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 2003 NCC PublisherA parallel program for simulationof disc-shaped self-gravitating systems�A.V. SnytnikovA model of self-gravitating system is described. Present parallel programs im-plementation of such a model are reviewed in brief. Numerical algorithm is de-scribed. The parallelization technique and load balancing strategy are discussedin detail. The parameters of test computations that meet the requirements of theproblem of protoplanetary disc simulation are given.1. IntroductionThe evolution of self-gravitating systems such as galaxies and protoplanetarydiscs is of great interest to astrophysics: about 20% of the papers are devotedto this problem, as referred in [1]. The problem is essentially the N-bodyproblem in self-consistent gravitational �eld. A good approximation for thisproblem is Vlasov{Liouville kinetic equation. Together with the Poissonequation they are called the stellar dynamics equations [2]:�� = 4�G��(z); @f@t + ~vrf �r�@f@~v = 0;where � is the gravitational potential, � is the surface density, �(z) is theDirak function, f is the distribution function or phase density, ~v is particles'velocity. Here the disc is considered 
at and collisionless.An accurate solution of this system of equations requires the applicationof supercomputers. It could be clari�ed by the following estimate. Let usconsider, for example, chemical evolution in the Solar System. The most in-teresting processes take place inside Mars orbit, which is �fty times smallerthan the radius of the whole system. If we take ten nodes by the radialcoordinate for the length of Mars orbit radius, we obtain then �ve hundrednodes of the radial grid. Because the boundary conditions for the Poissonequation are to be set far from the actual boundary of the simulation do-main, the number of radial nodes is to be doubled. Furthermore, the gridcell should be approximately cubical. It means that the number of nodes by�Supported by SB RAS integration project under Grant 43, INCO-COPERNICUSprogram under Grant 97-7120, and Russian Foundation for Basic Research under Grants99-07-90422 and 02-01-00864.



74 A.V. Snytnikovsecond planar coordinate should be of the same value and by vertical coor-dinate about one half of that. Thus we have an estimate of spatial grid sizefor the present problem as 5� 108 nodes. If each node is represented by onedouble precision number, then 4 Gb RAM are needed for a grid of this size.Let us note that when the grid is increased to N times, the computationtime grows as N
 , where 
 > 1.The present work has two goals. First, the design of a program whichprovides high resolution at a reasonable worktime. Second, the achievementof good speedup and resource-to-worktime ratio. It means that at �rst wewant to perform our simulations with high precision. Moreover, the programshould work as fast as it is possible at the given amount of resources.2. Gravitational solvers reviewThere are several techniques for numerical solution of stellar dynamics equa-tions. The �rst is the direct evaluation of the particles' interaction force, theso called \particle{particle" method or P 2. This method is the most precise,but also the most time-consuming, its complexity is O(N2), where N is thenumber of particles. Evaluation of a particle's movement by this method re-quires positions of all the rest particles. Thus a simulation employing morethan 105 particles is impossible even with a supercomputer.A variant of P 2 method is the treecode, the method in which closelysituated particles are united in groups in order to treat them as one particleof corresponding mass in the gravitational force evaluation. If such forceapproximation is inaccurate, the group is divided into smaller subgroups.Decomposition of particles into groups has the shape of an octal tree, whichgives the name to the method. This method is signi�cantly faster thanP 2, its complexity being O(N logN), but less accurate. Distribution of theprocessor workload is done during the tree setting [6].According to the \particle{mesh" method, or the PM a grid is introducedin the simulation domain. Density is computed on the grid by interpolationof the particles' masses from the positions of the particles. With the givendensity gravitational potential is computed by the Poisson equation solution:generally the FFT method is employed. The force acting at a particle isevaluated by interpolation of the grid values into the particle's position. ThePM method is the fastest one, its complexity is only O(N logM), M beingthe number of grid nodes. The disadvantage of this method is that it givesadequate accuracy only for uniform systems { otherwise an extremely largenumber of particles is required. For parallelization of the method the maindi�culty is in the Poisson equation solver. If the main time is consumed bycomputation of the particles' movement it is necessary to use dynamic loadbalancing [5]. The algorithm for dynamic load balancing proposed in [7] is



