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Variational rational splines of many
variables

A.J. Rozhenko

The purpose of this paper is to construct the interpolating function as a ratio of two
splines. The numerator and the denominator of this ratio minimize some combined
variational functional on the set of pairs of functions which satisfy interpolating conditions
and some additional restrictions. Such a construction was proposed by author in [7] for
one-dimensional case. In present paper it is generalized to the multi-dimensional case
and some convergence results are obtained.

1. Class of interpolated functions

Let © be a bounded domain in R™ and X () be a Hilbert space of real
functions continuously embedded into C(f?). We assume that the interpo-
lated function may be represented in the form f(t) = fi(t)/f2(t), where f;
and f, belong to X (). This representation is not unique since the nu-
merator and the denominator can be multiplied by any sufficiently smooth
function having no zeroes on .

The function f on Q takes finite or infinite values (we identify +oo
and —oo). It is determined everywhere in Q except the points where the
numerator and the denominator are simultaneously equal to zero.

E:carﬁple 1. Consider the function

_f -1, te[-1,0),
f(t)_{ +1, t€(0,1].

It is not determined at the point 0. Let X(Q) be the Sobolev space
Wi [-1,1], m > 0. Then this function can be presented in the form

signt - t™

1) = =

with the numerator and the denominator belonging to W7*[-1,1].
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Ezample 2. Define on the square [-2,2] x [-2,2] the function

y—sinz
y+sinz’

f(z,9) =

On the curves y = C -sinz it is equal to the constant (1 — C)/(1 + C).
At the point (0,0) the numerator and the denominator are equal to zero.
Since all these curves pass through the point (0,0), we can not determine
the function at that point.

Let us consider the Hilbert space X2(2) consisting of pairs [z, z2],
where z; € X(Q0),i=1,2.

Definition 1. The point t € Q is called regular for the pair [zy,2,] €
X*Q), if '
23(1) + 23(t) £ 0.

The set of all regular points of the pair [zq,z;] will be denoted by
Reg[z1, z2].

2. Variational setting of a problem

Let Y(§2) be a Hilbert space and T € L(X(R),Y(?)), i.e., T is a bounded
linear operator. We assume also that the operator T has the finite-dimensi-
onal kernel N(T') and its image is closed in Y ().

Let w C Q be a set of interpolating points. We have to construct the
rational spline o(t) = o4(t)/o2(t), which satisfies the interpolating condi-
tions

o(t) = f(1), tew. (1)
Replace (1) to the weaker conditions
fa(t)o1(t) — fi(t)oa(t) =0, tew,
where f = f;/f, is some representation of the interpolated function.
Fix a subset 7 from w N Reg[f1, f2] and call it the tie set of the rational
spline.

Definition 2. The function o(t) = o1(t)/o2(t) is called a rational interpo-
lating spline for the function f, if

[0.1,02]=arg[ m}iéll ITz1|1* + T2l , (2)

T1,%2 ™,
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where
I!r,w =I,N Gm

I, = {[z1,22] € X*(Q):  foz1 — fizal, = 0},
Gr = {[;1,3:2]61(2(9_): [3?1:3:2“”: [fl!fz]lrr}'

Since [f1, f2) € Ix.w, we have I, # 0. Any pair [z1,22) € Ir . is regular
in some neighbourhood of the set = and

z1(t)
z(1)

Hence, the rational spline o interpolates the function f on the set

= f(t), Vt€ wn Reg(f1, f2] N Reg[zy,22).

w N Reg[f1, f2] N Regloy, 03]
and this set is not empty (it includes at least the set 7).

Remark 1. The set I, is aclosed afine subspace of X 2(2) not containing
zero.

Remark 2. The equality

Irw = I‘N wnReglf1,5]

is valid, i.e., the non-regular points of the pair [f;, fo] does not affect on
the solution of the problem (2).

Remark 3. If the set = consists of one point, then the rational spline o(t)
does not depend on the choice of representation of the 1nterpola,ted function

f(t) as a ratio f1/fa.

3. Existence and uniqueness of the rational spline

The problem (2) is always solvable but the solution may be not unique.
Here we obtain the sufficient conditions for its uniqueness.

