)) and on(set(l); L), respetively. A linear set on(on(L

1

; L

2

); L

3

) is denoted by

on(L

1

; L

2

; L

3

). A sequene whih is the projetion of the linear set L on the key �eld is denoted by

L:key. Let mset(L) be the multiset [l:ount � l:key whih onsists of elements l:key for l 2 L, and the

element l:key appears in the multiset l:ount times.

The prediate linlist(L) means that a set L is a linear list, i.e. L is a linear set and last(L):next =

nil. For a linear list L presented by a data struture, we de�ne a hierarhial data struture pn(L)

whih represents a sequene of pointers to onseutive elements of the linear list L as

(hoo(pn(L)); rest(pn(L))) = if empty(L) then (!; !) else if empty(rest(L)) then
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(root(set(hoo(L))); pn(rest(L))) else (root(head(L)); pn(rest(L))).

Notie that this de�nition orresponds to the de�nition of hierarhial strutures from Setion 2 whih

forbids the use of the notion root(L), although in this ase the de�nition of pn(L) an be simpli�ed.

6. Examples

Example 1. Reversal of a linear list.

To speify a program for an in-situ reversal of a linear list, we introdue a reversal funtion rev

whih is de�ned for nonempty sequenes. Let rev([a℄) = a; rev(on(seq; a)) = on(a; rev(seq)), where

[a℄ is a sequene whih onsists of the only element a, and also on(a; seq) and on(seq; a) are the

onatenation operations for the sequene seq and the element a.

The following annotated program inverts an initial value L

0

of a linear list L by the hange of next

�elds of its elements.

fPg y := nil; for x in pn(L) do x":next := y; y := x end fQg

where P : linlist(L

0

) ^ L = L

0

; Q : linlist(L) ^ L:key = rev(L

0

:key).

The iteration body is represented as (L; y) := body(L; y; x); where

body(L; y; x) = (upd(L;�x�; next; y); x). Let S = pn(L) and ve(S) = [s

1

; :::; s

n

℄. Notie that the

iteration body hanges the only element L�x� of the linear list L for x = s

i

, and, therefore, does not

hange the struture rest

i

(S) (i = 1; :::; n� 1). Thus, this iteration satis�es the de�nition of iteration

semantis from Setion 2. Projetions of pairs body(L; y; x) and rep((L; y); S; body) on the i-th element

are denoted by body

i

(L; y; x) and rep

i

((L; y); S; body), respetively (i = 1; 2).

The following veri�ation ondition is generated with the help of the proof rule rl1 [14℄.

V C:P ! Q(L rep

1

((L; nil); S; body)):

To prove V C, we onnet L and S. Let L�S� be a set of suh elements of L to whih pointers

from memb(S) refer. In the ase of empty(S) we assume that L�S� is empty. It follows from this

that L = L�S� for S = pn(L). We onsider rep

i

(S) to be a short form for rep

i

((L�S�; nil); S; body)

(i = 1; 2).

Claim 1. In the ase of :empty(S) the following properties hold :

1.1. rep

2

(S) = last(S);

1.2. rep

2

((L�S�; nil); head(S); body) = rep

2

(head(S)):

Proof. By Theorem 5 [14℄, property 1.1 follows from body

2

(L; y; x) = x. In the ase of empty(head(S))

both parts of the equality 1.2 are equal to nil. Let us onsider the ase :empty(head(S)). Then

rep

2

(head(S)) = last(head(S)). It remains to notie that, by Theorem 5 [14℄,

rep

2

((L�S�; nil); head(S); body) = last(head(S)):

Claim 2. In the ase of :empty(S),

rep

1

((L�S�; nil); head(S); body) = rep

1

(head(S)) [ fL�last(S)�g:

Proof. Notie that L�S�= L�head(S)� [fL�last(S)�g. If empty(head(S)), then

rep

1

((L�S�; nil); head(S); body) = L�S�= fL�last(S)�g

and the set rep

1

(head(S)) is empty. Claim 2 follows from this.

Let us onsider the ase :empty(head(S)). By de�nition, the set rep

1

((L�S�; nil); head(S); body)

is alulated with the help of body

1

. Among the elements of L�S�; body

1

hanges the elements of the
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form L�x� for x 2 head(S). It remains to notie that, by Claim 1, the result of the hange is de�ned

by the struture head(S).

The veri�ation ondition V C immediately follows from the property

prop(rep

1

(S)) = (linset(L�S�)! linlist(rep

1

(S)) ^ root(rep

1

(S))

= last(S) ^ rep

1

(S):key = rev(L�S� :key)):

Claim 3. The property prop(rep

1

(S)) holds.

