
Bull. Nov. Comp.Center, Comp. Science, 30 (2010), 71–80
c© 2010 NCC Publisher

On selection of data structures for use in
WinALT simulating system∗

M.B. Ostapkevich

Introduction

The importance of a proper selection of data structures can hardly be overes-
timated. It is crucial for the overall performance in certain problem domains,
such as file systems, task and memory managers in operating systems, in-
dexing in the DBMS, dictionaries in compression utilities.

The existing data structures are extremely versatile. Some of them have
a wide spectrum of applications, for example, linear lists and hash tables
are used in task managers and memory managers in operating systems.
B-trees in [1] are used in DBMS, file systems. Tries [2] are used to represent
dictionaries.

Other data structures have a narrow application. For example, dis-
tributed hash tables (DHT) [3], BATON trees [4], VBI trees [5] are used
in peering systems (P2P). A quadtree along with its modifications such as
regional quadtree, octal tree, R and R+ trees [6], K-dimensional tree (K-D)
and its modifications such as adaptive K-D tree, K-D-B tree, augmented
K-D tree, BSP tree [7], hB, LSD [8] are used in GIS, geophysical applica-
tions, image processing systems, and CAD.

This paper is aimed to selection of a data structure for the associative
search by a key, which is intended for the use in the simulating system for
fine-grain algorithms and structures called WinALT [9, 10]. In Section 1,
the purpose and architecture of the WinALT is briefly described. Its parts
are outlined, for which selecting the data structure is crucial for the overall
performance of the system. Such requirements are formulated which the
system imposes on the data structures employed. Section 2 is dedicated
to a review of existing data structures that are potentially suitable for the
considered simulating system. A brief description is given for each data
structure. Advantages and drawbacks are outlined, and a conclusion is made
whether such structure meets the above-formulated requirements or not.
Based on analysis of tries, a trie with an original mechanism of a compact
representation in memory is proposed in Section 3. Its pros and cons are
pondered. The validity of the choice of a data structure for WinALT is
confirmed by the test presented in Section 4. Finally, general conclusions
are drawn, and the plans of further development are outlined.

∗Supported by RAS under Grant 1.6.



72 M.B. Ostapkevich

1. Using data structures in WinALT

The simulating system for fine-grain algorithms and structures WinALT is
intended for the simulation of models of all the main classes of fine-grain
parallelism (further FGP) on a single processor or multiprocessor comput-
ers. There is a language for the analytical description of models, which is
based on a mechanism of associative substitutions [14] that is applied simul-
taneously to data arrays. The system graphical environment can be used for
the visual construction of models. A set of the FGP classes rapidly evolves
thus making it impossible for building a system as a fixed set of functions.
Instead, it should have an open architecture that would permit the user to
add a support for the new FGP classes.

The WinALT open architecture is based on the Dynamically Config-
urable Modular System (DCMS) [11]. The DCMS is a middleware library
built above OS. It facilitates the construction of extensible applications from
a variable set of modules that communicate by the means of events. The
most typical kinds of data in WinALT are cellular arrays (1D, 2D, and 3D
arrays of cells with a contiguous representation in memory) and a variety
of miscellaneous descriptors (substitution descriptors, instances of their ap-
plicability, variables in a model program, event handlers) indexed by keys
of different kinds (a string of characters, a string concatenated with coor-
dinates, a pointer). It is worth to mention that there is always no more
than one data element that corresponds to a certain name in the system.
There are never two cellular arrays with the same name or two cells with
the same coordinates within one cellular array. Thus, we can make a con-
clusion that data elements form an indexed set, where the index is rep-
resented by identifiers: names of cellular arrays, coordinates of cells, and
so on. The performance of simulations is a critical parameter for the sys-
tem. That is why all its structures used for a simulation reside in the main
memory.

Several parts of the system can be outlined, in which the selection of
data structures has an impact on the overall performance of the system.

An event driven mechanism of inter-modular communications was chosen
in order to attain an open architecture in the system. An event manager is a
module that implements this mechanism. It allows one to register procedures
as handlers of events and to generate events. At the moment of the event
generation, a list of procedure addresses be obtained by an event identifier.
The event generation is one of the most frequently used operations in the
system. Its efficiency is mostly determined by a data structure for the search
by a string key. An event identifier is a character string of unlimited length.
Thus, the structure must be efficient for keys of any length. A sample of
inter-modular interaction based on event driven mechanism is presented in
Figure 1.



