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One-dimensional dynamic inverse problem for
a system of Hopf-type equations

D.K. Salaev

Abstract. A dynamic inverse problem for a one-dimensional system of the Hopf-
type equations is considered. A theorem on local solvability in the class of functions
analytic in the variable x is proved.

Keywords: Two-velocity hydrodynamics, viscous fluid, relative velocity, direct
problem, inverse problem, Darcy coefficient.

Introduction

The theory of two-phase filtration finds important application in solving
problems of petroleum engineering, soil science, biomechanics and others
practical areas. Increasing attention is being paid to modeling of multiphase
flows in connection with burial radioactive waste. Simulation and numerical
analysis of two-phase filtration in elastically deformable porous media are
important element in the development of cost-effective and safe cleaning
devices, reducing the number of laboratory and field experiments, identify
the main mechanisms, optimize existing strategies and evaluate possible
risks. In recent years, interest in processes has significantly increased of
multiphase filtration in low-permeability fractured porous collectors. One
of the important reasons for this is the fact that fractured hydrocarbon
deposits contain more than 20 % of world oil reserves [1].

1. Hopf-type system of equations

A subclass of the system of two-speed hydrodynamics in the case of con-
stant phase saturation in the dissipative case are systems of the Hopf-type
equations. In the one-dimensional case, in the absence of mass forces, this
system has the form [2–5]:

∂u

∂t
+ u

∂u

∂x
= −b(u− v), (1)

∂v

∂t
+ v

∂v

∂x
= εb(u− v), (2)

where u and v are the corresponding phase velocity components with partial
densities ρ1, ρ2, ε = ρ1/ρ2 –– dimensionless positive constant.
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System (1), (2) differs from the system of two-speed hydrodynamics in
the dissipative case, due to the friction coefficient, the absence of pressure
and the incompressibility condition. For this reason, the problems associated
with a Hopf-type system, the system will sometimes be called two-speed
hydrodynamics without pressure. When the friction coefficient disappears
(b = 0), system (1), (2) goes over to the well-known Hopf equation [6].

It is known that, in a certain sense, the Cauchy problem for the Hopf
equation with initial data w|t=0 = f(x) reduces to the theorem on implicit
functions, since locally

w(t, x) = f(x− wt) ↔ ∂w

∂t
+ w

∂w

∂x
= 0. (3)

Global solvability of the Cauchy problem with bounded initial data f(x)
was proven in the 50s of last century (see bibliography in [7]). The Hopf
equation was replaced in the half-plane t > 0 by a discrete equation for the
functions wk

n on the lattice:

wk+1
n = wk

n+1

(1

2
+
h

4l
wk
n+1

)
− wk

n−1

(1

2
+
h

4l
wk
n−1

)
,

w0
n =

1

2l

∫ (n+1)l

(n−1)l
w(0, x) dx,

(4)

where the replacement w(t, x) → w(kh, nl) = wk
n is made. Another version

of the proof of the theorem for the existence of a generalized solution to the
Cauchy problem was based on the replacement hyperbolic Hopf equation by
a parabolic equation with a small parameter at the highest derivative:

∂wε

∂t
+ wε

∂wε

∂x
=
∂2wε

∂x2
, wε(0, x) = w(0, x) ∈ L∞. (5)

For piecewise linear initial data, formula (3) and the method of character-
istics allow us to construct a family of exact solutions of the Hopf equation
with discontinuities. This makes it possible, in particular, to verify the non-
uniqueness of the solution to the Cauchy problem in the class of generalized
functions. The question of the coincidence of solutions to the Cauchy prob-
lem constructed in different ways depends one way or another on specifying
suitable conditions on the fault lines. Let us recall in this connection that for
the Hopf equation there is arbitrariness in the choice of the “fundamental”

conservation law
∂ρ(w)

∂t
+

∂σ(w)

∂x
= 0, so that for a generalized solution, the

conditions on the break line depend on the specific choice this conservation
law.

