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Numerical implementation of wave mode
of definition of bottom hole coordinates

0.K. Omelchenko

In the present paper, within the scope of the acoustic method of the wave mode
of definition of the bottom hole coordinates, the procedure of estimation of drift
parameters for any number of sensors > 4 is discussed. Least square methods,
applied in this case, with regularization and pseudo-inversion allow us to obtain
confidence intervals for the coordinates (z,y,z) of a bottom hole and the mean
propagation velocity of a seismic wave v. '

Introduction

The definition of the bottom hole coordinates, in particular, its depth, is
one of necessary components of geophysical exploration and drilling activ-
ities. The raise of accuracy of defining the coordinates of a drift allows us
to improve the quality of interpretation of the logging information and to
reduce the time and costs of the drilling activity [1].

The wave mode of definition of the bottom hole coordinates, that is
discussed in the present paper, consists in measuring the time of wave prop-
agation of a certain physical nature from the point of applying the action
(or the measurement point) above the ground up to the bottom hole (or
back). In the drilling practice, the most developed is the acoustic method
based on the elastic oscillations of a medium which are passing through a
pipe string and rocks [1]. When the times of wave propagation from (or up
to) several points up to (or from) the drift are fixed, it is possible to apply
the so-called “group” mode of definition of the coordinates of a source (or a
receiver) of seismic waves, which is based on the data obtained from a group
of stations.

1. Parameter estimation of a bottom hole

In paper [2], there is stated a procedure of detection and ranging of a bottom
hole in the boring process for the case of five sensors. In the present paper
and in [3], the procedure of parameter estimation of a bottom hole for any
number of sensors > 4 is stated. .

Let in the Cartesian coordinate system z, y, z the axes z, y be directed
along the surface of ground, and the axis 2 downwards to the centre of the
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Earth. The mean velocity of seismic propagation wave in the neighbourhood
is denoted by v. We arrange sensors, recording (or emitting) seismic signals
on the ground surface or in small holes at the points with the coordinates
(23,9, 2;). And let ¢; be the time of propagation of a seismic signal from the
source in a bottom hole (for example, chisels) up to the i-th point (or vice
versa). It is required to define the coordinates (z*,y*,2*) of a bottom hole
and the velocity v. It is also possible to formulate the problem, in which
it appears difficult to fix the time of emission of a seismic signal, and one
has to include it into the number of unknowns to be defined. Then it will
be necessary to define the coordinates (z*,y*, z*) of a bottom hole, time in
the source t* and the velocity v. And, naturally, the minimum number of
sensors will be increased up to five.

When estimating the unknowns of bottom hole parameters, let us take
advantage of a nonlinear system of the so-called conditional equations [4-7]:

f=7(X,0)+¢ (1)
where the following notations are used:

£'=(t1,t3,...,tn)T is the vector of travel times of seismic signals,

if(X,8) is N-dimensional vector of computed travel times (theoretical travel
time curve) or a regression function,

~

€= (€1,...,en)T is the vector of residuals,

6 = (z,y,2,v,t)7 is m-dimensional vector of estimated parameters,

X = (&,&a,...,ZN) is the matrix of the coordinates of sensors (or of radi-
ation points),

N is the number of sensors (or of radiation points).

When estimating parameters, we use the information about the error
distribution g; = t;(z;, 8) — (<5, 8). Further, we assume that ¢; are mutually
independent random variables with distribution with zero mean and given
variances: Ee; = 0,Eeie; = 02b;ij,0; = o(a),di; is the Kronecker delta,
i=1,2,...,N. In the cases with difficulties in representing variances, they
are assumed to be equal and unbiased estimator of variance of observation
with single weight when solving problem [6], is obtained in the manner of
the present paper.

2. On methods of solution of the formulated
problem

The problem of estimating the parameters fisa part of the so-called regres-
sion analysis, and its solution is the estimations of the least square method:
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N
§=argminQ(d), Q) = o72(t: — n(c:, 0))>. (2)
el i=1

In order to search for a minimum of the functional Q(8), apply the iterative
Gauss—-Newton method or its modification based on the linear approximation
of a regression function in the neighbourhood of the point 8*:

J(X,0%)AG* + 7(X,6%) —F+ =0, (3)
where
J(X,8) = (a"g;"l’e),a"gz;’ﬂ,...,%g)—), i=1,2,...,n. (4

Multiplying both parts of the linearized system (3) by J7 (X, %), we obtain
the system of the normal equations:

JT(X,6%)J(X,8%)A6% = J7 (X, 6%)j(X, 6%), (5)

here §(X, 6) = (i'— n(X, ).
The estimagions 0 are obtained as a result of the realization of the iter-
ative process (6 = limy_, o, é"):

Ot = 6+ (X, 84)0(X,0%)] T IT(X, (X, 6%, k=0,1,2,... . (6)

The matrix
D(X,8) = (JT(X,8)J(X,6))! (7)

is called a covariance matrix (of space of parameters) and contains error
estimations of the unknown parameters 4.