A parallel program for simulation of disc-shaped self-gravitating systems 75based on the problem decomposition into a set of smaller problems whichare assigned to unloaded processors.There is a number of programs for cosmological simulation implementingP3Mmethod. This method is a combination of P2 and the PM methods: theinteraction between closely situated particles is evaluated directly, whereasthe force acting from distant particles is computed via the Poisson equation.The application of P3Mmethod to cosmological problems could be explainedby the following reason: in this case the matter is divided into isolated densesubdomains. During parallelization of the P3M method in [8] two di�erentschemes of decomposition are involved: one to compute the interaction ofparticles (P2 part) and the other to solve the Poisson equation (the PMpart). The complexity of this method varies from O(N logM), when densitydistribution is uniform, to O(N2), when the matter is strongly clumped andevaluation of particles' couple interaction takes the main time.A combination of all mentioned methods is the method called the TPM(\Treecode{Particle{Mesh") [9]. This algorithm is based on the fact thatthe density �eld could be broken into isolated dense subdomains. In eachsubdomain gravitational potential is computed via treecode, while force andpotential given by the rest of the domain are evaluated by the PM method.Since every subdomain could be treated independently the algorithm is verywell parallelized. The trees corresponding subdomains are distributed be-tween the processors to make their workload equal. Comparison showedthat the TPM algorithm works with at least the same accuracy as P3M, butmuch faster. The e�ciency of parallelization depends on clumping of thematter, that is, on the number and size of the trees. Like the previous case,the complexity of this method varies from O(N logM) to O(N logN).Table 1Method Grid size Number ofprocessors �, % Number ofparticles PaperP2 { 112 { 3�103 [10]PM 2563 64 85 16:7�106 [7]Treecode { 16 93 105 [6]P3M 10243 500 { 109 [8]TPM 5123 128 90 1:34�108 [9]A comparison of implementation parameters for above mentioned meth-ods is given in Table 1. Here the parallelization e�ciency is the ratio ofcomputation speedup to increase of the number of processors. Let T1 be theworktime on N1 processors and T2 the worktime on N2 processors. Thenparallelization e�ciency � is evaluated this way� = T1T2 N1N2 � 100%:



76 A.V. Snytnikov3. Numerical algorithm descriptionThe main di�culty in the problem of protoplanetary disc evolution simu-lation is the computation of the self-consistent gravitational �eld potential,which is determined by the Poisson equation. In order to obtain the fastPoisson equation solver the peculiarities of the problem are to be consideredand the algorithm is to be highly parallelizable. That means it must be ableto employ any desired number of processors.Let us consider the peculiarities of the problem under study. First, itis non-stationary. It means that the physical quantities like gravitationalpotential, density and velocity �eld cannot alter drastically. The thing isthe values of potential at neighboring time steps cannot be signi�cantlydi�erent. Therefore a Poisson equation solver is necessary that can take intoaccount values obtained at previous timestep. The methods which meet thisrequirement are the iterational ones. Since they are too slow a combinedsolver is o�ered which incorporates both direct and iterational methods.Second, a protoplanetary disc may be considered 
at, its thickness beingfar less than radius and density being nonzero only at the disc surface. Itmeans that the alteration of density due to particles' shift at a timestepleads to a signi�cant potential alteration only at the disc surface. Unlikethat at the points which are remote from the disc these alterations are subtleand convergence is reached much faster. Thus computation time is reducedgreatly because potential at the points remote from disc surface should notbe recomputed at each timestep.The Poisson equation is solved on a grid in cylindrical coordinate systemin order to take disc symmetry into account and rule out the non-physicalstructures appearing in the Cartesian coordinates. It has the following form1h2rri�1=2 hri(�i+1=2;k�1=2;l � �i�1=2;k�1=2;l)�ri�1(�i�1=2;k�1=2;l � �i�3=2;k�1=2;l)i+1h2'r2i�1=2��i�1=2;k+1=2;l � 2�i�1=2;k�1=2;l +�i�1=2;k�3=2;l�+1h2z ��i�1=2;k�1=2;l+1 � 2�i�1=2;k�1=2;l +�i�1=2;k�1=2;l�1� = 0;i = 1; : : : ; Imax; k = 1; : : : ;Kmax; l = 1; : : : ; Lmax � 1:where Imax, Kmax, Lmax are the numbers of nodes along radial, angular andvertical coordinates correspondingly; i, k, and l are the numbers of the nodealong these coordinates; ri�1=2 is the radial coordinate of the i-th node; hr,h', and hz are the grid steps.



A parallel program for simulation of disc-shaped self-gravitating systems 77Figure 1 shows the general scheme of the method. The �rst stage isthe Fast Fourier Transform along the angular coordinate resulting in a sys-tem of linear algebraic equations. Each of the equations describes only oneharmonic of the potential:1h2rri�1=2 hri�1Hi�3=2;l�1=2(m) + riHi+1=2;l�1=2(m)i+1h2z hHi�1=2;l�3=2(m) +Hi�1=2;l+1=2(m)i�2h2'r2i�1=2 �1 + 2 sin2 �mKmax �Hi�1=2;l�1=2(m)= 4�Ri�1=2;l�1=2(m) cos 2�kmKmax ;m = 1; : : : ;Kmax;where m is the number of harmonic or angular wavenumber, all the othersymbols have the same meaning as in the previous equation.These equations are completely inde-pendent from each other, which is themost important fact.During the second stage the two-dimensional equations are solved via Suc-cessive Over-Relaxation method. Alongthe radial coordinate the sweeping pro-cedure is applied to decrease the num-ber of iterations. When convergence isreached the inverse Fourier Transform isdone on potential harmonics at the discsurface. Figure 1. Structure of thePoisson equation solverThe Vlasov{Liouville kinetic equation is solved by Particle-In-Cell (thePIC) method. The scheme of the method is considered in detail in [4].4. ParallelizationOne of the challenges of parallelization is to minimize data exchange betweenprocessors. The considered Poisson equation solver succeeds to avoid dataexchange completely. That is because equations for potential harmonics donot depend on each other. Therefore it is possible to divide the computationdomain into completely independent subdomains along angular wavenum-bers as shown in Figure 2. Domain decomposition is uniform, each processorgains equal number of harmonics.