Lemma 1 [5]. Let X , Y, Z be some Hilbert spaces and let T € L(X,Y),
A € L(X,Z) have closed images and the kernels N'(T) and N(A) respec-
tively. Then the following statements are equivalent:

(i) The subspace N(T) + N(A) is closed in X and N(T)NN(A) =

(ii) The norm ||u|[. = (1Tl + ||Au|jz)1/ is equivalent to the norm
llullx-
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Theorem 1. Let N(T)x N(T)n 1, = 0. Then the problem (2) is uniquely
solvable.

Proof. Since the subspace I, is closed in X?%(R), there exists the ortho-
projector A € L(X?%(Q), X*()) onto I}. Let us define an operator B €
L(X%(Q),Y?(Q)) by the identity

B[:Cl N 2‘:21 = [T331, T.'Eg].

Then
N(A)=1,, N(B) = N(T) x N(T).

By finite-dimensionality of A(T), the subspace N (A) + N(B) is closed in
X?%(Q). This implies the item (i) of Lemma 1 due to the assumption of the
theorem. Hence, the norm

lizn,22llly £ (17201 + T2 ]?) 3)

is equivalent to the norm of the subspace I, induced by the original norm
of X. Thus, the problem (2) is reduced to finding an element of the afine
subspace I, C I, least deviated from zero with respect to the norm ||-||r.
It is well-known that this problem is uniquely solvable. O

Definition 3. Let diimAN(T) = k. A set @ C Q consisting of 2k points is
called the L-set, if the system of equations

fazy — fiza|, =0, =z4,25 € N(T)

has only the null solution.

Remark 4. The condition of the unique solvability of the problem (2) can
be written in the following form: if the set w contains an L-set, then the
problem (2) is uniquely solvable.

Denote

Srwlfi, fal = [01,02),  Rrulfr, fo] = 01/ 02,

where the pair [01,05] is the solution of the problem (2).
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4. Convergence of the pairs

Here we will show the strong convergence of the pairs {7y, 73] to the limited
pair
91, 92) £ S, alfu, f2]-

on the sequence of the nested meshes, which are condensated everywhere
in Reglf1, f2].

Lemma 2. Let H be a Hilbert space and let {M;},.n be a family of non-
empty closed convez sets, such that M,y C M;. Then the sequence of the
elements

z; = arg min ||z|
]

strongly converges to the element

o0
Too = a,rgxréxﬁi}tm lzll, Mo = ﬂ M;.

i=1

Proof. The set M, is not empty by virtue of the closeness of the space H.
Obviously, it is closed and convex. By [4], the norm minimization problem
on the closed convex set is uniquely solvable. Hence, the elements z; and
Zoo are uniquely determined.

Let us prove that the sequence (z;) is fundamental. Since M;4; C M;,

the sequence (o; 4 |lzi|]) monotonously increases. By definition of the set
M, the element z, belongs to M;, therefore, the sequence (a;) is upper
bounded with respect to ||2.||, and, thus, it is convergent. With respect
to [4, Theorem 2.2.2], the element z; satisfies the inequality

(ziyz—2;) 20, Vze M,
i.e.,
(ziyz) 2 ||z, Vz € M;.
Hence, .
llz — zill? = llz|1? - 2(2, i) + [l2:ll* < ll2))* - ||l
Substituting z = z; (j > 1), we obtain

2

lzj - z:i|* < o? — @

and from the convergence of the sequence (a;) follows that the séquence
(z;) is fandamental. o
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Since the set M; is closed and for j > ¢ we have z; € M;, it is obvious

df ..
that the element z, ¢ lim;_,o z; belongs to M;. Therefore, 2, € M. It
remains to show, that z, = z,. This fact follows from the inequality ||z;|| <
|Zeo|| and from the uniqueness of the element from M, with minimal norm.
a

Theorem 2. Let {w,- C ﬁ}ieN be a family of sets, such that w; C wiq,
the sets w; include an L-set and the tie set w. If the sets w; are conden-
sated everywhere in Reg[f1, f2], then the sequence of the splines [01;,02;] =
Srwilf1, f2] strongly converges to the spline [g1,¢2] = S, alf, f2]-

Proof. The condition w; C wiyy implies that I, #1 C I,;. This means

that the family of the sets {M; g I ..} satisfies the condition M;y, C M;.
Obviously, they are closed and convex. Further, let us consider the subspace
I,, and introduce the norm || - |7 by formula (3). This norm is equivalent
to the original one on the subspace I, (see the proof of Theorem 1).

