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The computing schemes
of non-stationary electromagnetic
fields FEM modeling in mediums
with three-dimensional inhomogeneity

Y.G. Soloveichik, M.E. Royak

Finite element non-stationary eléctromagnetic fields modeling technique is pro-
posed. 1t permits to decrease computing expenses of three-dimensional problem
solving. This technique is implemented in program complex TELMA, its efficiency
is confirmed by solving significant number of both modeling tasks, and complicated
practical problems.

1. Introduction

Now the finite element method (FEM) is widely applied in three-dimensional
mathematical modeling of non-stationary electromagnetic fields. FEM ad-
vantages, main of which is the ability to use essentially irregular meshes with
minimum number of so-called “unnecessary” nodes, have much expanded a
range of electromagnetic problems, accessible for the numerical solving.

However, there is sufficiently wide class of electromagnetic problems,
for which the solving of describing differential system of equations using
the standard computing finite element schemes requires very large comput-
ing expenses. It results or in very large cost, or even in impossibility of
the finite element solving of important practical problems. To such prob-
lems it is possible to attribute the absolute majority of three-dimensional
problems of electromagnetir earth logging, and also many other problems
of electromagnetic field propagation in such mediums, where influence of
three-dimensional distortion is not too large in comparison with meaning of
fundamental two-dimensional (axially symmetric) field, but must be calcu-
lated with sufficiently high accuracy. The proposed finite element modeling
technique permits to lower computing expenses of such type problems solv-
ing in 10-100 and more times and thereby these problems become accessible
for solving on not powerfull computers. This technique is implemented in
program complex TELMA, its efficiency is confirmed by solving significant
number of both modeling tasks, and complicated practical problems.
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2. Mathematical models of investigated fields

To describe three-dimensional non-stationary electromagnetic fields we sha]l
use Maxwell’s equatlons system [1] in the form of:
rotﬁ=f+aﬁ+ea——E, rotE=-~a—B, div§=0. (1)
ot at
where H - magnetic field strength, J — outside current density vector (stim-
ulating an electromagnetic field), ¢ - medium conductivity, E - electrical
field strength, ¢ — medium dielectric constant coefficient, ¢ — time, B - mag-
netic field induction (dependent on A by relation B = pH), i - permeance
coefficient.

Depending on electromagnetic field behavior nature, determined basi-
cally by a way of field stimulation, by investigation time range and by values
of coefficients y, o and ¢, the system of equations (1) can be converted to
more convenient for numerical modeling form. When displacement currents

SE can not be ignored or coefficient y distinguished from vacuum perme-
ance #o (i.e., medium is non-homogeneity on p) it is possible to use for
electromagnetic field calculation the equation

1 o 0FE &E o]
xot(; rot‘E) +"_Ef‘"a_t? =2 (2)

If 4 is a function of H (t) (i.e., there are objects with nonlinear by per-
meance characteristics in calculatlon area), the system of equations (1) can
be converted to the form, similar to (2):

94 924 .

1 =
rot(; rotA) +o0— + €T = J, (3)

%
where A - vector-potential, determined by the relations

B=rotd, E=--—". (4)

It is obvious that when equation (2) is valid (i.e., coefficients y, o and
€ do not depend on' time), it can be easily received from equation (3) by
differentiation on ¢ (and by replacement of 3A/dt by —E), i.e., equation (2)
is actually a consequence of equation (3). Equations (2) and (3) practically
coincide by form and therefore the numerical integration procedures for them
are also identical. Thus, it would be possible to consider only more general
equation (3), but in some cases equatlon (2) appears more convenient: for
example, if electric field intensity E or time derivative of magnetic induction
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B com ponent are investigated, then it is not necessary to differentiate the
received numerical solution on time.

And, at last, let us consider a situation often occurs in practice, when
the displacement currents can be ignored, permeance coefficient y = 1o,
(o — permeance coefficient of vacuum), and the conductivity o is equal to
zero at considerable calculation area part. The elimination of displacement
currents from the first equation of system (1) reduces it to the form

rot H = J+oE. - (5)
When 1 = po, relation (5) accepts the form

L rot B=J + oF. (6)
o

Introduction of vector-potential A and scalar potential V using relations

-

E:rot/f, E’:—-%:;—gradv _ (7)

permits to convert the system of equations (6), and system (1) of second
and third equations to the form

1, - A - - :
—H—OAA-F-O‘(—-—at +grgdv) =7, (8)
| —div(o grad V)—div(aa'—;f) = —div J. (9)
ot/ "

3. Computing scheme for case
of essential displacement currents’ influence
or permeance inhomogeneous medium

3.1. Modeling technique

Let an electromagnetic field be described by equation (5), where coefficients
i, o and ¢ are some three-dimensional functions of coordinates and, proba-
bly, of time. Let us choose approximation 4%, ¢° and € for original coeffi-
cients p, o and ¢, so that these approximation were one- or two-dimensional
functions of coordinates in any (for example, cylindrical) coordinate sys-
tem and differed from original coefficients only in those calculation area 0
parts, where three-dimensional objects are given. Let us designate through
J 0 appropriate two-dimensional (for cylindrical system of coordinates — ax-
ially symmetric) approximation of outside currents J, and through J+ -
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three-dimensional part of outside currents. Note, that in mest cases out-
side currents are axially symmetric and thereby, when cylindrical coordinate
system is used for two-dimensional approumatlon JO=Jand J* =0.