78 A.V. Snytnikov

Figure 2. Domain decompositionParticles are also uniformly between processors with no dependency ontheir spatial location. Since a particle could 
y to any place of the disc incourse of simulation every processor should know the potential at all thedisc surface.Interprocessor communications in the program were implemented viacollective functions of the MPI library. At each timestep data exchangeis performed twice. First, after reaching convergency potential harmonicsare gathered for inverse Fourier transform. Then the parts of density �eldcomputed at each processor are added up.5. Test computationsDebug of the program was performed at a Linux workstation with two Pen-tium III processors. All the test computations were conducted on MVS-1000M supercomputer based on Alpha 21264 processor at Siberian Super-computer Centre, Novosibirsk and at Joint Supercomputer Centre, Moscow.Parameters of some computations are given in Table 2.The plots in Figure 3 show the speedup for the test grid having 400�512�200 nodes with 2 � 107 particles. Thus for small number of processors thea b
Figure 3. Speedup on the test grid



A parallel program for simulation of disc-shaped self-gravitating systems 79Table 2Number ofprocessors Grid size Number ofparticles Worktime forone timestep, sNR N' NZ2 400 512 200 2�107 19.04 400 512 200 2�107 11.18 400 512 200 2�107 7.28 400 512 200 108 28.064 1000 1024 1000 109 141.0128 500 1024 400 108 204.064 1000 2048 800 4�108 229.8128 1000 2048 800 4�108 180.0256 1000 2048 800 4�108 177.6e�ciency of parallelization was 85% (see Figure 3a). The speedup becomessmaller as number of processors increases (see Figure 3b) and for more than128 processors almost vanishes. Such a phenomenon is easily explainedbecause the workload of the processor is not equal in fact. The assignment ofharmonics to processors is uniform, but di�erent harmonics require di�erentnumber of iterations as it is illustrated by the plot in Figure 4.The 10th timestep is shown,when the disc is nearly axysymmet-ric: few long harmonics dominate incomputation time. Density distribu-tion initially has the axial symmetry.Therefore after the FFT only 0thharmonic is not equal to zero. Con-vergence for all the rest harmonics isreached in one iteration. It is clearthat on the �rst timestep only one Figure 4processor is working. In the course of simulation the symmetry is being lostand it requires time to compute all the harmonics. Still the long harmonicsrequire more time than short ones.It should be noted that speedup is di�erent for di�erent grids. On theplot above the di�erence in worktime between 64 and 128 is only 2%. Whenthe grid gets larger the computation time grows faster than communicationtime. The same di�erence for a larger grid with 1000 � 2048 � 800 nodes(see Table 2) is 10%.6. Dynamic load balancingThe problem of load imbalance due to di�erent condition numbers of dif-ferent harmonics could be solved in the following way. Minimal worktime



80 A.V. Snytnikovis achieved when the harmonic requiring maximal number of iterations isthe only workload a processors. Let us call the workload of this processormaximal. Furthermore, the workload of all the rest processors should notexceed the maximal one.Thus the load balancing procedure could be obtained this way. After�nishing all the iterations in each processor the most loaded one is found.Then the harmonics are transferred from it to the least loaded processorwhile such a relationship of workloads remains. That is, when the receiveris no more the least loaded, a new receiver is found if the sending processoris still overloaded.

Figure 5. Comparison of speedup forstatic load setting (thin line) and fordynamic load balancing (thick line)

The disadvantage of this ap-proach is clear: balancing is made forthe past step, because the number ofiterations becomes known only whenthe computations are over. However,one can rely on that the number ofiterations for each harmonic will notdi�er greatly at adjacent timesteps.It means that load balancing could bemade in the above described manner.The plot in Figure 5 showsthe speedup for several adjacenttimesteps of a simulation (from 300thto 312th step) with dynamic load bal-ancing and with static load setting.7. ConclusionConducted were the computations with parameters meeting the require-ments of the problem of protoplanetary disc simulation. These computa-tions make it possible to state that the designed program is competitivewith world analogues. Parallelization e�ciency is 75% up to 32 processorswhich is due to non-uniform processor workload. Whereas the dynamic loadbalancing increases the speedup close to the ideal value, and thus greatlyimproves e�ciency.Acknowledgements. I would like to thank my supervisors V.E. Malyshkinand, especially, V.A. Vshivkov.References[1] Ellis R. Galaxy formation and evolution: recent progress // Lectures in theXIth Canary Islands Winter School on Astrophysics, 2001.
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