Bull. Nov. Comp. Center, Comp. Science, 10 (1999), 83-92
© 1999 NCC Publisher

Formation of basic type autowave
processes by a cellular neural network

A. Selikhov

In this work, a formal background for the choice of parameters of Cellular Neural
Network generating basic types of autowaves, namely, a round traveling front, a
round traveling pulse and a spiral wave, is presented. This background is based
on investigation of phase plane properties of a CNN cell. The required conditions
for emergence of the traveling front and the traveling pulse with a one-cell initial
condition are presented. Simulating results are presented for the round traveling
front and the round traveling pulse initiated by the one-cell initial condition and
for spiral waves initiated by random initial conditions.

1. Introduction

Autowaves are objects of investigation in various disciplines and may be con-
sidered as basic processes for studying more complex ones. In spite of the
maturity of the partial differential equations theory used as a background for
mathematical models of autowaves, there is a number of problems concern-
ing their computer realization. In this connection, other approaches deserve
much attention particularly those ones which are initially parallel and effec-
tive for hardware and high-performance computer realization. Among such
approaches, application of Cellular Neural Networks (CNN) [1] may be of
considerable interest.

Though much attention is paid to investigation of various complex phe-
nomena in. CNNs, such as autowaves [2, 3], chaotic processes [4] and emer-
gence of stable structures [5], up-to-day there are no methods for obtaining
parameters of a CNN required for realization of a desirable distributed dy-
namic process. In this connection, the purpose of this work is to present
a formal background for construction of a CNN generating basic type au-
towaves and to show properties of the CNN as a model for such processes.

The paper consists of four sections. Next section contains the formal
representation of CNN being investigated with emphasis on its difference
from usual formal models of autowaves. In Section 3, an influence of a
CNN cell parameters on dynamical properties of the cell is described and
formal background for a choice of the parameters to obtain useful CNN
properties is presented. Section 4 describes simulation results for basic types
of autowaves, namely for a traveling round front, a traveling round pulse
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and spiral waves, using the theoretical background presented above and two
types of initial conditions — one-point and random.

2. The CNN formal representation

The most general formal representation of the Cellular Neural Network can
be found in [6]. The CNN under investigation is a 2-dimensional lattice with
cells placed in its nodes. To simulate autowave processes most of which are
observed in two-component systems, each cell should also be such a two-
component system. Therefore, each cell of the CNN has a state vector
x = [z, 23], a bias vector z = [z, 2] and an output vector y = [y, ya],
where z; and y; are functions of time, z; are constants. Hence, each cell
may be represented as two communicating neurons or as a neuron pair.
The presence of two neurons in a cell divides the CNN into {wo layers of
neurons. Each neuron in a cell has weighted connections with outputs y; m,
m = 1,...,9 of adjacent neurons from its neighborhood. These adjacent
outputs form an output vector y; with enumeration of its components fixed
in some determined order. The configuration of the neighborhood is defined
by a neighborhood template matrix

0 D; 0
Ai=| D; -4D; D; |,
0 D; 0

where ¢ = 1, 2 is the number of a layer. The matrix A; may be represented as
a neighborhood vector A} with components, enumerated in such a way that
the components in y; correspond to the components in A}. For simulation of
autowave processes, elements D; of the matrix A; play the role of diffusion
coefficients.

According to these notations, a state evolution of each cell may be rep-
resented by the following system of two first order differential equations:

Oz
Ftl_ = Fl(mhyl,yz,zx) +A’1y1,

(1)
3:272

Tl Fa (29, Y1, Y2, 22) + Ay,

where coordinates of a cell in the lattice are omitted for simplicity. The func-
tions F; represent communication between the neurons within a cell, and the
second addends in the right-hand part of equations represent communica-
tions between same-layer neurons from adjacent cells. According to this, the
CNN being investigated may be defined as a reaction-diffusion system.