Let us represent vector potential A as a sum of two vector-potentials
A = A° + A+, where A° - vector-potential, meeting the equation

dA° 92A0
oYs L0 —_ jo
ot te ot? I

rot(‘—tl— rot A ) +0o (10)

and A+ - vector-potential, meeting the equation

At 2 4+
rot(‘l—t rotA+) +a%+€a(9t2
11 dA° 92 A°
T+ I A0\ _ _ Y
=J -I-rot(('u N) rotA.) (? o) a5t (€ — @) —5- FTOR (11)

In equation (11) A° is considered as known vector-function, found as a
solution of equation (10). It is not difficult to be convinced .that then vector-
potential A = A%+ A* will satisfy equation (3): for this purpose it is enough
to combine equations (10) and (11).

Representation of the solution of (3) as a sum of the solutions A° of
(10), defined in two-dimensional (as a rule, axially symmetric) area Q°, and
of the solution A+ of (11), defined in the original three-dimensional area 2,
in many cases permits to increase significantly the accuracy of numerical
calculation and simultaneously decrease the computing expenses in compar-
ison with numerical solving of equation (3) directly. It is reached because
vector-potential A° can be calculated with much higher accuracy and with
considerably small computing resource expenses by reduction of its deter-
mination dimension. If the main part of a total field A is concentrated in
two-dimensional field AD, then the field A+ (which can be interpreted as
a field of three-dimensional objects’ influence) can be calculated with high
accuracy on three-dimensional mesh with much smaller number of nodes in
comparison with number of nodes in three-dimensional mesh, that is nec-
essary to solve houndary value problem for original equation (3) with the
same accuracy.

Let us consider the following peculiarity of system of equations (10)—(11)
more closely. As stated above, the main advantage of the numerical solution
of system of equations (10)-(11) in comparison with numerical solution of
(3) is that dimension of vector-potential A® domain of definition for 10) in
comparison with dimension of vector-potential A domain of definition for
(3) can be reduced. But all functions forming equation (11) (and A? also)
should be defined in three-dimensional area 2. Thus, in equations (10) and

v
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(11) vector-potential A?, in general, has different domain of definition. The
solution of (10) is a vector-function or even scalar (when vector A° has only
one non-zero component) function of two coordinates (as a rule, coordinates
z and r of cylindrical coordinate system); defined in area Q°. But the part of
(11), vector-function A°, is a function of three coordinates, defined in area
§2. It should be received from the solution of two-dimensional equation (10) -
by recalculation on conformity of two-dimensional area Q° points to origi-
nal three-dimensional area Q points and on conformity of vector-functions’
- components in various coordinate systems. Similarly, coefficients u°, o° and
€. and currents J° have different domains of definition in equations (10)
‘and (11), but the recalculation procedure for them is not necessary. Ex-
ception can be only coefficient 1O, if 40 is a function of BY = rot A, then
recalculation of u? is similar to recalculation of one A° component. .

Let us note another very important peculiarity of equation (11). The ba-
sic source members in equation (11) differ from zero only in those subareas of
area (2, where the medium characteristics 4°, ¢%and ¢, defined the problem
for vector-potential A® (see (10)), differ from correspondent medium char-
acteristics 4, o and ¢ of original problem. It is the cardinal advantages of
considered modeling technique. Actually the sources of a three-dimensional
field [l‘f are three-dimensional objects in original area £, and difficultly ap-

- proximated abrupt changes derivative is absent in the solution A+ of (11).

3.2. Time apprqximatiqn and equivalent variational
formulation of three-dimensional problem

- Befdfe- receiving ‘equivalent variational formulation of boundary value prob-
lem for (11), let us transform it. Taking into account identity -
'rotg.(/\ rotG) = - div (X grad G) + d_i_v(.\ %?—) ,

‘ ,the'veétbr’ equation (11) can be converted to the form:

Y N
V—QIV(EgI’a,dAC)‘+le(; 3¢ )+.a ar +e FTe
- 1 0 ' 1 1,84°
-t -av (- o) (- H%F) -
HA° 9240
(0= 0%) 5 — (e~ )%, (12)

7 where £ - one of variables T,y or z. C
Let us approximate equation (12) on time. Let t; be a value of time
t, defined current time layer. Through U/ we designate value of vector-
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potentlal At onj time layer, through Wi - va‘lue of vector-potentlal A on
J time la.yer ie. , o ] - - :

B = At W)= Pense). 09

- We consider only compiet.ely iniplicit bLht:lllEb, l(-.', wheu d.ppl‘UhluId.Le ol
equation (12) on time on _k time layer, in all members of this equa,tlon not
containing time denvatnve, we take component of vector-functions’ At, A°
Jt values at t = ty. For apprommamon of equation 12) items, containing
time derivative, besides values A*-and’ A° on current (k) time’ layer we use
their values on two or three previous time layers.