Proof. We apply indution priniple 2 for =1 and T (S) = head(S). When the set L�S� onsists

of the only element, :empty(S) and empty(head(S)) hold. By Theorem 5 [14℄, rep

1

(S) = body

1

(L�

S�; nil; last(S)) = upd(fL�last(S)�g;�last(S)�; next; nil). Therefore, the property prop(rep

1

(S))

holds. Let us suppose :empty(head(S)) and linset(L�S�). From the indutive hypothesis for

head(S), linset(L�head(S)�), Claims 1, 2 and Theorem 5 [14℄ it follows that

rep

1

(S) = body

1

(rep

1

(head(S)) [ fL�last(S)�g; last(head(S)); last(S))

= upd(rep

1

(head(S)) [ fL�last(S)�g;�last(S)�; next; last(head(S)))

= rep

1

(head(S)) [ upd(fL�last(S)�g;�last(S)�; next; last(head(S)))

= on(L�last(S)�; rep

1

(head(S))):

Therefore, linlist(rep

1

(S)) and root(rep

1

(S)) = last(S). It remains to notie that

rep

1

(S):key = on(L�last(S)�:key; rep

1

(head(S)):key)

= on(L�last(S)�:key; rev(L�head(S)�:key))

= rev(on(L�head(S)�:key; L�last(S)�:key))

= rev(on(L�head(S)�; L�last(S)�):key) = rev(L�S�:key):

Example 2. Searh in a linear list with reordering.

Let us onsider a program for a searh of a key k in a linear list L with reordering. The program

sans elements of the linear list L and stores the previous element. Two ases are possible. If the

key k has been deteted, the ount �eld of the orresponding element is inreased by 1. When this

element is not �rst, it is transfered to the head of the list L by hanging next �elds. If the key k has

not been deteted, a new element with the key k and 1 in the ount �eld is added to the head of the

list L. To speify the program, we introdue a funtion seq=a whih denotes a sequene resulted from

the sequene seq by elimination of the �rst ourrene of the element a. If a does not belong to seq,

then seq=a = seq.

The annotated program prog1 is represented in the form:

fPg y := nil; r := root(L); for x in pn(L) do

body

1

(L; y; x); if x":key = k then EXIT ; body

2

(L; y; x) end fQg;

where

body

1

(L; y; x) : if x":key = k then begin x":ount := x":ount+ 1;

if y 6= nil then begin y":next := x":next; x":next := r end end;

body

2

(L; y; x) : if x":next = nil then begin new(z); z":(key; ount; next) := (k; 1; r) end

else y := x,

P : L = L

0

^ linlist(L

0

), Q : linlist(L) ^ L:key = on(k; L

0

:key=k) ^mset(L) = mset(L

0

) [ fkg.

Let S = pn(L) and ve(S) = [s

1

; :::; s

n

℄. Notie that when s

i

" :key 6= k, the statement body

2

an hange the only variable y. Therefore, the iteration body does not hange the struture rest

i

(S)

(i = 1; :::; n � 1). Thus, this iteration satis�es the de�nition of iteration semantis from Setion 2.

We apply Theorem 1 to eliminate the exit statement EXIT. Conditions of Theorem 1 hold sine

the statement body

1

(L; y; x) does not hange the �eld x " :key, and when x

0

< x, the statement
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body

2

(L; y; x

0

) does not hange this �eld beause x

0

":next 6= nil. By Theorem 1, program prog1 with

an initial value L

0

of the variable L is equivalent to the following program prog2 :

fPg y := nil; r := root(L); for x in ET (S) do body

1

(L; y; x);

body

2

(L; y; x) end; if ET (S) 6= S then body

1

(L; y; s

t

) fQg

where t = jmemb(ET (S))j + 1 and ET (S) is de�ned from S;L

0

, ond(L

0

; x) = (L

0

�x�:key = k).

By Lemma 2.2, L

0

�x�:key 6= k for all x 2 ET (S). Therefore, the statement body

1

does not hange

L = L

0

in the iteration body. The statement body

2

an hange L for x = last(ET (S)) only. Hene,

the statement body

1

does not hange the values of the variables in the iteration body from whih body

1

an be eliminated. Thus, program prog2 is equivalent to the following program prog3:

fPg y := nil; r := root(L); for x in ET (S) do body

2

(L; y; x) end;

if ET (S) 6= S then body

1

(L; y; s

t

) fQg.