Setting H = (I,,,||-||7) and using Lemma 2 we derive that the sequence
[01,i,02,;] strongly converges to the solution of the problem

min  ||Tz,]* + || Tz %,

[z1,22)€ 00
where
(0. 0]
Io = [ Ir -
i=1

It remains to show that the set I, is equal to I_g. Since I, = I,,NGy
and I_g = I NGy, it is sufficient to prove that

8

Iy = () Ls-

1

-
Il

Obviously, Ig C (2, L;. Prove the inverse embedding. Let [z,,z;] €

Niz, L, i-e., the function y A f2z1 — fizy vanishes on the set |J72; w;.
This set is dense in Reg[fi, f] due to the assumption of the theorem.
Further, the function y vanishes on the set Q \ Reg[f, fo] by definition of
the set Reg[fi, fo]. Therefore, the function y vanishes on the dense subset
of @, which by embedding of the space X (Q) into C(Q) implies that the
function y is identically equal to zero. o
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5. Convergence of the rational splines.

Definition 4. The function g = g1/g2 = R, 51, f2] is called the limited
rational spline for the function f = fi/f2 on the tie set 7.

Denote

Q = Reg[f1, f2] N Reg[g1, g2].

The set @ contains a neighbourhood of 7 and, thus, has non-empty interi-
ority. By definition of the set Iw,ﬁ the function f coincides with the limited
rational spline g on Q.

Let the sequence of the sets {w;} satisfy the conditions of Theorem 2.
Then the rational splines o; = R, {f1, f2] point-wisely converge to the
function f on the set Q with respect to topology of the space R = RU{oo}
supplemented by neighbourhood of the point co. Let us show that on the
special subsets of @ the uniform convergence takes place.

Fix € > 0 and define the subset Q. C @ by

Q.={teQ: dist(t,Q\Q)>¢}.

The points of the set Q. stay away from the non-regular points of the
functions f and g by at least e-distance. For a sufficiently small ¢ the set
(). is not empty and is compact.

Further, fix any constant M > 0 and cover the set ). by two subsets

QM ={teQ.: |f(1)< M},

QM. ={teQ.: |f()]> M}, (4)

It is obvious that the sets Qf‘i are compact and at least one of them is not
empty.

Theorem 3. Let the sequence of the sets {w;} satisfy the conditions of The-
orem 2. Then for i — oo the sequence of the rational splines o; = 01 ;[/09; =
Rrw:lf1, f2] uniformly converges to the function f on the set Q‘;‘:’E and the
sequence cr‘-"1 uniformly converges to f~! on the set Q"z‘fﬂ.

Proof. Since the function f coincides with the limited rational spline g =
91/92 = R_glf1, f2] on the set @ and Qf‘i C Q. C Q, we may prove the
convergence to the functions g and ¢~1.

Let the set QJIV{E be not empty. Since the space X () is continuously
embedded into C(Q) and the set Q‘lwt is compact, the function |g,] attains

the minimum at some point of Qf"; Denote the value of this minimum by
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0. By definition of the set Q{‘fe we have 6 > 0. Further, applying Theorem 2
and continuous embedding of the space X () into C(Q) we obtain that the

sequence (o3,;) converges to the function g, with respect to the norm of
the space C(§2). Hence, there exists an index i; € N, such that

lloz, - .‘]2"0(5) <0/2, Vi>i,.

Therefore, for ¢ > 7,
min |og,(t)| > 6/2.
oM lo2,:(t)| /

At last,

01,92 — 02,i91
o; — = ||/
llo: !I||C(Qg‘{‘) 02392 caM)
2
< g llorigz = o2igiligomy — O,
for ¢ — oo.
Similarly, the sequence (a,?' l) uniformly converges to g~!. m]

6. Rational D™-splines

Let Q C R™ be a bounded, simply connected domain with the Lipschitz
boundary and let X(€2) be the Sobolev space WJ*(Q2), where m > n/2 is an
integer. Under these assumptions the space WJ*(Q) is compactly embedded
into C(R). Define the operator T by

Tu=D"u ¥ {\/m!/a! “u: la| = m} ‘

Here a = (ay,...,a,) are multi-indices with non-negative integer compo-
nents,

lal=a1 4+ ...+ an, al=a;!-...-a,!,
D% = 0™u/0%'ty ...0%",.
The image of the operator D™ coincides with the space [L2(R)]*, where

Kk is the number of various multi-indices e, such that |a| = m. The norm
of the element Tu is defined by

1/2
- df m! &
ITully @) = ID™ull L, ) = (Z E/(D ")2‘19)
2

|laj=m

The kernel of the operator D™ consists of the polinomials of degree less
than m. '
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Definition 5. The rational spline 0 = Ry uf1, fa] for X(Q) = Wf‘(ﬂ) and
T = D™ 'is called the rational interpolating D™-spline.