The time approximation usmg two previous time la.yers ti—; and tk_z, ’
we carry ‘out as follows. Let us designate through 7y £(t), ﬂ2(t) and 75(t).
qua,dratlc polynomlal of va.rlable t on interval (tx—z,tk):

7:',(1t)*“ﬂﬁJri’i‘kt+f-"‘ltz S (14),

These polynorma.l fa,ctor ak (t), b%( t) and cf(t) values should be ca,lcula,ted
to satlsfy the. followmg equa,htles .

Uk (tk- )—51'1, U.(tk 1)*‘ 25 ﬂf(tk): ;'3, 551‘23 i :(15)

' where 531 = Kroneeker symbol Polynomlal w:ll be used to repla.ce a,ppmx—
“imated. functlons u(z y, Z; t) on tlme mterva.l (tk_,g,tk) by thelr quadratlc
mtel'polater LT T . .

(.’L y,z t) = u(¢,y,.. tk_.g)ql( j"'?“(f‘”",;t/"‘.z*".k—l}réu)‘+;
| ey n Q). e

Really, the functlon u(:c,y,z t) is -quadratic polynomlal on time and -
coincides with approximated function u(x,y, z t) att =tg_o, t =4x_; and
t = t; (it follows from deﬁmtlon of functions nf(t), see (14)-(15)).

Replacing A* and AP values i in (12) hy thelr quadratic time interpolaters
in all members, coutammg A"” and A® time derivative, and’ taking into
accourit des:gnatmns {13), we receive - equation for ca.lcufa.tlon of vector-
- function A+ component -values on k time layer

— —d'iv( grad UE) +d1v(

‘_- k-1 - . 1 7 1y P k ‘
= JE -—BFI | —'yU _. —4d1v((}?~<—;$—)gradwg)l-{_-

1- 10 awk Lk N -. k’-z. E
dw((”g ;) BE_)+Q'W€ +ﬁW£ _-|\—7WE 2 (1?)
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where £ - one of the variables z, y or z, and a, 3, gamma, &, 3, and ¥ — some
constants, which are the values of polynomial 9 (t) derivative at ¢ = ;.
Unknowns in equation (17) are only the components U,’f,U;‘ and U¥ of

vector-function U¥, all vector-functions, belonging to the right-hand side of
this equation, are considered given (vector-functions U*~1 and {7*-2 should
be received by solving similar equations on previous time layers or from ini-
tial conditions, and vector-functions W*, Wk-1 and Wk-2 - by recalculating
of boundary value problem for equation (10) solution).

Similarly to the above-statéd time approximation of equation (12) us-
ing three-layered scheme, approximation of this equation using four-layered
scheme can be carried out. For construction of four-layered scheme on &
time layer 4 functions nf(t), nk(t), n(¢) and n%(t) are introduced, which are
cubic polynomial of variable ¢ on interval (tk=3,tk).

Note, that the above-stated completely implicit three- and four-layered
schemes have very good time approximation accuracy and thus do not give
oscillation of the numerical solution at transition from one time layer to
another (the same as completely implicit two-layered scheme, used for the
solving of parabolic type equations). It makes their more preferable in com-
parison with other implicit two- and three-layered schemes (including the
frequently used Crank-Nicholson scheme [2, 3]), used for finite difference
approximation of differential equations of parabolic and hyperbolic types.

To receive the equivalent variational formulation of boundary value prob-
lem for equation (12), let us multiply it by sampling function ¥(z,y, 2), in-
tegrate over area {2 and apply to items with operation div Green’s formula
(integration by parts). As a principle of large volume is used, the sampling
function ¥ is equal to zero on external boundary S of calculation area .
As a result for equation (17) we receive equivalent variational equality

1 - /’15‘0.; / k
—_ ¥ f . ‘ad —— _——_— .
_L‘ugna.d(‘E grad ¥ dQ2 T grad ¥ d? + QaUE‘I’dQ

1 1 : ‘ 1 1,\0W}
= [ (L - Y oraqawr. adlIJdQ—/ — - )2 ad v dn
fn(‘ug p)gra ¢ &l Q(‘uo u) 5 gr +
A (Je = BUEY = yUE2 + aWE 4 W 45D wda,  (18)

where sampling function ¥ - any element of Hilbert’s space H§ of functions,
defined in three-dimensional area Q, having square summable first derivative
and became zero on boundary S of area Q.
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3.3. Calculation of matrices and right part vectors of finite
element SLAE

" Let us consider that the area Q is decomposed into tetrahedral finite ele-
ments. Let us receive the contributions of one finite element £,, to compo-
nents of matrix and right part vector of finite element SLAE. When tetrahe-
dral finite elements and piecewise linear basic functions used, on one finite
element only four basic functions ¥; are differ from zero, each of which is
equal to 1 in one of tetrahedron €,, vertex; which is ¢ node of finite element
mesh, and to zero in all other vertexes of §,,. Let us introduce local vertex
numbering on Q,,. Let us designate through vy, 13, ¥3 and 1,4 local basic
functions on ﬁmte element ,,