Although the above methods for constructing approximate solutions us-
ing equations (4), (5) are constructive, it is unclear, however, what infor-
mation can be extracted from them about the qualitative behavior of so-
lutions after the occurrence of discontinuities caused by the intersection of
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characteristics (see explicit formula (3)) [8]. Moreover, the implicit function
theorem is not applicable for the Hopf equation with a source and for system
(1), (2) with the Cauchy data

u|t=0 = u0
1(x), v|t=0 = u0

2(x). (6)

Following [9], we denote by Xs, 0 ≤ s < 1, the space of functions u(z)
holomorphic in the domain Ωs = {z ∈ C, |z| < sR}, R is some constant.
Let ‖u‖s = supΩs

|u(z)|. Let us denote D1 = {x, |x| < R0}, D2 = {z ∈
C, |z| < R}, Ck([0, R0];D1) –– space of k times continuously differentiable
functions with respect to t for 0 ≤ t ≤ R0 with values in the space of
functions that are holomorphic in a neighborhood of D1, 0 < R0 ≤ R.

2. The Cauchy problem for a Hopf-type system

Consider in the region D = {(x, t), 0 ≤ t ≤ R, |x| < R} systems of the
Hopf type (1), (2) with the Cauchy data (6).

Problem (1), (2), (6) is equivalent to the solvability of the following
system of nonlinear integrodifferential equations:

u1(t, x) = u0
1(x)−

∫ t

0
u1(τ, x)

∂u1(τ, x)

∂x
dτ − b

∫ t

0
(u1(τ, x)− u2(τ, x)) dτ,

u2(t, z) = u0
2(x)−

∫ t

0
u2(τ, x)

∂u2(τ, x)

∂x
dτ + εb

∫ t

0
(u1(τ, x)− u2(τ, x)) dτ,

where u1(t, x) = u(t, x), u2(t, x) = v(t, x).

Let us assume it is done

Condition A. u0
k(x), k = 1, 2, are holomorphic functions in a neighbor-

hood of D1 admitting analytic continuations to the neighborhood of D2

and

‖u0
1‖s + ‖u0

2‖s ≤ N.

We denote the continuations of the functions u0
k(x), uk(t, x) from D1 to

D2 by u0
k(z), uk(t, z). Next, we will use the ideas of works [9–12]. In terms

of the function ψk = uk − u0
k, k = 1, 2, the latter system will take the form

ψ1(t, z) = −
∫ t

0
ψ1(τ, z)

∂ψ1(τ, z)

∂z
dτ −

∫ t

0
u0

1(z)
∂ψ1(τ, z)

∂z
dτ −∫ t

0
ψ1(τ, z)

∂u0
1(τ, z)

∂z
dτ − b

∫ t

0
(ψ1(τ, z)− ψ2(τ, z)) dτ − Φ1(z)t, (7)
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ψ2(t, z) = −
∫ t

0
ψ2(τ, z)

∂ψ2(τ, z)

∂z
dτ −

∫ t

0
u0

2(z)
∂ψ2(τ, z)

∂z
dτ −∫ t

0
ψ2(τ, z)

∂u0
2(τ, z)

∂z
dτ + εb

∫ t

0
(ψ1(τ, z)− ψ2(τ, z)) dτ − Φ2(z)t, (8)

where

Φ1(z) = u0
1(z)

∂u0
1(z)

∂z
+ b(u0

1(z)− u0
2(z)),

Φ2(z) = u0
2(z)

∂u0
2(z)

∂z
− εb(u0

1(z)− u0
2(z)),

∂u(t, z)

∂z
=

1

2
(ux − iuy),

z = x + iy, Imψk|D1 = 0. We obtain a solution to system (7), (8) as the
limit of the sequence ψn

k , defined inductively by the equalities

ψ0
k = 0, ψn+1

k = ψn
k + wn

k ,

where wn
k are defined as follows:

wn
1 (t, z) = −

∫ t

0
ψn

1 (τ, z)
∂ψn

1 (τ, z)

∂z
dτ −

∫ t

0
u0

1(z)
∂ψn

1 (τ, z)

∂z
dτ −∫ t

0
ψn

1 (τ, z)
∂u0

1(τ, z)

∂z
dτ − b

∫ t

0
(ψn

1 (τ, z)− ψn
2 (τ, z)) dτ −

ψn
1 − Φ1(z)t ≡ S1(ψn

1 , ψ
n
2 )− ψn

1 − Φ1(z)t, (9)

wn
2 (t, z) = −

∫ t

0
ψn

2 (τ, z)
∂ψn

2 (τ, z)

∂z
], dτ −

∫ t

0
u0

2(z)
∂ψn

2 (τ, z)

∂z
dτ −∫ t

0
ψn

2 (τ, z)
∂u0

2(τ, z)

∂z
] dτ + εb

∫ t

0
(ψn

1 (τ, z)− ψn
2 (τ, z)) dτ −

ψn
2 − Φ2(z)t ≡ S2(ψn

1 , ψ
n
2 )− ψn

2 − Φ2(z)t, (10)

for t < bn(1− s), bn+1 = bn[1− (n+ 2)−2], n = 0, 1, 2, . . . .

