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On solvability of the Cauchy problem for
one-dimensional system of the Hopf type equations

D.K. Salaev

Abstract. The Cauchy problem for a one-dimensional system of equations of the
Hopf type is considered. A theorem on the solvability of the considered Cauchy
problem in the class of analytic functions has been proved.

Introduction

Modern theories of continuum mechanics [1–3] suggest the influence of its
past on the movement of a medium of the past, and in the general case, a
material can have an arbitrarily long “memory”. However, a long memory
gives rise to significant difficulties, which can be overcome in two ways: first,
to consider special classes of movements in which memory, whatever it may
be, does not have the ability to significantly manifest itself (for example,
viscometric flows of viscous fluids [5, Ch. V]), and second, to single out the
classes of media or materials in which the stresses at any point are affected
only by the prehistory of motion over an arbitrarily small time interval.
Materials of this type are called infinitesimal memory materials.

The most important materials with the infinitesimal memory are materi-
als in which the stresses at a point x at a time t∗ are determined by the first
n derivatives of the strain gradient F (x) with respect to the time t∗ at the
same time t∗. Such materials are called Differential Complexity materials
n = 1, 2, . . . . The theory of isotropic fluids of the differential complexity
type was constructed by Rivlin and Erikeen [3, 4], and based on this theory
Coleman and Noll [3] have constructed a simpler asymptotic theory of slow
motions of fluids of order n = 1, 2, . . . . In the case of incompressible fluids,
a zero-order fluid is an elastic fluid whose motion is described by the Euler
equations

∂v

∂t
+ vk

∂v

∂xk
+

1

ρ
∇p = F, div v = 0, (1)

the first order fluid is a Newtonian linear viscous fluid, whose motion of
which is described by the Navier–Stokes equations

∂v

∂t
+ vk

∂v

∂xk
− ν∆v +

1

ρ
∇p = F, div v = 0. (2)

Here ρ > 0 and ν > 0.
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1. A system of equations of the two-velocity hydrodynamics

In the isothermal case the equations of motion of a two-velocity medium in
the dissipative case with one pressure in the system has the form [4–8]:

∂ρ1
∂t

+ div(ρ1v1) = 0,
∂ρ2
∂t

+ div(ρ2v2) = 0, (3)

∂v1
∂t

+ (v1,∇)v1 +
1

ρ
∇p =

ν1
ρ

∆v1 +
ν1 + 3µ1

3ρ
∇ div v1 +

ρ2
2ρ
∇(v1 − v2)2 + F,

(4)

∂v2
∂t

+ (v2,∇)v2 +
1

ρ
∇p =

ν2
ρ

∆v2 +
ν2 + 3µ2

3ρ
∇ div v2 −

ρ1
2ρ
∇(v1 − v2)2 + F,

(5)

where v1 and v2 are the velocity vectors of the subsystems that make up the
two-velocity continuum with the corresponding partial densities ρ1 and ρ2,
ν1 (µ1), and ν2 (µ2) are the corresponding shear (bulk) viscosities, ρ = ρ1+ρ2
is the total density of the two-velocity continuum; F is the vector of the
mass force per unit mass. The system of equations (3)–(5) is closed by the
equation of state of the two-velocity continuum

p = p(ρ, (v1 − v2)2).

2. The Hopf-type system of equations

Systems of equations (3)–(5) in the case of a constant phase saturation are a
generalization of system (1) and (2) for a multiphase medium, respectively.
A subclass of system (3)–(5) in the case of the constant phase saturation
in the dissipative case are systems of equations of the Hopf type. In the
one-dimensional case, in the absence of the mass forces, this system has the
form [9, 10]

∂u

∂t
+ u

∂u

∂x
= −b(u− v), (6)

∂v

∂t
+ v

∂v

∂x
= εb(u− v), (7)

where ε =
ρ1
ρ2

is the dimensionless positive constant, b is a positive constant.

System (6), (7) differs from that system of the two-velocity hydrody-
namics in the dissipative case, due to the coefficient of friction, the absence
of pressure, and the condition of incompressibility. For this reason, the
problems associated with the Hopf-type system will sometimes be called
two-velocity fluid dynamics without pressure. Also, in the case when the
energy dissipation occurs only due to the interfacial friction coefficient, we
will call the inviscid system of the Burgers type or the Hopf type system,
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or we will also call it the Riemann type system. This gives a simple quasi-
linear system of equations. When the friction coefficient (b = 0) disappears,
system (6), (7) goes to the well-known Hopf equation [11].

Zeldovich has proposed to consider an inviscid free system in the one-
velocity case in the absence of mass forces as an equation describing the
evolution of a rarefied gas of non-interacting particles [12]. According to his
idea, the pure kinematics of the underlying particles can lead to peculiarities
in the distribution of mass and is responsible for the inhomogeneity of matter
in the universe.

Following [13], we denote by C(0, T ;Xs) the space of the analytic func-
tions u(z) in the disc CT = {z ∈ C : |z| < T}, bounded for |z| ≤ T and
taking values in the Banach space Xs. Having defined in it the norm

‖u‖C(0,T ;Xs) = sup
t∈[0,T ]

‖u‖s,t, ‖u‖s,t = sup
|z|=t
‖u(z)‖s, ‖ · ‖s = ‖ · ‖Xs ,

we obtain the Banach space.
Here Xs, s ∈ [0, 1], is a one-parameter family (scale) of the Banach spaces

such that Xs ⊆ Xs′ , for s′ < s, and the norm of the embedding operator
≤ 1, i.e. for all u ∈ Xs

‖u‖s′ ≤ ‖u‖s, s′ < s.