Through §; = (qj,qj g;) we designate local basic. functlons weights

. in representation of desired vector-function ¥ = (U, UF,U¥) as a linear
combination of basic functions #; on finite element Q.. ie.,

4
Uklnm - Z if’l’;
: =1

To calculate finite element Q,, local matrix, let us replace integration
area § in equa,tlon (18) with finite element £,,, desired vector- function U
with its local basic functions decomposmon on Q,,, and sampling function -
with one of local basic functlons P, l = L4 Then let us transform left- -
hand side of equa,tlon (18) for & = a: ‘

4 B

,/;;m ;_g.rad (Z qfr ) -grad ¢y dQ - |
fa,; %Bi(i: ’/’) gfad@btdﬂ+f Zqﬂlb)'/):dﬂ |
[l 040w | Budy, o
=. /5.2'_“ l{[ (8;1:! a"’i.? +3_?£‘1—)+ Q¢J¢IJQJ -

s -

J:“
10y 0¢; , O Oy, z}
'uay_c'i‘:cq’__a_z ds?.
The similar transforniations are carried out for y and z.
Let us designate _

, QY% | vy Iy

- . TT __ v U¥i
a —n/nm i dd _/,,. (314 3y * 9= 9- )dg' (20)

Y = / 1 37/# a"»bj dQ - c_z;z — __f 1 31;[’1' a’d’g da.
b am 1 Oy Oz T nmﬂaz 9z
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Let us dfaﬁne <ty e cf,f » €FF, ca-y, cf? simiiarl_y. Through blocks-elements
€i; and dj; we designate matrices, consisting of elements (20):

T LY Z
ly ¢ cf

_ d,'_," 0 0 B
a; = . cﬁ?. cﬁ" C?; vy ody =1 0 dj 0 . (21)

Let us consider that coefficient a is a constant on finite element Q. (since
practically in all applied problems coefficients o and ¢ are really piecewise
constant functions of space variables). Then, taking into account designa-
tions (20), the contributions (19) in finite element SLAE from finite element
0 can be written. as follows:

4 .
D (@i+ ady;) g;, I=1,...4. (22)

=1

- Thus, the finite element Q,, local matrix is a sum- of local matrices of
rigidity ¢ and of mass d, consisting of block-component as (21) with elements,
determined by formulas (20). ST

When Piecewise linear basic functions used, it is possible to consider
-permeance coefficient y as constant inside each finite element Q,,. Therefore
the value of 1/4 in relation (20) can be exported from integral and the local
rigidity matrix  can be represented as ¢ = ﬁj.' : R -

'_To calculate a loca) rig'ht part vector of finite element Q,, (i.e., contribu-
tions to FEM SLAE right part vector components from finite element ),
it is necessary to replace integration area at right-hand side of equation (18)
with finite element Q,, sampling function ¥ — with one of local basic func-
tions ¢, = 1,...,4, and vector-function 1 and first factors of integrand
functions of equation (18) right-hand side latter items — with their basic
functions ;- decomposition: - o SRR o

WR:Z@%_V  (23)

-4
J%l', , } .
o : L S 4
(J- ur-1_ YOR2 4 Gt 4 ikt W) =36y, (24)
o ™ i=1

It is not difficult to be convinced that, taking into account decomposition .
(23), contributions of a finjte element Q,, to local right part vector f } from
the first of two equation (18), the right-hand side items can be- calculated
through local rigidity matrices g: : e
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_.Il ( )Zgbwr | (25)

=1

- The contributions to the local right part vector from equation (18) right-
hand side latter items using decomp031t10n (24) are easily calculated through
local weight matrlces d: :

4 :
ZJJ-EJ--, (@

Thus, the local matrix P and the rlght pa,rt vector f of ﬁmte element Q,,
are deﬁned as.

-=e+ad" f=f’+f2 @7

As follows from determining p relations (20) and (27), the local matrix is

- symmetric. Really, all diagonal block- elements Py are symmetric matrices,

and for off-diagonal block-elements f; = p,J equality is valid. Therefore

" the FEM SLAE global matrix P, assembled from such local matrices, is

symmetric too. In addition, memory location quantity, necessa,ry for store
~ only non- zero matrlx P components, is defined as:

k= 9k + 6k, (@

where kg ~ number of matrix P diagonal elements (equal to number of
nodes in finite element mesh), k;, — number of off-diagonal elements in FEM
SLAE matrix bottom or top) trla,ngle s portrait for any scalar boundary
value problem solved on considered- finite element mesh, if this matrix is
represented in spa,rse row format [4] :

4. Computmg scheme for the case of negligible
displacement of current’s influence
and permeance homogeneous medium

4.1. Modelmg techmque

As original mathematical model, descnbmg an electromagnetlc field with
negligible displacement of current’s influence in permearce homogeneous
medium, we consider the system of equations (8)-(9). As well as in previous
section, we look for solution (A V) of the equations system (8)-(9) as a sum
“of two solutions: solution (A°, V9) of two-dimensional (axially symmetric)
boundary value problem for the equation system :
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Va0, jo/0A° 0) _ jo
— AR 4o (—(?-F-xrgradv)—J : (29)
= div(0®grad V°) - div (a"%AT) = F°, (30)

and solution of three-dimensional boundary value problem for the system of
equations _

. 0y 0A° . 0 0] 4 i+
=d1v[(o‘-—a )?t—]-f—dlv[(q—-a ) grad VO] + F+ (32)
where :
Fo=—divi®  p+—_gpy J*t. (33)

Vector-potential A° and’ scalar potential V© in the equatjon system
(31)-(32) are considered known functions, found as solution of the system
of equations (29)—-(30). ' .