Let B be the space of functions uk(t, z), k = 1, 2, which for any s ∈ [0, 1]
are continuous functions of t, t < b∞(l − s), with values in Xs that

k[u1, u2] = sup
t<b∞(1−s),

0≤s<1

(‖u1‖2s + ‖u2‖2s)
(b∞(1− s)

t
− 1
)2

<∞,

Imuk|ωs = 0, b∞ = b0

∞∏
n=0

[1− (n+ 2)−2], ωs = {x ∈ R1, |x| < sR}.
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Let for j ≤ n be given wj
m, m = 1, 2, such that

ηj = sup
t<b∞(1−s),

0≤s<1

(‖wj
1‖

2
s + ‖wj

2‖
2
s)
(bj(1− s)

t
− 1
)2

<∞,

‖wj
1‖

2
s + ‖wj

2‖
2
s < N.

Let us prove that wn+1
m , m = 1, 2, are defined for t < bn+1(l − s). From

the construction it follows that Imw0
k|ωs = 0. Thus, if wn

m are defined, then

Imwn
m|ωs = 0.

From the definition of ψn+1
m , ψn

m it follows that

‖wn+1
m ‖s ≤

n∑
j=0

‖wj
m‖s, m = 1, 2.

It is necessary that

‖wn+1
1 ‖2s + ‖wn+1

2 ‖2s < N.

Then the function wn+1
m will be defined. So, from (9), (10) it follows

wn+1
1 (t, z) = S1(ψn+1

1 , ψn+1
2 )− S1(ψn

1 , ψ
n
2 ), (11)

wn+1
2 (t, z) = S2(ψn+1

1 , ψn+1
2 )− S2(ψn

1 , ψ
n
2 ), (12)

Repeating the reasoning from [11] taking into account ‖∂u∂z ‖s′ ≤
1

R(s−s′)‖u‖s
[10] with simple transformations from (11), (12), we obtain

‖wn+1
1 ‖2s + ‖wn+1

2 ‖2s ≤
24(N + C)

R2

b30k[wn
1 , w

n
2 ]

(bn+1(1− s)/t− 1)2
+

(N + C + 2(1 + εb))

∫ t

0
(‖wn

1 (τ, z)‖2s + ‖wn
2 (τ, z)‖2s)] dτ

or

ηn+1 ≤ qηn,

where

q =
(24(N + C)

R2
b20 +N + C + 2(1 + εb)

)
b0 < 1

due to the smallness of b0,

C = max
{
‖u0

1‖s, ‖u0
2‖s,

∥∥∥∂u0
1

∂z

∥∥∥
s
,
∥∥∥∂u0

2

∂z

∥∥∥
s

}
.
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Whence, due to the smallness of b0, we have

‖ψn+1
1 − ψn

1 ‖2s + ‖ψn+1
2 − ψn

2 ‖2s ≤ const · qn(b∞(1− s)/t− 1)−2

for t < b∞(1 − s), since
∑∞

n=0 q
n < ∞. From this we conclude that the

functions ψk
m, m = 1, 2, converge to some function ψk. The uniqueness of

the solution is established in the usual way. The following theorem has been
proven

Theorem 1. Let conditions A be satisfied. Then the Cauchy problem (1),
(2), (6) has a unique solution u1(z, t), u2(z, t) which for any positive s ∈
(0, 1) is once continuously differentiable function on t for t < b(l − s) with
values in Xs, and

‖u1‖s + ‖u2‖s ≤ N.

3. Inverse source problem for a Hopf-type system

In the one-dimensional case in the presence of mass forces, this system has
the form [3, 4, 12]:

∂u1

∂t
+ u1

∂u1

∂x
= −b(u1 − u2) + f(x)g1(t), (13)

∂u2

∂t
+ u2

∂u2

∂x
= εb(u1 − u2) + f(x)g2(t), (14)

where f(x)g1(t) and f(x)g2(t) are mass forces.