To simplify veri�ation onditions, we onsider two ases. When ET (S) = S, :empty(ET (S)) and

program prog3 is equivalent to the following program prog4:

fPg y := nil; r = root(L); for x in head(S) do body

2

(L; y; x) end; body

2

(L; y; last(S)) fQg.

From L

0

�x�:next 6= nil for all x 2 head(S) it follows that the iteration an hange the variable y

only. As last(S)":next = nil, the statement body

2

(L; y; last(S)) has the following form:

new(z); z":(key; ount; next) := (k; 1; r).

Thus, veri�ation of the program prog4 is redued to proving the following veri�ation ondition:

V C1: P ^ET (S) = S ! Q(L upd(L [ f�z�g;�z�; (key; ount; next); (k; 1; root(L)))).

When ET (S) 6= S, L

0

�x�:next 6= nil and L�x�= L

0

�x� for all x 2 ET (S). Therefore, the

statement body

2

(L; y; x) has the form y := x in program prog3. If :empty(ET (S)), then the loop

from prog3 is represented as iteration over the struture head(ET (S)) with the body y := x, followed

by the statement y := last(ET (S)). This iteration an be eliminated. Notie that by Lemma 2.3,

L

0

�s

t

�:key = k. It follows from this that s

t

":key = k, and body

1

(L; y; s

t

) an be simpli�ed in prog3.

Thus, program prog3 is equivalent to the following program prog5:

fPg y := nil; r := root(L); if :empty(ET (S)) then y := last(ET (S)); s

t

":ount := s

t

":ount+ 1;

if y 6= nil then begin y":next := s

t

":next; s

t

":next := r end fQg.

If empty(ET (S)), then t = 1. Otherwise, t > 1 last(ET (S)) = s

t�1

. Veri�ation of the program

prog5 is redued to proving the following veri�ation onditions:

V C2: P ^ empty(ET (S))! Q(L upd(L;�s

1

�; ount;�s

1

�:ount+ 1));

V C3: P ^ :empty(ET (S)) ^ET (S) 6= S ! Q(L L

0

)

where

L

0

= upd(upd(upd(L;�s

t

�; ount;�s

t

�:ount+ 1);�s

t�1

�; next; �s

t

�:next);�s

t

�; next; root(L)):

Claim 4. The veri�ation ondition V C1 holds.

Proof. Let L

0

= upd(L [ f�z�g;�z�; (key; ount; next); (k; 1; root(L))): Then L

0

= on(�z�; L)

sine �z�:next = root(L). It follows from this that linlist(L

0

). By Lemma 2.2, L

0

�x�:key 6= k for

all x 2 S. Therefore, k 62 L

0

:key. It follows from the ondition P that L = L

0

. Hene,

L

0

:key = on(�z�:key; L:key) = on(k; L

0

:key) = on(k; L

0

:key=k) and mset(L

0

) = mset(L

0

) [ fkg.

Claim 5. The veri�ation ondition V C2 holds.

Proof. Let L

0

= upd(L;�s

1

�; ount;�s

1

�:ount + 1). Then linlist(L

0

). Two ases are possible.

If empty(head(S)), then L onsists of the only element L�s

1

�. By Lemma 2.3, L

0

�s

1

�:key = k.

Therefore, L

0

:key=k is an empty sequene and L

0

:key = L:key = on(k; L

0

:key=k). It is evident that

mset(L

0

) = fL

0

�s

1

� :keyg � L

0

�s

1

� :ount = fkg � (L�s

1

� :ount + 1) = mset(L) [ fkg; where

fbg �m denotes a multiset onsisting of the element b whih ours m times. When :empty(head(S)),



Veri�ation of pointer programs using symboli method for de�nite iterations 65

the linear list L is represented as L = on(L�s

1

�; L

1

) where L

1

= rest(L). It follows from this

that L

0

= on(L

0

�s

1

�; L

1

). Therefore, L

0

:key = on(L

0

�s

1

� :key; L

1

:key) = on(k; L

1

:key) and

L

0

:key=k = on(L�s

1

�:key; L

1

:key)=k = L

1

:key. It remains to notie that

mset(L

0

) = fL

0

�s

1

�:keyg � L

0

�s

1

�:ount [mset(L

1

)

= fL�s

1

�:keyg � (L�s

1

�:ount+ 1) [mset(L

1

)

= mset(L) [ fkg:

Claim 6. The veri�ation ondition V C3 holds.