It is not difficult to be convinced that vector-potential A = 4+ + A and
scalar potential V0 satisfy the system of equations (8)—(9). For this purpose
it is enough to combine equation (29) with (31), equation (30) - with (32)
and to take into account designation (33). ' o _

The representation of the solution of the system of equations (8)-(9) as
a sum of solutions of (29)-(30) and (31)~(32) gives the same advantages, as
representation of the solution of (3) as a sum of solutions of equations (14)
and (15). These advantages are described in detail in Subsection 3.1. The
differences are only that coefficient 4 is identical in equations (29) and (31)
(and is equal to vacuum permeance up), equations (29)-(32) do not contain
medium dielectric constant ¢ (and, accordingly, A second time derivative),
and the source member of (9) F = —divJ as well as and the vector of
currents J, is decomposed on two-dimensional (axially symmetric) part F°
and on three-dimensional part F+, Thus, in three-dimensional system of
- equations (31)-(32) the field (E*‘,V*) sources are located only in those

dimensional approximation o9, or the sources J and F = — div J cannot be
Precisely taken into account in two-dimensional problem for the system of
equations (29)-(30). '
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4.2. Local and global matrix of finite element SLAE

Let us fulfill time and space approximation of equations (31)-(32) in the
same way as it was made above for vector equation (11). As a result, finite
element Q,, local matrix p will consist of block-elements Pij as

. I
- . , 34
Pij 0 0 clj dfj- ( )
dj, df: dfi 915/x
where )
= “Lj grad 1, - grad ¢, d2 +f a;i dS, (35)
0

3:,/9 ‘[’J;z;,dn & fﬂ ‘”’w,dQ @:fﬂ aw’d;ldﬂ (36)

a; = ] o grad 9; - grad ¢; dQQ, X = @%tk) (37)
m dt

It is not difficult to be convinced that pj; = p 1, and it means that the
local matrix pis symmetric. As a result of local matrlces of all finite elements
addition, the symmetric global matrix for the system of equations (31)—-(32),
in which equation (32) is multiplied by coefficient ¥, will be received.

Let us consider a situation, when the finite element Q,, is located in
medium with ¢ = 0. The quantlty of non-zero elements in block-element
fij of this finite element’s local matrix P is significantly reduced. Equation
(32) is not determined when o = 0. Therefore, to keep homogeneity of
weight vector §; = (qj,qj,qj,qj) structure, for fourth components g} of
vector ¢; the fictitious equation with dlagonal coefficient, equal to 1, and
zero off-diagonal coefficients and right part can be introduced. Then the
block-element can be written as

C‘gj 0 0 0

_— 0 ¢ 0 O

=10 0 o 0 (38)
0 0 0 1

Thus, to store the whole block p;; only one computer memory location,
containing value ¢;;, is necessary.

Let us calculate quantity of computer memory locations, necessary for
storing of the global SLAE matrix, received as finite element approximation
of the system of equations (31)-(32). Let k3 be number of nodes in finite
element mesh, laying inside and on boundary of area Q2 subareas with o # 0,
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and kJ - number of nodes, laying inside subareas with ¢ = 0. Then to store
only diagonal block-elements of finite element SLAE matrix 5k3 +k9 memory
locations is necessary. Similarly through kg let us designate number of off-
diagonal elements in portrait [4] of one of matrix triangles (bottom or top)
rows, corresponding to mesh nodes, which belong to subareas (including
boundaries) with o # 0, and through k_g — number of off-diagonal elements
in portrait of matrix bottom (or top) triangle rows, corresponding to nodes,
laying inside subareas with ¢ = 0. Then to store all off-diagonal blocks-
elements of FEM SLAE matrix 8kJ + k9 memory locations is required. As
a result, the number of memory locations, necessary for storing all non-zero
elements of FEM SLAE matrix, is determined as

k = 5k7 + k3 + 8k§ + kD. - (39)

5. Peculiarities of the computing schemes.
Computing expenses -

Considered three-dimensional non-stationary electromagnetic fields calcula-
tion techniques, based on representation of vector equation (3) or the so-
lutions of the system of equations (8)—(9) as sums of solutions of systems
(10)-(11) or (29)—(32), permit to decrease computing expenses (required
computer memory and calculation time) more than an order for numerical
~ solving of important applied problems with error about several percents from
solution and below. In addition, such high efficiency of offered techniques
is equally typical by using both equations (3), and the system of equations
(8)-(9) as original electromagnetic field mathematical model.