On selection of data structures for use in WinALT simulating system 73

Figure 1. A sample of inter-modular event driven interaction

A subsystem of synchronous mode simulates an FGP device on sequen-
tial or parallel computers. One of its tasks is to provide a function to debug
models. Collision is a situation when more than one rule is applicable to the
same cell, and these rules require different values to be set as a new value for
this cell. Collision detection is one of the main parts of a debugging process.
In order to implement this mechanism, one has to accumulate all the found
substitutions in a way that would permit to retrieve them by the name of
a cellular array and coordinates. The duplication of all the modified cellu-
lar arrays would essentially increase the consumption of memory, because
more properties than just a new value has to be stored for each applicable
substitution. Particularly, references to a substitution descriptor and a rel-
evant fragment of a model program must also be stored. Thus, a compact
data structure must be used to quickly retrieve a description of an appli-
cable substitution by a key that consists of a cellular object name and cell
coordinates. The number of cellular arrays, cells and applicable substitu-
tions depend only on models. There is no way for the system to limit them.
Thus, the system must remain efficient with any number of those. There are
several simulating modes in the system when in a contiguous mode the cellu-
lar arrays are sequentially examined, i.e., cell by cell. The keys used in this
mode can be ordered. In other modes, the keys are just random. The system
must remain efficient regardless of the character of the key distribution.



74 M.B. Ostapkevich

In addition to the two mentioned subsystems, there is an object manager
in the system that needs an efficient data structure in order to attain a high
performance, as one of its most used operations is the search of an object
descriptor by the object name.

In all the considered cases there is a need for data structures that reside
in the main memory and represent indexed sets. This structure must have a
moderate consumption of memory and provide fast insertion and search of a
data element by key. The following list of requirements to a data structure
to be used in WinALT can be formulated:

• Data structure has to reside in the main memory.

• The data kept in the data structure is an indexed set (one key corre-
sponds to no more than one data element).

• The number of data elements is unlimited.

• The principal operation is the data element search by a key.

• The key length is unlimited.

• The character of the key distribution in the stream of inserted data
elements is unknown, it can be both sorted and random.

2. Overview of existing data structures

All the data structures that are suitable for a simulating system can be
divided at the top level into two classes: structures that are represented by
contiguous arrays and hash tables and lists. Contiguous arrays can be used
for the associative search only for the key length below 16–24 bits, although
with the best performance. They do not comply with the requirement of
efficiency regardless of the number of data elements.

Hash tables [1] are also one of the fastest data structures. But there must
be a priori estimation of the number of data elements in order to attain a
high performance and moderate memory consumption at the same time.
Thus, it does not meet the imposed requirements.

Among the lists, which are suitable for the search by a key, such struc-
tures as a linear list and trees can be mentioned. The linear list [12] is a
list structure with a minimum memory consumption. Its main drawback
is that it provides a descent performance only for a very small numbers of
data items, so it violates the requirement of efficiency for any number of
data elements.

Let us consider data structures that seem to be promising in the context
of their use in the WinALT in some detail. Figure 2 shows the classification
of trees.



On selection of data structures for use in WinALT simulating system 75

Figure 2. Classification of trees

Binary search trees. There are many kinds of binary search trees (further
BST). AVL tree [16–18] is considered as one of the most efficient BSTs. An
AVL tree meets all the imposed requirements as well as is possible with
a BST. A common drawback of BSTs is that it is impossible to efficiently
generalize them for higher arities. Also, there is virtually no way to introduce
some form of data caching when most frequently used data elements move
closer to a tree root and can be faster accessed.

B-trees [1,13] and their modifications do not comply with the requirement
of efficient search when the structure resides in the main memory. In com-
parison with a BST, they have a greater memory consumption and more
time for a search.

Tries. It is stated in [22] that a trie is a faster data structure for the search
by a key than a BST. The advantage of a trie is that only some bits of a key
should be compared in a node unlike BSTs, where a complete comparison of
the keys must be done in every node. A trie can have different arities, and a
caching version of a trie can be implemented. The major drawback of a trie
is its huge memory consumption. Its binary version called the radix tree is
less memory consuming, but is still more “greedy” than BSTs. Most of trie
modifications introduce a certain mechanism of memory usage efficiency.