Let the Cauchy data (6) and additional information be given

uk|x=0 = ϕk(t), k = 1, 2. (15)

The inverse problem consists of determining the function

(u1(x, t), u2(x, t), g1(t), g2(t))

from (13)–(15), (6). In this case, the function f(x) is known and separated
from zero, the matching condition is satisfied

u0
k(0) = ϕk(0), k = 1, 2. (16)

Let us apply the operator ∂
∂xf

−1(x) to both sides of equalities (13) and (14).
After simple transformations we obtain
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∂u1

∂t
− ϕ′1(t) = −b(u1 − u2) + b(ϕ1 − ϕ2) + b

∫ x

0

f ′(ξ)

f(ξ)
(u1 − u2)dξ +∫ x

0

f ′(ξ)

f(ξ)

(∂u1

∂t
+ u1

∂u1

∂ξ

)
dξ −

∫ x

0

((∂u1

∂ξ

)2
+ u1

∂2u1

∂ξ2

)
dξ, (17)

∂u2

∂t
− ϕ′2(t) = εb(u1 − u2)− εb(ϕ1 − ϕ2)− εb

∫ x

0

f ′(ξ)

f(ξ)
(u1 − u2)dξ +∫ x

0

f ′(ξ)

f(ξ)

(∂u2

∂t
+ u2

∂u2

∂ξ

)
dξ −

∫ x

0

((∂u2

∂ξ

)2
+ u2

∂2u2

∂ξ2

)
dξ. (18)

Thus, the study of the solvability of the inverse problem (13)–(15), (6) was
reduced to the study of the solvability of the direct problem (17), (18),
(6). This problem is equivalent to a system of integrodifferential equations
Volterra of the second kind

u1(x, t) = u0
1(x) + ϕ1(t)− ϕ1(0)−

b

∫ t

0
(u1(x, τ)− u2(x, τ)− ϕ1(τ) + ϕ2(τ)) dτ +∫ x

0

f ′(ξ)

f(ξ)
(u1(ξ, t)− u0

1(ξ)) dξ +

∫ t

0

∫ x

0
u1(ξ, τ)

∂u1(ξ, τ)

∂ξ
dξ dτ −∫ t

0

∫ x

0

((∂u1(ξ, τ)

∂ξ

)2
+ u1(ξ, τ)

∂2u1(ξ, τ)

∂ξ2

)
dξ dτ +

b

∫ t

0

∫ x

0

f ′(ξ)

f(ξ)
(u1(ξ, τ)− u2(ξ, τ))dξ dτ,

u2(x, t) = u0
2(x) + ϕ2(t)− ϕ2(0) +

εb

∫ t

0
(u1(x, τ)− u2(x, τ)− ϕ1(τ) + ϕ2(τ)) dτ +∫ x

0

f ′(ξ)

f(ξ)
(u2(ξ, t)− u0

2(ξ)) dξ +

∫ t

0

∫ x

0
u2(ξ, τ)

∂u2(ξ, τ)

∂ξ
dξ dτ −∫ t

0

∫ x

0

((∂u2(ξ, τ)

∂ξ

)2
+ u2(ξ, τ)

∂2u2(ξ, τ)

∂ξ2

)
dξ dτ −

εb

∫ t

0

∫ x

0

f ′(ξ)

f(ξ)
(u1(ξ, τ)− u2(ξ, τ))dξ dτ.

The solvability of this system in the class of continuous in t and analytic in
x is carried out in the same way as in Theorem 1. In this way it is proved

Theorem 2. Let conditions A and agreement (16) be satisfied, the function
f(x) be analytic in some neighborhood of zero, f(x) 6= 0. Then the inverse
problem (13)–(15), (6) has a unique solution u1(z, t), u2(z, t), g1(t), g2(t)
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which for any positive s ∈ (0, 1) is once continuously differentiable function
on t for t < b(l − s) with values in Xs, and

‖u1‖s + ‖u2‖s ≤ N.

The functions g1(t) and g2(t) are determined by the formulas

g1(t) =
1

f(0)

(
∂ϕ1(t)

∂t
+ ϕ1(t)

∂u1

∂x

∣∣∣
x=0

+ b(ϕ1(t)− ϕ2(t))

)
,

g2(t) =
1

f(0)

(
∂ϕ2(t)

∂t
+ ϕ2(t)

∂u2

∂x

∣∣∣
x=0
− εb(ϕ1(t)− ϕ2(t))

)
.
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