Let for any pair of the numbers s′, s ∈ [0, 1], s′ < s, the mapping V is de-
fined on the ball Cr,u0(0, T ;Xs) = {u ∈ C(0, T ;Xs) : ‖u− u0‖C(0,T ;Xs) < r}
with the center u0 ∈ C(0, T ;X1) and takes it to C(0, T ;Xs′). We call V
the Volterra operator of the class J(α, β,C), α > 0, β ≥ 0, if there exists a
number c > 0 such that for any u, v ∈ Cr,u0(0, T ;Xs), s

′ < s, t ∈ [0, T ], the
following estimate is fulfilled:

‖V u− V v‖s′,t ≤ c(s− s′)−β(Jα‖u− v‖s,τ )(t),

where Jα is the integration operator of order α > 0,

(Jαϕ)(t) = Γ−1(α)

∫ t

0
(t− τ)α−1ϕ(τ) dτ,

Γ(α) is the gamma function. In particular, for α = 1

(Jϕ)(t) =

∫ t

0
ϕ(τ)dτ, J ≡ J1.

Theorem 1 [13]. Let V ∈ J(α, β,C). Then:

1) the solution to the equation u = V u is unique in the ball Cr,u0(0, T ;Xs)
at s > 0;

2) if V u0 ∈ Cr,u0(0, T ;Xs) for some s ∈ (0, 1], there exists a number
c > 0 such that for any s′ < s the equation u = V u has the solution
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u ∈ Cr,u0(0, T ′;Xs′), T ′ < c(s− s′), T ′ < T.

This theorem is the Volterra version of well-known theorems on the solv-
ability of the abstract Cauchy problem (see [14, 15] and the literature cited
therein). It is proved in essence in the same way as the Nishida theorem
in [14]. The more general case of the spaces Lp(0, T ;Xs) (1 ≤ p ≤ ∞) is
considered in [16].

We now turn to the statement of the Cauchy problem for a Hopf-type
system.

Let the Cauchy data be given for system (6), (7):

uk|t=0 = u0k(x), k = 1, 2, (8)

where u1(t, x) = u(t, x), u2(t, x) = v(t, x).
Integrating systems (6), (7) and taking into account (8), we arrive to the

equivalent system of equations

u1(t, x) = u01(x)−
∫ t

0

[
u1(τ, x)

∂u1(τ, x)

∂x
+ b(u1(τ, x)− u2(τ, x))

]
dτ, (9)

u2(t, x) = u02(x)−
∫ t

0

[
u2(τ, x)

∂u2(τ, x)

∂x
− εb(u1(τ, x)− u2(τ, x))

]
dτ. (10)

Introducing the vector functions w = (u1, u2), this system can be written
down in the form w = V w, where the operator V is defined by the right-
hand sides of equalities (9), (10). Let the Banach space Xs, s ∈ [0, 1], consist
of analytic vector-functions w : Ωs → C2 in the domain Ωs = {(x, t) ∈ C :
|x| < δ(1 + s), |t| < δ(1 + s)}, δ > 0, such that

‖w‖s = |w|s + |wx|s <∞, (11)

where |w|s = sup{|w(x, t)|, (x, t) ∈ Ωs}. Let us set w0 = (u01(x), u02(x))
and show that the operator V satisfies the conditions of Theorem 1. Since
w ∈ Cr,w0(0, T ;Xs), from (9), (10) it follows that V : Cr,w0(0, T ;Xs) →
Cr,w0(0, T ;Xs′) for s′ < s. It follows from the definition of the mapping V
that, for w1, w2 ∈ Cr,w0(0, T ;Xs), the difference V w1 − V w2 is represented
as a linear combination of the vectors w1 − w2 and D(w1 − w2) (D = Dx)
with operator coefficients of the type of Jb, where the function b is expressed
in terms of w1, w2 and their first derivatives, J is the integration operator
from zero to t. Notice, that

|Ju|s ≤ J |u|s, |bu|s ≤ |b|s|u|s, |Du|s′ ≤ δ−1(s− s′)−1|u|s′ , s′ < s. (12)

These estimates are trivial and follow from the Cauchy formula for analytic
functions. Thus, with allowance for (11)
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|Dα(V w1 − V w2)|s′ ≤ c(s− s′)−|α|J |w1 − w2|s,
‖V w1 − V w2‖s′ ≤ 2c(s− s′)−|α|J‖w1 − w2‖s.

These estimates show that V ∈ J(1, 1,C). If t < T , from the definition of
V we have ‖V w0 − w0‖s = O(T ) for sufficiently small T . Thus, Theorem 1
implies the existence of the unique analytic solution w = (u1, u2) of system
(9), (10) in some complex neighborhood of zero. Thus, we have proved the
following

Theorem 2. Let Y = (−ε, ε), u01(x), u02(x) ∈ Cω(Y ) be the class of real
analytic functions. Then the Cauchy problem (6)–(8) has a unique solution
(u1, u2) ∈ Cω in some neighborhood of zero.
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