Let us compare models (3) and (8)-(9) on expenses of computer mem-

ory, required for solving appropriate three-dimensional boundary value prob-
lems. Let us carry out comparison for three-dimensional equations (11) and
(31)—(32) solving procedures, received by using described technique of split-
ting of appropriate original equations (3) and (8)—(9). -
- We consider that boundary value problems for equations (11). and
(31)-(32) are solved on the same tetrahedral mesh. The main expenses of
computer memory are for storing of finite element SLAE matrices. The num-
ber of memory locations, necessary for storing of SLAE matrices, received as
a result of finite element approximation of equation (11) and the system of
equations (31)-(32) on tetrahedral mesh, is determined accordingly by for-
mulas (28) and (39). When equations (11) and (31)—(32) are solved on the
same tetrahedral mesh, the parameters k, and k4 from (28) are connected
to parameters kg and kg from (39) as k, = kI + k9, kg = kG + k9.

Thus, to store non-zero elements of SLAE matrix, received as a result of
the system of equations (31)-(32) finite element approximation, computer
memory locations are required 6k = kg + Skg + kg + 5k9 less than memory
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locations, necessary for storing of SLAE matrix, received as a result of finite
element approximation of equation (11). It is obvious, that 8k can reach
very essential values, if the subareas with o # 0 occupy relatively not large
calculation area {2 part and contain (along with their boundaries) relatively
small number of finite element mesh nodes. Note, that by required computer
memory volume the fact that for finite element approximation of system
(31)—(32) it is necessary four unknowns (and four right part vector compo-
nents) per node, while for finite element approximation of equation (11) - -
only three, play against this system. The volume of additional memory,
necessary for storing of auxiliary arrays for solving finite element SLAE by
one of the most effective iterative methods - by conjugate gladlent method,
is increased in the same proportions. However this loss is completely ex-
ceeded by economies of memory, required for storing of finite element SLAE
matrices, if any significant number of mesh nodes (for example, even if the
third or fourth their part) is inside subareas with ¢ = 0. -

Note another very lmporta,r_lt peculiarity of equations (3) and (8)-(9)
(and, accordingly, (11) and (31)-(32)). Received as a result of these equa-
tions finite element approximation, the numerical solutions differently. ap-
proximate fields B and E, even if the same finite element mesh is used. And
at worse approximation it is necessary to subdivide calculation area € on
more small finite elements with all following consequences —increasing of re- -
quired memory and calculation time. As it will be shown below, the system
(8)—(9) appears also more preferable for the problems with dlscontmuous g,
than equation (3) by this criterion. :

The use of the system of equations (8)~(9) (and received from it (29)-(32)
for splitted field) can give additional advantages in comparison with equation
(3) (and received from it (10)-(11)), when it i is necessary to receive potential
part of electrical field. This situation can occurs, for example, when an
electrical field is studied by created potential difference in two points of
medium. The solution A ef equatlon (3) permits to calculate directly oniy
total electrical field £ = —9A/dt in any space point. The solution (A, V)
of the system of equations (8)- (9) permits to calculate separately rotational
E, = -—('?A/Bt and potential E, = —grad V parts of total electrical field
E = E, + E, at once. It is easily to be convinced that the value -84/t for
solution of the system of equations (8)-(9) is really pure rotational part of
total field E, by applying operation div: since, as was shown in Section 2,
equahty div A = 0 for solution (A, V) of the system of equations (8)-(9)
is valid in whole area Q, then div(-=dA/dt) = 0 everywhere in Q, that
indicates pure rotational nature of the field —@A/dt when the system of
equations (8)-(9) is used for elect:oma.gnetlc field description. Therefore the
remaining part — grad V of total field E is in this case thie complete potential
part of electrical field. Using equation (3) for description of electromagnetic
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field, it is also possible to receive complete potential part of an electrical
field, but only by solving additional boundary value problem for equation
—divgrad V = div E, where £ = ~0A4/0t and A is the solution of (3).
Note another important peculiarity of equation (3), creating additional
difficulties for its numerica] solving (and, accordingly, for solving of the sys-
tem of equations (10)~(11), received from it), when coefficient o is discon-
tinuous on some internal boundary $7 of calculation area Q. For simplicity
let us consider that the displacement currents are insignificant and they can
be ignored, and for outside currents J° relation div.J = 0 is valid. Applying
‘operation div to both parts of equation (3) and taking into account that
E= —Bj/at, we receive ’ 7
' div o = 0. , (40)
From (40) directly follows that on boundary $°, where o discontinuous,
equality oy E}'= 6, E2 should be satisfied, where o, and E} - coefficient o

value and vector £ projection E, on normal i on the one hand of 57, and o,
and E? - values of o and E, in the same point of surface S7, but on the other
hand. Thus, normal E component discontinuity on S s Proportional to ¢
discontinuity. Obviously, that the solution of the system of equations (3)

potential 4 normal to surfaces S? component is also discontinuous. It means
. 3

laying on S, only by three basic function weight’s values, appropriate
to given node. These problems do not arise, when the system of equations
(8)-(9) is used as mathematical model of electromagnetic field.