In this investigation, the following functions F; were chosen as follows:
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Fi(") = azy + ayy + bys + 21,

2
Fy(:) = Bzy + cyy + dys + 23, @

where the output y; of each neuron is defined as a piece-wise linear function
of corresponding state z; and described by the following equation:

i = 5 (i + 1]~ fei 1)) 3)

It is necessary to note that, in comparison with usual mathematical
models of autowaves, the simple type of the function F; is used, but the
nonlinearity of the function is “closed”. In other words, in contrast with the
usual models of autowaves, which have the following type of the functions
F; for a two-component system:

Fy = fi(z1, z2), F = fy(zq, 22),

where the functions f; are nonlinear, in the CNN model being investigated
the functions F; are the following:

Fy = g1(z1, fi(z1), fi(z2)), F; = g3(x2, f2(z1), fa(22)),

where the functions g; are simple polinoms while the functions f; are defined
as (3).

Application of the output function (3) allows to divide the phase plane of
system (1) into nine linear regions, where standard methods [8] of analysis

may be applied. In this work, the following definitions of the linear regions
will be used:

D—+ = {(w11$2) B | S 11 T2 Z 1}3
D++ = {(33113:2) x> 1,z 2 1}?

D™ = {(z1,22): 21 <1, 23 <1},

DY~ ={(z1,22) 1 71> 1, 23 <1},

DY ={(z1,22): -1<21 <1, 23 > 1}, (4)
DY = {(z1,29): ;> 1, -1< 23 < 1},

D' ={(a1,22): —1<2; <1, 23 < -1},

D™ ={(z1,29) : 2, < -1, =1< 25 < 1},

DY ={(zy,29): -1< 2 <1, 1<z <1}

and also the following unions will be useful: D, = {D** Dt= D=+ D——}
and D, = {D'*, D D'-, D-!}.
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3. Phase plane of a neuron pair

An emergence and propagation of any distributed process in the CNN is
determined by the phase plane properties of a neuron pair and their trans-
formation as a result of intercell communications. A topological structure of
the phase plane is determined by the functions F;, while the addends Ay,
force the shift of stable points and limit trajectories during a CNN func-
tioning. Therefore, it is necessary to determine the functions F; required
for realization of a round traveling front, a round traveling pulse and spiral
waves.

In this work, the phase plane with a stable limit cycle is used as a back-
ground for construction of CNN generating round traveling front, round
traveling pulse and vortexes. Because of peculiarities of the functions Fj(-),
the well-known criteria [8] cannot be applied to determine the existence of
a stable limit cycle on the phase plane. However, continuity of trajectories
on the neuron pair phase plane and some qualitative criteria of a limit cycle
presence allow to use the following

Proposition 1. If the closed simply connected region G bounded by a cycle
C of intersection multiplicity 1 may be drawn on the phase plane around
a single unstable node or focus and all trajectories crossing C' pass into G,
then there is a stable limit cycle inside G.

3.1. Equilibrium points

To determine the coefficients of polinoms in (2), it is necessary to clarify
their influence on the types and coordinates of equilibrium points on the
phase plane. In accordance with (2), an isolated neuron pair is described by
the following system of equations

dﬂ?l
o = az; +ay; +bys + 21, _

5
de (5)
Tl Bzg + cyy + dys + 2.

Hence, each linear region D contains a single equilibrium point P with
the following coordinates:

Pt (——i-(b-a-kzl),——%(d—c-i—zz)),

ptt . (—%(a+b+zl),—%(c+ d+ zg)) ,

P (-2 -a-b),-5lm-c-d),
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Pt (—"'1"(‘1— b+ 31),—1(c—d+ 22))’

B
b+ z Cb+2’1) d-l—Zg)

a+a’ f(a+a) Jé] (6)
b(C-I— 22) a+ z Cc+ 29

(-

P (a(ﬁ+d a ’“ﬁ+d>’
(-
(-

z1—b czl—b) z9—d
a+a’ ﬁa+a) ¢} )’
b(zp — ¢) _zn-e m-c

ﬂ+d a ’_ﬁ+d)

ph . ( cz1 — (Oz+a)zz A cz1-(a+a)z2 )
' ata(ata)(f+d)—bc a+a (a+a)(8+d) -

-1 .

