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A parallel program for simulation
of disc-shaped self-gravitating systems*

A.V. Snytnikov

A model of self-gravitating system is described. Present parallel programs im-
plementation of such a model are reviewed in brief. Numerical algorithm is de-
scribed. The parallelization technique and load balancing strategy are discussed
in detail. The parameters of test computations that meet the requirements of the
problem of protoplanetary disc simulation are given.

1. Introduction

The evolution of self-gravitating systems such as galaxies and protoplanetary
discs is of great interest to astrophysics: about 20% of the papers are devoted
to this problem, as referred in [1]. The problem is essentially the N-body
problem in self-consistent gravitational field. A good approximation for this
problem is Vlasov—Liouville kinetic equation. Together with the Poisson
equation they are called the stellar dynamics equations [2]:

A® = 4nGX5(2), % +IVF— V@% =0,

where ® is the gravitational potential, 3 is the surface density, §(z) is the
Dirak function, f is the distribution function or phase density, v is particles’
velocity. Here the disc is considered flat and collisionless.

An accurate solution of this system of equations requires the application
of supercomputers. It could be clarified by the following estimate. Let us
consider, for example, chemical evolution in the Solar System. The most in-
teresting processes take place inside Mars orbit, which is fifty times smaller
than the radius of the whole system. If we take ten nodes by the radial
coordinate for the length of Mars orbit radius, we obtain then five hundred
nodes of the radial grid. Because the boundary conditions for the Poisson
equation are to be set far from the actual boundary of the simulation do-
main, the number of radial nodes is to be doubled. Furthermore, the grid
cell should be approximately cubical. It means that the number of nodes by
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second planar coordinate should be of the same value and by vertical coor-
dinate about one half of that. Thus we have an estimate of spatial grid size
for the present problem as 5 x 10® nodes. If each node is represented by one
double precision number, then 4 Gb RAM are needed for a grid of this size.
Let us note that when the grid is increased to N times, the computation
time grows as N7, where v > 1.

The present work has two goals. First, the design of a program which
provides high resolution at a reasonable worktime. Second, the achievement
of good speedup and resource-to-worktime ratio. It means that at first we
want to perform our simulations with high precision. Moreover, the program
should work as fast as it is possible at the given amount of resources.

2. Gravitational solvers review

There are several techniques for numerical solution of stellar dynamics equa-
tions. The first is the direct evaluation of the particles’ interaction force, the
so called “particle-particle” method or P2. This method is the most precise,
but also the most time-consuming, its complexity is O(N?), where N is the
number of particles. Evaluation of a particle’s movement by this method re-
quires positions of all the rest particles. Thus a simulation employing more
than 10° particles is impossible even with a supercomputer.

A variant of P? method is the treecode, the method in which closely
situated particles are united in groups in order to treat them as one particle
of corresponding mass in the gravitational force evaluation. If such force
approximation is inaccurate, the group is divided into smaller subgroups.
Decomposition of particles into groups has the shape of an octal tree, which
gives the name to the method. This method is significantly faster than
P2, its complexity being O(N log N), but less accurate. Distribution of the
processor workload is done during the tree setting [6].

According to the “particle-mesh” method, or the PM a grid is introduced
in the simulation domain. Density is computed on the grid by interpolation
of the particles’ masses from the positions of the particles. With the given
density gravitational potential is computed by the Poisson equation solution:
generally the FFT method is employed. The force acting at a particle is
evaluated by interpolation of the grid values into the particle’s position. The
PM method is the fastest one, its complexity is only O(N log M), M being
the number of grid nodes. The disadvantage of this method is that it gives
adequate accuracy only for uniform systems — otherwise an extremely large
number of particles is required. For parallelization of the method the main
difficulty is in the Poisson equation solver. If the main time is consumed by
computation of the particles’ movement it is necessary to use dynamic load
balancing [5]. The algorithm for dynamic load balancing proposed in [7] is
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based on the problem decomposition into a set of smaller problems which
are assigned to unloaded processors.

There is a number of programs for cosmological simulation implementing
P3M method. This method is a combination of P? and the PM methods: the
interaction between closely situated particles is evaluated directly, whereas
the force acting from distant particles is computed via the Poisson equation.
The application of P3M method to cosmological problems could be explained
by the following reason: in this case the matter is divided into isolated dense
subdomains. During parallelization of the P2M method in [8] two different
schemes of decomposition are involved: one to compute the interaction of
particles (P? part) and the other to solve the Poisson equation (the PM
part). The complexity of this method varies from O(N log M), when density
distribution is uniform, to O(NN?), when the matter is strongly clumped and
evaluation of particles’ couple interaction takes the main time.