In the next sections we will prove the convergence of the rational D™-
splines for any condensed (not necessarily nested) meshes, and obtain the
asymptotic error estimates on the compact sets QM e and QM which are of
the same order as for the ordinary D™-splines. Convergence of the rational
splines takes place only on Q. Therefore, it is interesting to investigate
the non-regular points distribution for the pairs [f1, f2] and [g1,92). The
question is to determine the structure of the set Regfgi,ga] for the set
Reg|f1, f2] given. In simple cases we can obtain an analitical representation
of the limited rational D™-spline.

Ezample 3. Let f = signz and = C [~1,1] be a tie set. Let [fi, f2] be a
representation of the function f, and Reg[f1, f2] = [-1,1]\ {0}. Then the
‘numerator g; and the denominator g; of the limited ratxona.l D™-gpline on
the segment [-1,1] are described as follows

_ [ le(),e(®), te[o,1],
[91’92] - { [#’(‘),f?(t)]{ te [_1’0]1

where the function ¢ is the solution of the problem

§0|1r = fll'm
(P(")(O)=O, k=0,....,m-1,

[ (¢™ ) dt =

-1

If we fix only one tie node, then the non-regular points of the limited pair
will occupy a whole segment. For example, if # = {1} then the function ¢
on the segment [—1,0] is équal to zero.

7. Convergence of the D™-pairs

Definition 6. For X(Q) = W*(Q) and T = D™ the pair 0 = Sru[h, f2]
18 called the D™ -pair.

We will need the following

Lemma 8 [3]). Let X, Y be some Hilbert spaces and T € L(X,Y.) have a
closed image and a finite-dimensional kernel N(T). Let

{k,e X*: peB)
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be a parametric family of the linear bounded functionals k, on X, where B
is a compact subset of R™. Let B, be a finite e-net in B. Further, let z.
be a fized element of X and o, be a solution of the following interpolation
problem '

o =arg_min I Tz]ly, (3)

Mp, .. ={z€ X : ky(z)=ky(z.), p€ B.}.

If
N(T)n{z € X: ky(z) =0, pe B} = {0} (6)

and the mapping p — k, is continuous on B, then for sufficiently smalle > 0
the problem (5) is uniquely solvable and for ¢ — 0 the splines 0. strongly
converge to the solution of the problem

o =arg min [|Tz|y,
T MB.::.

Mpgs, ={s € X: kyz)=ky(a.), p€ B}.

Theorem 4. Let the interpolated function f cannot be presented on the set
Reg[f1, f2] as a ratio of two polynomials of degree less than m. If a finite
set w, form an e-net in Reg|fy, f2] and the tie set & is a subset of w,, then
for sufficiently small ¢ > 0 the D™-pair (01 ¢, 02,c] = Sxw. [f1, f2] is uniquely
determined and for ¢ — 0 the D™ -pairs [0y .,02,] strongly converge to the
limited D™ -pair Su-.ﬁ[ fi, fa].

Proof. In order to use Lemma 3 for D™-pairs we have to construct the
continuous parametric family of functionals and verify the validity of (6).
Let us take the family consisting of the interpolating functionals

@ile1, 23] = fa(t)za(t) — fi(t)z(t), teQ

and the tie functionals

Trelz1, 22] = 21(2), w2.4[71,20] = 22(2), te .

The condition that the interpolated function f can not be presented on
Reg[f1, f2] as a ratio of two polynomials of degree less than m implies that
the set Reg[fi, f2] includes an L-set and, thus, (6) is valid.