6. Calculation of fields of separate objects’
influence in significantly three-dimensional
problems '

Lu = f, (41)

where u - three-dimensional field, taking into account researched object
influence. Let 40 be three-dimensional field, determined by the same sources
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and medium, as in problem (41), but only not taking into account researched
obj Ject 1nﬂuence The differential boundary value problem determmmg the
. ﬁeld 4% can also be written in the operator form:

ﬂwzﬁ.. ' '_@m

Let us consider that the scopes of d:fferentlal :boundary operators L and
L° are the same, Then the researched object influence field ut = u — uU
satisfies to the operator equatlon

t=g- - OO, - (43)

To be convmced it is enough to subtract - equatlon (42) from (41) and to
'~ carry out elementary transformations.

Thus, in spite of the fact that, a.pproxlma,tmg problem (42) as well as the
omgmal problem (41), is three-dimensional, researched object influence field

" “u* can be found with sufficiently high accuracy from problem (43) solution,

“if the operator L% and problem (42) source member f° are sufﬁmently close to
* operator L and to problem (41) source member f. In this-case the influence.
of the operators difference L — L° on field 4% is the main source of field
u*. The’ account’ of this c1rcumstance permits to build effective meshes
- both for numencal solving of approximating problem (42), and for problem
- (43), determining researched object influence field u*. Obviously, that for
each of three-dimensional problems (42) and (43) it is possible to build
appropriate finite element (or-finite difference) mesh, taking into account
- specific character of problem. to be solved. It, certamly, permits to increase
field u* calculation accuracy. much- more (or significantly decrease problems
(42) and' (43) solving computing expenses); but, on the other hand, creates
some difficulties for u* calculation algor:thm reallzatmn Really, for problem

(43) solving,” the problem (42) solution «° should be correctly recalculated
. on other three-dimensional mesh, used for problem (43) finite element (or -
finite difference) approximation. Slgmﬁcant difficulties can arise for problem
A (42) member (L L%)u® finite element (finite difference) approximation.
Therefore, it is meaningful to consider other, significantly more simple for
numerical realization, way of researched object influence field u* calculation
under the condition of field u® significant three- -dimensionality (for example,
in boundary value problem for equation -(11) the member (L — L%u? is
defined by item

rbt((l%—_i—)rot )_( )(9;['0 (e_-e)a;éo,
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and in boundary value problem for the system of equations (32)-(33) - by
items

-

0

(e —a% (ac‘)it + grad Vo)

and
9 10 ’ :
div [(a ) %] +div[(o - 0%)grad V).

Many researchers noticed that to distinguish separate object influence
field in three-dimensional field the following way is very effective. Two prob-
lems are solved on the same mesh (finite element or finite difference): total
problem taking into account influence of researched object (problem (41))
and the same problem, but without accounting of researched object influence
(problem (42)). Then difference of these problems’ solutions u* = u — 40,
that is field of researched ob Jject’s influence, is calculated. In spite of the fact
that the approximation error of either of these problems can be comparable
by level with field u* (and even exceeded it), the calculation accuracy of
field u* as a difference of fields u and «° appear rather high and quite suf-
ficient for correct estimation of researched object’s influence. This fact can
be explained by interannihilation of main parts of problems (41) and (42)
approximation errors when their solutions’ difference s calculated. However
without theoretical substantiation of this fact and understanding of its in-
ducing reasons the researcher has not confidence in correctness of received
results. The considered approaches to complex fields mathematical modeling
permit not only to give a theoretical substantiation to the fact of approxima-
tion errors interannihilation in difference of the differential boundary value
problems (41) and (42) solutions, but also to predict a level of possible error
in field of researched object’s influence and even to determine ways of its
decreasing.

We rely on the fact that at successful choice of approximating problem
(42) problem (43) numerical solution error can be significantly (an order
and more) reduced in comparison with error of main problem (41) numerical
solution by means of significant decreasing of the source members’ influence
in problem (43). When problems (41) and (42) are solved on the same mesh,
this fact is the main reason of significant decreasing error of researched object
influence field ut approximation, calculated as a difference of the solutions
u and u? of problems (41) and (42), in comparison with errors of original
field u or field u® approximation. Let us show it.

- Let us consider that problems (41) and (42) are solved by FEM. As result
of finite element approximation of these problems we receive two SLAEs:

Li = f, (44)
L% = fo, (45)

[=2 =3
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where L and L° - finite element matrices, that are discrete analogs of
differential-boundary operators L and L%, f and f° - FEM SLAE right
part vectors, and @ and @° - vectors, that are the numerical solutions to
differential-boundary value problems (41) and (42). Since the SLAE (44)
and (45) are received as a result of finite element approximation of problems
(41) and (42) on the same mesh, we can carry out the same operations with
them, which have carried out above for operator equations (41) and (42).
First, let us subtract SLAE (45) from SLAE (44), and then from left- and
right-hand sides of received system subtract vector [,24°. After elementary
conversions we receive

Lit = f-f°—(L- L%z, (46)

where @t = i — 4°. Comparing (46) with (43) we are convinced that the
vector 4% is the solution of SLAE, received as a result of differential bound-
ary value problem (43) finite element approximation. Thus, when the same
mesh is used for calculation of the numerical solutions @ and @° of differential
boundary value problems (41) and (42), their difference @+ is the numerical
solution to a differential boundary value problem (43) on this finite element
mesh.