Having certain set of parameters a, 3, a, b, ¢, d, 21, and 2z, each equi-
librium point may be characterized either as rea,l or as virtual [7] one. An

equilibrium point may be virtual either by both coordinates X or by one of
them.

On the base of the well-known methods (see e.g., [9]), the type and

stability of equilibrium points for system (5) are defined by the roots of a
characteristic equation:

Az—/\[a+ﬂ+ 21 +ddw]+
d 1 dﬂ!g
dys dyl dyy dya
ad—— d—be = 0. 4
[aﬁ+ dog TP, Tlad=be) g o =0 )
Taking into account the fact that -L_ = {0,1}, 7 = 1,2 in accordance

with (3), it is easy to obtain characterlstu: roots for each linear region, e.g.,
A1 = a, Ay = 3 for all regions D,.

Following Proposition 1, the subarea containing an unstable node or
focus should be determined by

Proposition 2. The stable limit trajectory ezists on the phase plane of a
neuron pair iff the unstable focus or node belongs to the region DY,

This proposition may be represented by the system of inequalities:

a+B+a+d>0,

(a—B+a—d)?+4be<0. ®)

Note, that the second inequality is met iff be < 0.
Types and coordinates of all other equilibrium points required to obtain
a stable limit cycle are determined by the following
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Lemma 1. If 1) all equilibrium points in subareas D, are saddles and 2)
all equilibrium points in subareas D, are stable nodes, then the following
inequalily

oa+a— |b|+121| <0,

B—lel+d+|z <0

determines virtuality of all equilibrium points in subareas D, and D,.

3.2. Limit trajectories

The type and coordinates of the equilibrium point in each subarea of the
phase plane determine the directions of trajectories in this subarea. The
following lemmas determine the properties of trajectories in subareas D,
and D, which lead to the existance of the limit cycle on the whole phase
plane.

Lemma 2. If all subareas from D, contain only virtual stable nodes, then
in each subarea from D, it is possible to draw an arc L', which connects
opposite boundaries of this subarea and forms a closed region G' so, that all
trajectories in the subarea which intersect L' are pass into G'.

Lemma 3. If all subareas from D, contain only virtual stable nodes, then
in each subarea from D; it is possible to draw an arc L', which connects
opposite boundaries of this subarea and forms a closed region G' so, that all
trajectories in the subarea which cross L' are pass into G'.-

The following theorem defines a required condition for existence of stable
limit cycle on the phase plane of system (5).

Theorem. If the phase plane of a neuron pair described by system (5) con-
tains only virtual saddles in subareas from D, and only virtual stable nodes
in subareas from D, then a stable limit cycle exists on the phase plane.

The theorem leads to the system of inequalities which determines the
existence of a stable limit cycle on the phase plane of system (5):

a <0, B <0,
a> —a, d> -4,
(e —B+a—d)?+4bc<0, (9)
a+a—|[b]+]a] <0,
B —le|+d+ |z <0.



Formation of basic type autowave processes by a cellular neural network 89

4. Formation of autowaves

Generation of a traveling front or a traveling pulse requires to have one
or two real stable equilibrium points on the phase plane respectively. Such
points may be obtained by choosing appropriate values of variables z; in (5).
For the CNN under investigation it is possible to have only one or two such
points being a real stable nodes superposed on virtual saddles and placed
on boundaries between two adjacent regions.

An autowave emergence process is considered for two types of initial
conditions: 1) a one-cell initial condition which determines the certain values
of state variables of a single cell while all other cells are characterized by
a stable equilibria; and a whole-network random initia] condition which
determines a random initialization of state variables of all CNN cells.