Prove that the mapping ¢ — (t) is continuous. By definition

e — el = sup (e = per)[z1, 22| M

flzalifym +llzzlﬁv;u <1
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Estimate the right-hand side of (7). We have

(pr=spe)[z1, z2ll < |fa(t)z1(t) = fo(t)2a () +| Fr(B)22(t) - o(#)z2(t)]. (8)

Further, using the continuous embedding of the Sobolev space W*({2) into
the Holder class H* with a € (0,m — n/2) and into C({2) we can write
down for the first term of the right-hand side of (8) the following estimate

| f2(£)z1(t) — fa(t))21 ()]

|f2()] - le1(2) — 21(#)] + Jm1 ()] - 1 fa(2) = fa(?)]
I follo@le1(®) — 21(E)] + llzall o)l £2(2) = f2(2)]
Cilit =11z - (li falle + llz1lle)

C1Calit = |13 - (| fallwye + llallwp)

C1Callt = Iz (I f2llwp + 1).

Here ||t — '||2 is the Euclidean distance between ¢t and t'.
Similarly,

IA A A IA IA

| f()ea(t) = fi(#)es(t)] < CiCallt = L1151 fullwg + 1)

Finally,
llee — @ull < Clit - t]|3

and, therefore, the mapping ¢ — ¢(t) is continuous. 0O

8. Algebraic properties of the Sobolev spaces

Lemma 4. Let © C R™ be a bounded, simply connected domain with the
Lipschitz boundary and let W;*(2) be the Sobolev space, where 1 < p < 00
and m > n/p is an integer. Let the set of multi-indices {e1,...,0x} be such
“that 2:5:1 lai| < m. Then for any system of functions {f; € W*(Q), i =
1,...,k}

k

[0

i=1

k

< I Nwp » 9

Ly () =1

where the constant C does not depend on f;.

Proof. Define the norm of the space W;*(Q2) by

I llwga) = > ID% fllg 0 -

laj<m
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For p = oo inequality (9) is obvious with C = 1.
The proof of (9) for p < oo is based on the embedding theorems and
the generalized Holder inequality [6]

k
s

i=1

k
<TIfille, s V£i € Ly (10)

Ly =1

Here 1 < p< o0, p< ¢i <00 and E.—lll'b— 1/p.
If the parameters g; are choosen in such a way, that Z,_l 1/¢ = 1/p ‘
and the sets D*W™(Q) are embedded into Lg,({2), then

[l

=1

< HIID"'LIIL, < IIc Ifillwg = 1'[0. Huf.uwm :

Ly i=1 i=1 . i=l =1

which was to be proved. Here the first inequality follows from (10) and the
second one from the embedding of D*W;*(Q) into Lg,(%2).
Thus, we have to choose the parameters g;. Define

q,:pm/|a,~|, i=1,...,k—1,
k-1
g = pm/ (m- Zlail) .
: i=1

Obviously, E-:-;l 1/¢i = 1/p. To show the embedding of DWW (Q) into
L,,(2) we will prove [1] that

= |oi| - n/p+n/ei 20

and if ¢; = oo, then this inequality have to be strict.
If i < k, then

n m-|a|  m-—|o

sl = /4 /g = m— o = 2 2l L P ) >0,
If ¢; = o0, then |a;| = 0 and this inequality is strict.
If i = k, then
k-1
—lox| = n/p+n/ge 2 Y il - n/p+ n/a
=1
k= k=
): |l E |eil

n S -
-Z|a.|--- L_ =L (m-n/p)20.

=1 m
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k-1
If gx = oo, then Y |a;| = m and this inequality is strict. o
i=1

Lemma 5. Let  C R™ be a bounded, simply connected domain with the
Lipschitz boundary and let 1 < p < 0o, m > n/p. Then the Sobolev space
W () is an algebra, i.e., for any f,g € W;*(Q) the function fg belongs to
W () and

If9llwpm@) < Clfllwma) l9llwma) »
where the constant C does not depend on f and g.