So, we were convinced that the approximation errors in researched ob-
ject’s influence field 4%, received by subtraction of the numerical solutions
@ and @° of boundary value problems (41) and (42), are actually approxi-
mation errors of differential boundary value problem (43) numerical solving
on the same mesh, as was used for numerical solving of problems (41) and
(42). This fact is of great practical importance. It permits to substantiate
the following practical recommendation. To decrease approximation error
in field 4%, received as a difference of the numerical solutions 4 and 4° of
problems (41) and (42), it is necessary to make local node concentration not
only in places of solution » and u°® gradients abrupt changes, but also in
places of abrupt changes of gradients u* even in spite of that the fields u
and u? in these places can be sufficiently smooth (field ut can be much lower
by level than fields » and u° and consequently even the abrupt changes of
derivative in field u* can weakly affect on u smoothness).

Thus, the considered two ways of calculations of separate objects in-
fluence fields, excited by significantly three-dimensional sources, have their
merits and demerits. So, when field u* is calculated by solving of differen-
tial boundary value problem (43), two different meshes, taking into account
each of these problems’ singularities can be used for numerical solving of
problems (42) and (43). As a result, each of problems (42) and (43) can be
solved on optimum mesh with minimum number of nodes, and it frequently
permits to significantly reduce required computing expenses (memory and
computing time) without decreasing of field u* calculation accuracy. As
a demerit of this way we can attribute the fact that for its application
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it is necessary to develop procedures of correct recalculation of the three-
dimensional problem solution from one three-dimensional mesh to another,
and also procedures of calculation of the contributions from operator equa-
tion (43) member (L — L%u® to finite element (or finite difference) SLAE
right parts, which in Many cases are not in the least trivial,

The second way of ut calculation as a difference of problems (41) and
(42) solutions does not require development of any additional procedures.
But the mesh, used for the numerical solutjop of problems (41) and (42),
should simultaneously take into account both singularities of the s6lution °
of problem (42), and singularities of the problem (43) solution u+ (though
problem (43) in this case is not solved). It results in that for achievement of
required accuracy in solution u+ the number of nodes in mesh increases, that
have as a consequence increasing of computing resource expenses (memory
and calculation time). Therefore the choice of either way of-field ut cal-
culation (under the condition of field 9 significant three—dimensionality)
depends on specific situation: if jt is enough computing resources to solve
problems (41) and (42) on mesh, taking into account the singularity 49 and
ut, then it is easjer to calculate ut a5 5 difference of the solutions u and
u° of problems (41) and (42); but if optimum meshes for problem (42) and
problems (43) are distinguished significantly, and it js not enough comput-
ing resources to achieve required accuracy, it is meaningful to find y+ as
the solution to problem (43) with all following consequences (development,
of procedures for solution recalculation from mesh to mesh and accounting

7. An example of developed technique using
to solve practical problem?
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Figure 1. Base plane mesh fragment.
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Figure 2. Fragment of tetrahedral mesh cross-section

The splitting of this problem was carried out as follows. As first an axi-
ally symmetric problem in horizontal-layered medium with outside current
JO = Jin circular isolated wire was solved. In this case scalar potential V°
is identically equal to zero, and vector-potential A? in cylindrical system of
coordinates has only one non-zero component A%, satisfying the equation

"]
- —AA+ — to— = J°. (47)

The two-dimensional triangular finite element mesh, containing about
8000 nodes, was used for solving of this axially symmetric problem. The A%
calculations were carried out on 350 time layers.

As a second the three-dimensional problem for equations (31)-(32) was
solved, in which all deviations of medium layers’ boundaries of original



The computing schemes of non-stationary electromagnetic fields 87

problem from axially symmetric problem layers’ boundaries, and also three-
dimensional object, located in medium depth were taken into account. To
achieve required accuracy (error about 2-3% in 0B, /dt values for required
total field), three-dimensional tetrahedral mesh, containing about 15000
units, was used. The (E*,Vﬂ calculations were carried out on 35 time
layers.

To solve the system of equations (8)—-(9) for considered problem by FEM
directly (without splitting) with the same required accuracy (error about
2-3% in 8B, /8t values of required field), even taking into account poten-

memory volume about ten times in comparison with memory volume, nec-
essary for solving equations (47) and (31)~(32) with the same total accu-
racy. The calculation time would increase much more significantly — not
less than 100 times, since not only the FEM SLAE dimension wouid much

a three-dimensional boundary value problem for system (31)-(32) (the in-
creasing of calculation time tep times gives ten times increasing of time
layers’ quantity, which should be the same as number of time layers for
axially symmetric problem solving to achieve necessary time approximation
accuracy for solving boundary valye problems for system (8)=(9)). Such level
of computing resources expenses decreasing with using considered technique
is typical practically for all three-dimensional problems of electromagnetic
earth logging, and also for other three-dimensional problems, having good
two-dimensional (axially symmetric) approximation.
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