When implementing the iterative process (6) and its modifications, the
inversion of the matrix JTJ is not made, and, in fact, at each step of the
iterative process there is a transfer from system (3) to system (5) which
is solved by one of the standard methods. Therefore, process (6) can be
written down as:

g+t = g% + AG*,

8
JT(X,6%)J(X,6%)A6% = J7(X,0%)§(X,6%), k=0,1,2,.... (®)
Two disadvantages of the discussed computational scheme, one should refer
the poor conditioning of the matrix J7J for some cases of the location of a
bottom hole and sensors. Therefore, the computational scheme of the least
square method with regularization was implemented, in which the system
of normal equations has the form:
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(JT(X,0%)J(X,0%) + 2 1)AG* = JT(X, 6%)§(X,6), (9)

where « is the regularization parameter, and I is the unit matrix.

_ Another approach for solving the problem (1)—(4) realized by the author
consists in waiving the transfer to a system of normal equations and imme-
diate solution at each step of the iterative process of system (3). In order to
solve the latter, the method of pseudo-inversion (or the generalized inver-
sion) [8, 9], which is based on the singular expansion (the SVD-expansion),
is most commonly used. In [8], for its realization a standard procedure in
the language Fortran-IV has been developed. The computational scheme of
the singular expansion consists in expansion of matrix (4) at each step of
the iterative process in the product of three matrices.

J(X,0%) = UpS VT, (10)

where Uy, is the orthogonal n X n matrix, V is the orthogonal m x m matrix,
% is the diagonal n x m matrix, having the structure

S,
Ek=(0k),

where S; = diag(p1,p2,---,Pm) is the diagonal matrix of singular numbers
non-increasingly ranked, p; > pi+1. The method also allows for conducting
the so-called singular analysis which consists in elimination of zero singular
numbers and the corresponding to them columns of the matrices U and V.
The iterative process in this case has the form:

g+l = * + Vi S, k=0,1,2,..., (11)

where d* is a vector consisting of the first m components of the vector
UE;{}'(X , 97‘) When implementing this process, not only the covariance ma-
trix of the space of parameters is readily obtained, but also the covariance
matrix of the space of data, the matrix of the resolution Vj VI, whose close-
ness to the unit matrix indicates to the degree of solvability of a problem,
and the matrix of information denseness UU , whose closeness to the unit
matrix indicates to a relative significance of separate observations [9, 10].
It is possible to show [8], that each step of the iterative process (11) si-
multaneously minimizes the residual norm |J g* — %1% and the norm of the
solution |3%|2, and each step of process (9) is equivalent to minimization of
the weighted sum of these norms |J6* — #]2 + a?|6¥|?, which ensures the
uniqueness of the solution.

3. On planning the observations system

Methods (6), (11) are rather good for the solution to systems (3), (5), but,
in practice, they are not very effective in the case of the poor conditioning
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of matrices (4). The reason for the poor conditioning of matrix (4) is in bad
organization of observations, i.e., in inappropriate arrangement of sensors
relative to a bottom hole. Hence, there follows a conclusion about the ne-
cessity in planning observations, i.e., in the choice of such an arrangement of
sensors within the territory, which would maximally refine the conditioning
of matrix (4) and, consequently, the estimation of drift parameters. Thus,
planning a system of observations, we do not try to correct poor conditioning
of matrix (4) by applying various regularizations, but eliminate the reason
of poor conditioning as it is.

R. Fisher, the author of design of experiments, was the first to under-
stand that if the most effective methods of parameter estimation can yield
a considerable increase in accuracy of estimated parameters by maximally
several tens percent, a gain from planning an experiment (appropriate orga-
nization of measurements) can be the multiple. At present, in the theory of
design of an experiment it is widely recognized that expensive experiments
(for example, powerful explosions, well boring) require a preliminary skillful
planning. The relevant software for planning the system of seismic observa-
tions, whose application has been stated in [4, 5], has been developed.

4. Practical implementation

Using the methods described in the present paper, which were designed as
a PC program, the experimental data, obtained at 22 operating oil-wells
with depths of 1000 m to 2300 m (provided by the authors of [2]), have
been processed. The results of processing show the high efficiency of the
developed software and good quality of the experimental material. Thus,
the confidence intervals with 95 percent confidence of the drift coordinates
are, basically, within 1-2 m. It is interesting to note that for the bore-
holes with depths of 10001800 m, a drift from the aperture is separated by
60-600 m, and for the bore-holes with depths of 2000 to 2300 m — within
500-800 m.
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