A combination of all mentioned methods is the method called the TPM
(“Treecode-Particle-Mesh”) [9]. This algorithm is based on the fact that
the density field could be broken into isolated dense subdomains. In each
subdomain gravitational potential is computed via treecode, while force and
potential given by the rest of the domain are evaluated by the PM method.
Since every subdomain could be treated independently the algorithm is very
well parallelized. The trees corresponding subdomains are distributed be-
tween the processors to make their workload equal. Comparison showed
that the TPM algorithm works with at least the same accuracy as P*M, but
much faster. The efficiency of parallelization depends on clumping of the
matter, that is, on the number and size of the trees. Like the previous case,
the complexity of this method varies from O(N log M) to O(N log N).

Table 1
Method Grid size Number of & % Numl.)er of Paper
processors particles

p? - 112 - 3x10° [10]
PM 256° 64 85 16.7x10° [7]
Treecode - 16 93 10° [6]
P3M 10243 500 - 10° 8]
TPM 512° 128 90 1.34x108 [9]

A comparison of implementation parameters for above mentioned meth-
ods is given in Table 1. Here the parallelization efficiency is the ratio of
computation speedup to increase of the number of processors. Let T7 be the
worktime on N; processors and 75 the worktime on NNy processors. Then
parallelization efficiency ¢ is evaluated this way

Ty Ny

21 100%.
£= gy, < 100%
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3. Numerical algorithm description

The main difficulty in the problem of protoplanetary disc evolution simu-
lation is the computation of the self-consistent gravitational field potential,
which is determined by the Poisson equation. In order to obtain the fast
Poisson equation solver the peculiarities of the problem are to be considered
and the algorithm is to be highly parallelizable. That means it must be able
to employ any desired number of processors.

Let us consider the peculiarities of the problem under study. First, it
is non-stationary. It means that the physical quantities like gravitational
potential, density and velocity field cannot alter drastically. The thing is
the values of potential at neighboring time steps cannot be significantly
different. Therefore a Poisson equation solver is necessary that can take into
account values obtained at previous timestep. The methods which meet this
requirement are the iterational ones. Since they are too slow a combined
solver is offered which incorporates both direct and iterational methods.

Second, a protoplanetary disc may be considered flat, its thickness being
far less than radius and density being nonzero only at the disc surface. It
means that the alteration of density due to particles’ shift at a timestep
leads to a significant potential alteration only at the disc surface. Unlike
that at the points which are remote from the disc these alterations are subtle
and convergence is reached much faster. Thus computation time is reduced
greatly because potential at the points remote from disc surface should not
be recomputed at each timestep.

The Poisson equation is solved on a grid in cylindrical coordinate system
in order to take disc symmetry into account and rule out the non-physical
structures appearing in the Cartesian coordinates. It has the following form

1

m [Ti(¢i+1/2,k71/2,l =@ 198-1/2,0) —
rli—

ri1(®i 1281720 — ¢i73/2,k71/2,l)] +
1

2
hyri /2
1

72 (¢i71/2,k71/2,l+1 = 2% q9k 1/20F @i71/2,k71/2,l71) =0,
z

(¢i71/2,k+1/2,l —2®; y9k 1/20 T ¢i71/2,k73/2,l) +

i=1,....Ipaxy, k=1,..., Kmax; 1=1,..., Linax — 1.

where Iinayx, Kmax, Lmax are the numbers of nodes along radial, angular and
vertical coordinates correspondingly; ¢, k, and [ are the numbers of the node
along these coordinates; r;_; /5 is the radial coordinate of the i-th node; h,,
hy, and h, are the grid steps.
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Figure 1 shows the general scheme of the method. The first stage is
the Fast Fourier Transform along the angular coordinate resulting in a sys-
tem of linear algebraic equations. Each of the equations describes only one
harmonic of the potential:

1
h72~’°i71/2
1

h2

{Ti71Hi73/2,zf1/2(m) + Tin'+1/2,171/2(m)} +

[Hi71/2,l73/2(m) + Hi71/2,1+1/2(m)} -

. m
TE IR [1 + 25sin? ]Hi1/2,11/2(m)
<Pri71/2 max

2km
=A4mR; 131 1/2(m) cos ,

m=1,..., Kmax,

where m is the number of harmonic or angular wavenumber, all the other
symbols have the same meaning as in the previous equation.

These equations are completely inde-
pendent from each other, which is the
most important fact.

During the second stage the two-
dimensional equations are solved via Suc-
cessive Over-Relaxation method. Along
the radial coordinate the sweeping pro-
cedure is applied to decrease the num-
ber of iterations. When convergence is
reached the inverse Fourier Transform is
done on potential harmonics at the disc
surface.

Figure 1. Structure of the
Poisson equation solver

The Vlasov-Liouville kinetic equation is solved by Particle-In-Cell (the
PIC) method. The scheme of the method is considered in detail in [4].