Proof. Let the multi-index a be such that |a| < m. Consider the function
D*(fg). Using the Leibniz rule and Lemma 4 we obtain

ID*(fo)ll, < Em(a o \|Dﬂfm-ﬁ

p -

IA

Zgr(a ﬁ). Cop - ||f|fwm ”g“Wm

B

Ca lfllwg Ngllw

Thus, the function fg belongs to W;"(2) and

e

Ifollwg = > 1D°(f9)lz, < 3 Ca-lIfllwgp lgllw -

lof<m lal<m

o

Lemma 6. Let 2 C R™ be a bounded, simply connected domain with the
Lipschitz boundary and let 1 < p < 00, m > n/p. Let f,g € W*(Q) and

ess inf |g(t)| > 6 > 0.
tell
Then the function f/g belongs to W;*(2) and

o Ca lo
1D*(f/9)|L ) < gt W llwp ey l9llwm ) » (11)

where the multi-indez o such that |a] < m and the constant Cy does not
depend on f and g.
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Proof. Denote k = |a|. Differentiating the fraction f /g we obtain

k
D“(f/g) — Z C'ao,...,akDaof H Do:eg/gk+] ,

locg|+--+lakl=k i=1

where ay, . . ., a) are multi-indices and the constants Ca,....a, 40 nOt depend
on f and g. Further, using Lemma 4 we get

k k
) 1 )
D(.!OfH Da‘g/gk"'l < e Dcxuf[[ Da.g
i=1 Lp =1 LP
Cog,..n0tk

k
S gkt 1w lgllvwm -

Hence, we may put

Co= Z Cao,...,cxk *Cagyenorg
leo |+ AHeax|=k
Finally, for ja| < m the function D(f/g) belongs to L,(€) and, therefore,
the function f/g belongs to W;*(Q). o

9. Special covering of set

Denote by B(w,§) the opened 6-neighbourhood of the set w C R", i.e.,

B(w,8) L | B(t,9),

tEw
where B(t,6) is an open ball of the radius é centered at the point ¢. It is
easy to verify that
(a) B(w, ) = B@, ),
(b) B(B(w, 61),62) = B(w, &1 + 82), Véy,62 > 0,
(¢) B(Upenwar8) = Upea B(wa,8), for any family {w, C R"}aca-

Definition 7. Say that a family {w, C R"}seca satisfies the L-condition, if
for any two sets wy,ws, a,b € A, either Wy NWp = D or the set w, Nwy is a
domain with the Lipschitz boundary.

It is easy to prove that a family of balls {B(ts,€4.) : @ € A} satisfies
the L-condition, if and only if for any two balls B(t4,€a), B(ts,€), a,b € A
the inequality :

dist(te,ts) # €a + &b

is valid. Moreover, if the number of this balls is finite, then their union is
a finite set of domains with the Lipschitz boundary.
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- Lemma 7. _I_,et } C R" be a bounded domain with the Lipschitz boundary
and let w C 2. Then for any § > 0 there ezists the set ws C Q consisting of
a finite number of domains with the Lipschitz boundary, such that

wCws and w5 C B(w,$). (12)

Proof. The set ws will be constructed by the fdllowing scheme. Firstly, the
near-boundary points of the set w are covered by a finite number of the
small balls centered at the points of the boundary I' of the domain Q, such
that their intersections with the domain Q have the Lipschitz boundary.
Secondly, the rest points of the set w are covered by a finite number of the
small balls centered at the points of w. The balls radii have to be choosen
in such a way that the family of balls satisfies the L-condition. This choice
is possible if the balls radii may be varied in some limits.

So, let t € I'. Since the boundary I' satisfies the Lipschitz condition,
there exists 0 < &; < §, such that for any 0 < € < ; the minimal angle of
the intersection of the manifold T' and the boundary of B(t,¢) is greater
than zero. In other words, the pair of sets {Q, B(t,¢)} satisfies the L-
condition. Construct the covering '

{B(t,6¢/4) . te F}
of the compact I' and select the finite subcovering
{B(ti,et,/4): i=1,...,N}.

Further, choose the parameters ¢;, such that 3¢y, /4 < ¢; < €, and the
family

{B(t,-,a,-): i=1,...,N}

satisfies the L-condition. Denote

€= min & /2.
t=1,...,.N t'/

Then

N N N
B(P,E) C B(U B(t,',Et‘./tl),E) = U B(ti,ft.‘/4+ 5) - U B(t,',s,'),
=1

1=1 i=1

i.e., the balls
{B(ti,ei): i=1,...,N} (13)
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cover the e-neighbourhoeod of the set T'. Fiha]ly, select from the fé.mily (13)
the balls contaning the points of the set w and denote 'them by B, ... » Bum.
Set

wr B;.

e
Cx

i
e

By construction, the set Q Nwr consists at most of M domains with the
Lipschitz boundary. Further, the set wr covers all points of w which are
disposed at the e-neighbourhood of T, i.e.,