4.1. Determined one-cell initial condition

The one-cell initial condition allows to consider only one direction of an
autowave emergence and only two neuron pairs placed on this direction due
to the symmetry of A; matrix. Let the cell with the certain initial values be
defined as C, and its adjacent cell as Cn. Then the required initial condition
for a round traveling front emergence in the CNN with one real stable node
placed on the boundary between regions D't and D++ on the phase plane
may be defined as the following inequality:

c

1-—
Y2,a < Dg

(1 - yle) . (10)

Such inequality may be obtained for any other combinations of regions from
D, and D,. ‘

The required initial condition for a round traveling front emergence in
the CNN with two stable nodes is similar to the previous case. The required
condition for emergence of a round traveling pulse contains one more in-
equality, e.g., y; , < 1 for the same placement of one stable node, while the
second one being placed on the boundary between regions D'~ and D+~
and may be obtained for all other valid cases.

Simulation of these two types of CNNs initiated by a determined one-
cell initial condition was done for the CNN with 149 x 149 cells with the
following values of parameters

a=-1, B=-1 a=1.5, d=15, b=1 c¢=-1

with 23 = 04, 2z = 0.5 and z; = 0.5, z3 = 0.5 for the CNN with one and
two stable nodes respectively.

Propagation of a traveling pulse and a traveling front initiated according
to the one-cell initial conditions is illustrated by the figure (a).
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a

Autowave processes obtained in the Cellular Neural Network being investigated:
a — with one-cell initial conditions, b — with random initial conditions

Based on simulation results, the following conclusions can be made:

1. The bigger is the diffusion coefficient D; the wider are fronts of au-
towaves.

2. A dependence of the autowave speed on the diffusion coefficients has
a nonlinear character and differs for the two types of CNN.

3. An annihilation of two colliding autowaves and propagation of au-
towaves through the CNN boundaries without reflection occurs.

So, the autowaves in CNN behave similarly to autowaves in physical or
chemical systems.

4.2, Random initial condition

While the determined one-cell initial condition allows to observe the emer-
gence of one autowave and to understand a possibility to control this emer-
gence process, the random initial condition is aimed to reveal
self-organization properties of the CNN.

At the random initial condition, all cell states of the 149 x 149 CNN were
set up to a random value from the range [—0.5,0.5]. All parameters of cells
were the same as in the case of a one-cell initial condition. Both types of
the CNN, namely with one real stable node and with two real stable nodes
on the phase plane of a neuron pair were simulated using the neuron pair
parameters stated above. Spiral waves obtained using the random initial
conditions are illustrated by the figure (b).

Based on simulation results, the following conclusions can be made:

1. Three types of autowave processes can be observed: a traveling round
front, a traveling round pulse and a spiral wave.
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2. In the CNN with one stable node, increasing of the diffusion coefficient
values decreases the number of spiral wave sources, which are finally
transformed into round traveling pulse sources and disappear.

3. In the CNN with two stable nodes, increasing of the diffusion coeffi-
cient values also decreases the number of spiral wave sources, which
are mostly coupled, more stable and are not transformed into traveling
pulse sources.

9. Conclusion

In this work, a formal background for the choice of parameters of CNN
generating basic types of autowaves, namely, a round traveling front, a round
traveling pulse and spiral waves, is presented. The required conditions for
emergence of the traveling front and the traveling pulse are presented for
two types of CNNs: with one stable node and with two stable nodes on the -
phase plane of a neuron pair. Simulating results show a similarity of the
autowaves in the CNN being investigated with autowaves in rea) physical
or chemical systems. The structure of the CNN presented allows to apply
the CNN for the investigation not only basic autowave processes but also
more complex ones. More over, the CNN properties allow to consider this
model as a “direct-simulation” method and to apply it as an alternative
to existing methods of investigation of complex self-organizing media. An
inherent parallelism of the CNN model allows to achjeve high efficiency in
investigation and computational modeling of many complex phenomena.
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