Proof. Two ases are possible: t = n or 1 < t < n. In the ase of t = n, the linear list L is represented

as L = on(L

1

; L�s

t�1

�; L�s

t

�) for a suitable linear set L

1

. If empty(L

1

), then similar reasoning

an be developed. Notie that the set L

0

is represented as L

0

= on(L

0

�s

t

�; L

1

; L

0

�s

t�1

�), sine

L

0

�s

t

�:next = root(L) = root(L

1

); L

0

�s

t�1

�:next = L�s

t

�:next = nil. Therefore, linlist(L

0

).

By Lemma 2.3, L

0

�s

t

�:key = L�s

t

�:key = L

0

�s

t

�:key = k. By Lemma 2.2, k 62 on(L

1

:key;

L�s

t�1

�:key): Therefore,

L

0

:key = on(L

0

�s

t

�:key; L

1

:key; L

0

�s

t�1

�:key)

= on(k; L

1

:key; L�s

t�1

�:key)

= on(k; L:key=k)

and

mset(L

0

) = fL

0

�s

t

�:keyg � L

0

�s

t

�:ount [mset(L

1

) [ fL

0

�s

t�1

�:keyg � L

0

�s

t�1

�:ount

= fL�s

t

�:keyg � (L�s

t

�:ount+ 1) [mset(L

1

) [ fL�s

t�1

�:keyg � L�s

t�1

�:ount

= mset(L) [ fkg:

In the ase of 1 < t < n, the linear list L is represented as L = on(L

1

; L�s

t

�; L

2

) for a suitable

linear set L

1

and a linear list L

2

. Therefore, the set L

0

is represented as L

0

= on(L

0

�s

t

�; L

1

; L

2

). It

follows from this that linlist(L

0

). By Lemma 2, k 62 L

1

:key and L

0

�s

t

�:key = L�s

t

�:key = k: Hene,

L

0

:key = on(k; L

1

:key; L

2

:key) = on(k; L:key=k). It remains to notie that

mset(L

0

) = fL

0

�s

t

�:keyg � L

0

�s

t

�:ount [mset(L

1

) [mset(L

2

)

= fL�s

t

�:keyg � (L�s

t

�:ount+ 1) [mset(L

1

) [mset(L

2

)

= mset(L) [ fkg:

7. Conlusion

The development of the symboli method for veri�ation of de�nite iterations over hierarhial data

strutures aimed to apply it to pointer programs is desribed in the paper. When ompared to [14,

15℄, the method is generalized in two aspets allowing for a restrited hange of the struture by the

iteration body and exit from the iteration body under a ondition. This generalization substantially

extends the �eld of appliation of the symboli method sine de�nite iterations with exit from their

bodies allow us to represent important ases of while-loops.

In the �rst stage of veri�ation, de�nite iterations with exit from their bodies are transformed to

standard de�nite iterations over hierarhial data strutures. Theorem 1 justi�es orretness of this

transformation, and Lemma 2 desribes useful properties of hierarhial strutures whih are used by

this transformation. In the seond stage, veri�ation onditions whih an ontain the replaement

operation are generated. In the third stage, veri�ation onditions are proved with the help of both

a universal tehnique based on the indution priniples and a problem-oriented tehnique based on
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notions related to the problem domain. The notions for programs over linear lists are desribed in

Setion 5.

Instead of loop invariants, the symboli method uses properties of both hierarhial strutures and

the replaement operation. These properties, as a rule, are simpler than loop invariants, and new

notions are not neessary for representation of the properties. The indution priniples 1 and 2 are

rather exible and allow us to use di�erent indution strategies for proving the properties. The use of

properties of hierarhial data strutures simpli�es presentation of the properties of the replaement

operation as well as proving veri�ation onditions.

Partial veri�ation of a program for reversal of a linear list has been desribed in [2℄ but the basi

property of the program has not been proved in [2℄. N. Wirth has onsidered a program for a searh

in a linear list with reordering as a hallenge for veri�ation [10℄. This program has been onsidered

in [10℄ where its partial veri�ation has been desribed. It should be noted that the programs from [2℄

and [10℄ use while- and repeat-loops whih are attended with invariants. The symboli method allows

us to perform the omplete veri�ation of suh programs whih are represented by de�nite iterations

over hierarhial data strutures. Veri�ation of the program (see example 2) similar to that from

[10℄ is performed without loop invariants and the replaement operation owing to Theorem 1 and

elementary transformations for the loop elimination.

We suggest to extend the symboli method to a new kind of de�nite iterations over tuples of data

strutures for the purpose of a natural representation of loops with several input data strutures.
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