B(w \ wr,e) C . (14)

Since the radii of the balls B; are not greater than &, we have
wr C B(w, 6). (15)

Now we construct the set w,/; including w \ wr, such that
wefa € Bw \ wr,/2). (16)
Let us take the covering of the set w \ wr with the balls of the radius ¢/4,
after that select the finite subcovering and increase the radii of each ball
in the limits from £/4 to £/2 in such a way that the family of this balls
and the balls B; satisfy the L-condition. The union of these balls is the

required set w,/,.
Define

ws LN (r Uw,/z)
and prove that it is the set required. From (14) and (16) we conclude, that
B(we2,€/2) C Q,
i.e., the set We/2 8tays away from I' by at least £/2-distance. Hence,
ws = (2Nwr) Uweys
and, by construction, the set w; consists of a finite number of domains with

the Lipschitz boundary. It satisfies (12) due to wes2 C B(w, ) and (15).
0
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10. Assimptotic error estimates for the rational
D™-splines

Lemma 8 [2].. Let @ C R™ be a bounded, simply connected domain with the
Lipschitz boundary and let m > n/2 be an integer,

2<p< o, |o- % <m- g (with strict inequality for p = 00). (17)

Then, there ezists constants C,hg > 0, such that for any function u €
Wit () with an h-set of zeroes in the domain Q

D% ul|L, i) < CR™I=n/240/p) D™uj ), R < o (18)

The constant C' depends on the parameters mentioned and does not depend
on u.

Theorem 5. Let the interpolated function f cannot be presented on the set
Reg[ f1, f2] as a ratio of two polynomials of degree less than m and let the
sets QM, i = 1,2 be defined by (4) with X(Q) = W(Q) and T = D™.
If the set w forms an h-net in Reg|fi, f2], then for the rational D™-spline
o = 01/ = Rrulfi, f2] and for the multi-index o and the parameter p

satisfying (17) we have
1D%(@ = Az, @iy +1D%(0 ™ = SN, qpe) = o(h™1I=/240/7) (19)
for suﬁ'icien‘tly small h > 0.

Proof. We will derive the estimate (19) for the first term of the left-hand
side. For the second term the proof is provided in a similar way.

Since the function f coincides with the limited rational D™-spline ¢ =
91/92 = R, glf1, f2] on the set Q and Q¥, C Q. C @, we can replace f in
(19) by g.

1. Denote

6 = min t)|.
p) lg2(8)]-
From definition of the set Q{‘fe it follows that & > 0. Prove that there exists
the parameter 0 < § < £/2, such that °

l92(0)| > 6/2, Vi€ QnB(Q,$). (20)

The function g; is continuous on © due to the embedding of WJ*(2) into
C(2). Hence, for any t € § there exists the ball B(t,6;), 0 < 6 < ¢/2,
such that

lg2(t)| > 8/2, Vi e Qn B(t,é).
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Construct the covering {B(t,6:/2): t € Qf”fg} and select the finite subcov-
ering
{B(t;,6,/2): i=1,...,N}.

Set
§= mmNﬁtl./2.

t=1,...,

Then,

N N N
B(Q1L.8)C B (U B(t,-,an/m,a) = U B(ti, 8../2+ 6) c | B(ti, 61.)

=1 i=1 i=1

and, therefore, with such é relation (20) is valid.
2. From Lemma 7 there exists the set ws consisting of a finite number
K of domains with the Lipschitz boundary such that

QY. cw and ws CBQM,5)NQ. ' (21)

Suppose for simplicity that K = 1. _
3. By Theorem 4 and the imbedding of W]*(2) into C(£2) we can find
the sufficiently small constant l‘zl, such that for h < h,

loa(t) — g2(1)] < 8/4, Vitew;.
Therefore, taking into account (20) and (21) we obtain that for h < A,
o) > /4, Vi € .