4. Parallelization

One of the challenges of parallelization is to minimize data exchange between
processors. The considered Poisson equation solver succeeds to avoid data
exchange completely. That is because equations for potential harmonics do
not depend on each other. Therefore it is possible to divide the computation
domain into completely independent subdomains along angular wavenum-
bers as shown in Figure 2. Domain decomposition is uniform, each processor
gains equal number of harmonics.



78 A.V. Snytnikov
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Figure 2. Domain decomposition

Particles are also uniformly between processors with no dependency on
their spatial location. Since a particle could fly to any place of the disc in
course of simulation every processor should know the potential at all the
disc surface.

Interprocessor communications in the program were implemented via
collective functions of the MPI library. At each timestep data exchange
is performed twice. First, after reaching convergency potential harmonics
are gathered for inverse Fourier transform. Then the parts of density field
computed at each processor are added up.

5. Test computations

Debug of the program was performed at a Linux workstation with two Pen-
tium III processors. All the test computations were conducted on MVS-
1000M supercomputer based on Alpha 21264 processor at Siberian Super-
computer Centre, Novosibirsk and at Joint Supercomputer Centre, Moscow.
Parameters of some computations are given in Table 2.

The plots in Figure 3 show the speedup for the test grid having 400x 512 x
200 nodes with 2 x 107 particles. Thus for small number of processors the

a h
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Figure 3. Speedup on the test grid
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Table 2

Number of Grid size Number of Worktime for
processors Ng N, Ny particles one timestep, s

2 400 512 200 2x107 19.0

4 400 512 200 2x107 11.1

8 400 512 200 2x107 7.2

8 400 512 200 108 28.0

64 1000 1024 1000 10° 141.0

128 500 1024 400 108 204.0

64 1000 2048 800 4x108 229.8

128 1000 2048 800 4x108 180.0

256 1000 2048 800 4x108 177.6

efficiency of parallelization was 85% (see Figure 3a). The speedup becomes
smaller as number of processors increases (see Figure 3b) and for more than
128 processors almost vanishes. Such a phenomenon is easily explained
because the workload of the processor is not equal in fact. The assignment of
harmonics to processors is uniform, but different harmonics require different
number of iterations as it is illustrated by the plot in Figure 4.
The 10th timestep is shown,
when the disc is nearly axysymmet- 1000

ric: few long harmonics dominate in “g’ )
computation time. Density distribu- & 00
tion initially has the axial symmetry. & 104

Therefore after the FFT only 0Oth
harmonic is not equal to zero. Con- 1

T
vergence for all the rest harmonics is . 10 100
. . . . Wavenumber
reached in one iteration. It is clear
Figure 4

that on the first timestep only one
processor is working. In the course of simulation the symmetry is being lost
and it requires time to compute all the harmonics. Still the long harmonics
require more time than short ones.

It should be noted that speedup is different for different grids. On the
plot above the difference in worktime between 64 and 128 is only 2%. When
the grid gets larger the computation time grows faster than communication
time. The same difference for a larger grid with 1000 x 2048 x 800 nodes
(see Table 2) is 10%.

6. Dynamic load balancing

The problem of load imbalance due to different condition numbers of dif-
ferent harmonics could be solved in the following way. Minimal worktime
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is achieved when the harmonic requiring maximal number of iterations is
the only workload a processors. Let us call the workload of this processor
maximal. Furthermore, the workload of all the rest processors should not
exceed the maximal one.

Thus the load balancing procedure could be obtained this way. After
finishing all the iterations in each processor the most loaded one is found.
Then the harmonics are transferred from it to the least loaded processor
while such a relationship of workloads remains. That is, when the receiver
is no more the least loaded, a new receiver is found if the sending processor

is still overloaded.
The disadvantage of this ap-

4- proach is clear: balancing is made for
-/\/v\—_\ the past step, because the number of
iterations becomes known only when
a the computations are over. However,
—%’3_ one can rely on that the number of
g, iterations for each harmonic will not
. -~ differ greatly at adjacent timesteps.
It means that load balancing could be
9 . : made in the above described manner.
300 305 310 The plot in Figure 5 shows
Timestep :
the speedup for several adjacent
Figure 5. Comparison of speedup for  timesteps of a simulation (from 300th
static load setting (thin line) and for  to 312th step) with dynamic load bal-
dynamic load balancing (thick line) ancing and with static load setting.

7. Conclusion

Conducted were the computations with parameters meeting the require-
ments of the problem of protoplanetary disc simulation. These computa-
tions make it possible to state that the designed program is competitive
with world analogues. Parallelization efficiency is 75% up to 32 processors
which is due to non-uniform processor workload. Whereas the dynamic load
balancing increases the speedup close to the ideal value, and thus greatly
improves efficiency.
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