PATRICIA (Practical Algorithm To Retrieve Information Coded In
Alphanumeric) [2] is the most well-known modification of a trie that has
an excellent performance and a moderate memory consumption. Unlike the
simplest trie and a radix trie, it has quite a small fraction of empty nodes.
Nodes that have only one child merge with the nearest child node having two
children. Each node contains a position of a bit or bits that must be used to
select a subtree below. PATRICIA fully complies with a set of requirements
and is considered to be one of the main candidates for tests.



76 M.B. Ostapkevich

3. The proposed tries modification

PATRICIA trie meets the requirements in a greater degree among all the
considered data. It has a moderate memory consumption and a high per-
formance. It allows the construction of trees with various arities. Its fault
is that it has quite a complicated implementation from the standpoint of
the size of source texts even for a binary case. For higher arities it is even
worse. Moreover, PATRICIA still has some redundancies in the memory
consumption because there is still a considerable number of nodes without
data elements.

A modification of the trie named the expulsive tree is proposed to over-
come the outlined faults. It retains all the important advantages of PATRI-
CIA and has a similar performance for insertion and search. At the same
time, it does not have empty nodes. Also, it has rather a simple implemen-
tation in terms of the source text size.

Empty nodes are excluded, because more than one position in a tree
is allowed for the data element with a specified key. The algorithm was
described in full detail in [23].

Figure 3. Insertion in the basic trie and in the expulsive tree

A sample of the data element insertion is depicted in Figure 3 both for
the basic trie and the expulsive tree.

4. Comparison of efficiency of data structures

In order to confirm the correctness of the choice of a data structure we
intend to measure its performance in a test. The following data structures
were selected: AVL tree, PATRICIA trie and expulsive trie with arities 2,
4, 256.



On selection of data structures for use in WinALT simulating system 77

The test program is written in C. It computes the number of occurrences
of words in a text from an input file. The input file is generated by the
Unix utility converting binary data to a text file (uuencode). The test is
very simple and at the same time it generates the sequences of calls of the
insertion and the search operations, which are similar to those in WinALT.
The keys also resemble, those which are typically used in WinALT. In order
to decrease the influence of other programs, the disk cache is purged before
the test and the test itself is executed several times. As a result, a minimal
time is then selected. The test is iterative. Parameters of the test are the
minimal and the maximal sizes of a data set, delta of the size and the name
of the input file. The results of the test are saved in the file and can be
visualized by a graphic plotter component.

The results of tests are presented in Figures 4 and 5. The first one has
approximately the same number of insertions and searches, which imitates
how a data structure is used in a subsystem of the synchronous simulation
mode. The second one issues considerably more searches than insertions,
which is typical when using a data structure in the object manager and in
the event manager.

In the test with a big fraction of insertions, the expulsive tree is better
than AVL even in the binary case. The best performance is attained with
the expulsive tree with arity 4. Its size in memory is just slightly bigger
than that for PATRICIA trie.

In the second test, the expulsive tree with arity 2 is worse than AVL,
while it is better for all the other arities. The expulsive tree with arity 4 is
slightly worse than PATRICIA trie. The best performance is shown by the

Figure 4. The results of the test with a big fraction of insertions



78 M.B. Ostapkevich

Figure 5. The results of the test with a small fraction of insertions

expulsive tree with arity 256, but its memory consumption is worse than for
all the other tested trees.

A conclusion can be made that the best candidates to be used in WinALT
are PATRICIA trie and the expulsive tree with arity 4. The expulsive tree
can gain a certain decrease in access time (as compared to well-known non-
hybrid data structures) in the case of a big fraction of insertions. In the case
of a small fraction of insertions, the results are comparable to PATRICIA.
It is also worth to mention that the algorithm for the expulsive tree is
considerably simpler than that for PATRICIA trie.

Conclusion

The binary expulsive tree is used in the current stable version of WinALT.
As the system evolves and the transition to new distributed platforms occurs,
a set of WinALT requirements imposed on data structures will be refined.
The analysis and the tests presented in this paper allow one to outline the
steps for further development of the data used in WinALT. Two directions
are planned: improvement of an expulsive tree and examination of hybrid
trees. It is assumed that an expulsive tree with a variable arity and support
for data caching might further decrease the time of the search and insertion
with keeping a moderate consumption of memory. In order to verify this
hypothesis, such kind of a tree and some hybrid trees, such as BURST trie
[19], HAT trie [22], TST [19], hybrid AVL tree [16], string B-tree [13] should
be implemented and tests of their performance and memory consumption
should be performed.