Thus, 0,9 € WJ*(ws) due to Lemma 6.
4, From the relations

ws C BQM,6)nQ C BQM,e)nQ C QC Reglfy, fo

and by the condition of the Theorem, the domain ws has an h-net of the
interpolating points. Therefore, due to Lemma 8 for A < min{hg, b}

|1 D%(o — !}’)“LP(Q{‘:") < ID%(0 = 9)llLp(ws)
< CrhmRlEr 2P D™ (6 — g1y (wg) -

5. To complete the proof we have to show that for h — 0

I1D™(e = 9)|Ls(ws) — O-
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By Lemmas 5, 6

m 0192 — o249
1D™(© = )l zaten) “D’“L‘-

T 0202

La(ws)
< 2 loygs - il - Nloagallfy
S gm 192 = 201w (ws) * 192921l Wm (ws)-

The last multiplier is bounded due to Lemma 5 and the convergence of o5
to g2. For the second one we have that for h — 0

lo1g2 — o201llwr(ws) < llo192 — g192llwpws) + 119291 — o201l ()

< Cs ("01 = gillwpwa)llg2llwyrws) + lloz — 92‘|W;‘(ws)||91||W;‘(wa)) — 0.
0

11. Representation of the limited D™-pair

Theorem 6. Let Reg[fy, f2] = Q and let J be defined on W*(R) by the
rule : '

Jz = [zfl’x.&]a T € Wzm(ﬂ)-

Then the operator J realizes the linear continuous isomorfism from W' ()
onto the space

Is = {[e1, 22 € WP :  21fz - 22filg = 0}
Proof. By Lemma 5

. 1/2
W zllwr@p = (||‘v'f'fl_||%v;"(ﬂ)+””2”%”:’"(“))

1/2
Cllallwp - (il + 1l

Therefore, the operator J is bounded.

Obviously, the image R(J) of the operator J is included to I5. To
complete the proof we have only to show that

N(J) = {0} (22)

IA

and
R(J) = I. (23)
1. Let u € A(J). By the imbedding of W*() into C(§2) we have that
for any t €
z(t)fi(t)=9 and z(t)f2(t) = 0.
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Since the pair [fi, f,] is regular on £, we have that

A #0 or f() £0. (24)
Therefore, z(t) = 0 and (22) is valid.
2. In order to show (23) we will construct for any pair [z;, 2] E I the
element z € WI*(Q), such that Jz = [z1,z,).
Define the function z by
o= | HOTRO, H @ 0
za(t)/ fa(t), if fa(t) # 0.
Since (24) is valid and [z1,72] € I, this definition is correct. By the
imbedding of WJ*(Q) into C(R), for any point ¢ € Q there exists a ball
B(t, 6:), such that
h |nna(:,s,) #0 or f2|nn3(:,s_.) # 0.

Further, by Lemma 7 there exists a domain w; C @ with the Lipschitz
boundary, such that

tew; and w;C B(t,6).

Taking into account Lemma 6 we derive that z € Wi (w;).
Finally, selecting a finite subcovering from the covering

{w:: teQ}
we obtain that N
lellwpm) < lzllwm (e, ) < 005
=1
i.e., the function z belongs to WJ*(f2). a

Corollary. Let Reg[fi, f2] = Q. Then the limited D™-pair is represented
by

Sﬂ-,ﬁ[fl, f?] = _[ufla uf?]!
where u € WJ* () is the solution of the problem

u= a.rgireli& ||Dm(f13)||gvg'(n) + ”Dm(fﬂ)ufvp(n)a (25)
Ue={z € WJ"(Q): gz|r=1}.

Thus, the set of non-regular points of the pair [g;,g2] coincides with
the set of points, where the function u vanishes. For one-dimensional case
it was shown [8] that for fy, fo € C?™[a,b] and for the finite tie set 7 the
solution u of the problem (25) vanishes on a finite subset of [a,b] and zero
multiplicity of u at every point of this subset is less than m.
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Figure 2
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12. Numerical experiments

Figures 1, 2 show the graphics of the rational D?- sphnes which mterpola.te
the functions \

et and 1-2°
1.01 — cos z (z 4+ 3)(22 + 1)(z - 4)2

respectively. The graphics of the interpolated functions practically coincide
with these ones and, therefore, they are not presented.

Figure 3 shows the isolines of the function (y —sin z)/(y +sin z) on the
square [—2,2] x [-2,2] and Figure 4 shows the rational D2-spline for this
function constructed on a scattered mesh with 20 nodes. The mesh nodes
are marked by the "crosses” and the tie node is marked by the "box”.

The computation was hold on the LIDA-3 [9] software library subpack-
ages RATIO and GRATIO designed by the author.
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