On selection of data structures for use in WinALT simulating system 79

References

[1] Main M., Savitch W. Data Structures and Other Objects Using C++. ––
Addison Wesley, 2000.

[2] Sedgewick A. Algorithms.–– Addison-Wesley, 1983.

[3] Harren M., Hellerstein J.M., Huebsch R., Loo B., Shenker S., Stoica I. Com-
plex Queries in DHT-based Peer-to-Peer Networks.–– http://www.cs.rice.edu/
Conferences/IPTPS02/191.pdf.

[4] Jagadish H.V., Beng Chin Ooi, Quang Hieu Vu. BATON: A Balanced Tree
Structure for Peer-to-Peer Networks. –– http://www.comp.nus.edu.sg/∼ooibc/
BATON.pdf.

[5] Jagadish H.V., Beng Chin Ooi, Quang Hieu Vu, Rong Zhang, Aoying Zhou.
VBI-tree: a peer-to-peer framework for supporting multi-dimensional indexing
schemes // Proc. Intl. Conf. on Data. –– 2006.

[6] Samet H. Applications of Spatial Data Structures. –– Addison Wesley, 1990.

[7] Gaede V., Gunthe O. Multidimensional access methods // ACM Computing
Surveys. –– 1998.–– Vol. 30. –– P. 170–231.

[8] Henrich A., Hans-Werner Six. The l-sd tree: spatial access to multi-
dimensional point and non-point objects. –– http://www.informatik.fernuni-
hagen.de/import/pi3/PDFs/lsd-Tree-spatial-access.pdf

[9] Beletkov D., Ostapkevich M., Piskunov S., Zhileev I. WinALT, a software tool
for fine-grain algorithms and structures synthesis and simulation // LNCS. –
Springer, 1999. –– No. 1662. –– P. 491–496.

[10] WinALT home page.— http://winalt.sscc.ru/.

[11] Ostapkevich M. Event-driven tools for open system design // Bull. Novosibirsk
Comp. Center. Special Ser. –– Novosibirsk, 1999. –– Iss. 1. –– P. 15–22.

[12] Foster J.M. List Processing. –– London: Macdonald&Co, 1967.

[13] Ferragina P., Grossi R. The string B-tree: A new data structure for string
search in external memory and its applications // J. ACM.–– 1999.–– Vol. 46.––
P. 236–280.

[14] Achasova S. M., et al. Parallel Substitutution Algorithm. Theory and Appli-
cation. –– Singapore: World Scientific, 1994.

[15] How to Build Patricia Trees. –– http://goanna.cs.rmit.edu.au/∼stbird/
Tutorials/patricia.pdf.

[16] Bjornstrup J. Sorting and Searching using Hybrid AVL-Trees.–– 1998.–– (Tech-
nical Report; 10.1.1.21.5088.pdf).



80 M.B. Ostapkevich

[17] Evstigneev V.A. Application of Graph Theory in Programming. –– Moscow:
Nauka, 1985 (In Russian).

[18] Carrano F., Prichard J. Data Abstraction and Problem Solving with C++.––
Addison Wesley, 2002.

[19] Zobel S.H.J., Williams H.E. Burst tries: A fast, efficient data structure for
string keys // ACM Transactions on Information Systems.–– Vol. 20.–– P. 192–
223.–– (10.1.1.18.3499).

[20] Park G., Szpankowski W. Towards a Complete Characterization of Tries. ––
http://www.cs.purdue.edu/homes/spa/papers/profile-soda.ps.

[21] Knessl C., Szpankowski W. On the Number of Full Levels in Tries. –– http:
//www.cs.purdue.edu/homes/spa/papers/fillup.ps.

[22] Askitis N., Sinha R. HAT-trie: A cache-conscious trie-based data structure
for strings / G. Dobbie, ed. // Proc. XIIIth Australasian Computer Science
Conference (ACSC2007). Ballarat, Victoria. –– 2007.–– P. 97–105.

[23] Ostapkevich M. Expulsive tree data structures for fast data search by a key //
Bull. Novosibirsk Comp. Center. Ser. Comp. Science. –– Novosibirsk, 1999. ––
Iss. 10. –– P. 73–82.


