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Numerical solution of elliptic problems
with factorized operators*

S.B. Sorokin

The paper presents the method of constrncting the difference analogs of elliptic operators
based on the use of their factorized structure (for second order equations as an example).
For the Poisson equations the structure of the difference operators obtained allows us
to suggest a new efficient method for solving the difference problems in the domains of
standard shape - the method of part-by-part inversion. The number of operations for
obtaining a solution by this method coincides, in its order, with the number of oper-
ations necessary to realize conventional efficient direct methods: sweeping, fast Fourier
transform, cyclic reduction technique.

Introduction

Along with certain practicaly merits, presenting equations of the elliptic
kind in the operator form

Au= ], | (1)

does not reflect the interior structure of the operator of the pfoblem having
mainly the following form:

A= R*BR. (2)
The one p y
- E(k(fb‘)a) = f (3)
and two-dimensional .
d du d du
o kl 2 Y 22 2%y =

heat conductivity equations can serve as simple examples.

*This work was supported in part by Russian Fund of Fundamental Research under
Grant 93-012-494.
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In the first case:

d . d
R=—, B=kz), R =-—. (5)

In the second case:
_[R) _[5E] po [k 0] e ..[__‘9__2]
R-[Ry]—[%],za-[o o] B =R = -] ©

For more complicated problems of mathematical physics, the form of
the operators R and B may be found, for example, in [1-3].

The factorized structure (2) of the operator A allows a realization of
the following method of constructing a finite-difference approximation of
equation (1):

e approximate the operator R by the operator Rj;

¢ select an operator adjoint to Ry, i.e., R}, as an approximation of the
operator R*;

¢ approximate B by the operator B), = B} > 0.

Then the finite-dimensional analogue Ay of the operator A is of the form
Ap = Ry BLRy,.

Positive features of the method are: the necessity to approximate a
differential operator of less dimensionality than the dimensionality of the
equation (actually, the first derivative operator), the fact that symmetry
and positiveness of Ay directly follows from its form.

This paper is aimed at the illustration of this approach and description
of a new efficient direct method of solving difference equations, correspond-
ing to (3), (4).

Note that the method of solving difference equations for one-dimensio-
nal case, which is similar to the method proposed here, is described in [4].
However, in [4] only the case of constant coefficients is studied.

1. Construction of difference schemes

1.1. One-dimensional case
Consider equation (3) which in accordance with (5) is written in the form
R*BRu=f, =z¢€/(a,b), (1.1)

with the Dirichlet boundary conditions
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u(a) = u(b) = 0. (1.2)

b—a

In the interval (a,b) construct two grids with the mesh size h = i

W = {:L',-: i=0,N+1, w;=a+ih},
W% = {“"i+§: t=0,N, mi+;_=a+(z'+%)h}.

By U = Un4z and V = Vv, we mean the spaces of the grid functions
given on the grids W and W% , respectively. The subscript means the space
dimension. Introduce in U and V the scalar products

N+1
(u',v®)y = Z ulu?h, u'uteU,
~

N
(!, 0%y = v
=0

1 2 1,2
i+%vi+%h, v,v EV.

Denote by R} the operator acting from U to V according to the formula

u; — Uy . —
(Rpu)yyy = ——, i=0,N. (1.3)
It is easy to see that the rectangular matrix with (N + 1) lines and

(N + 2) columns correspond to this linear operator. We also denote this
matrix as Rp:

-1 1 Up 'U%

1 -1 1 u U1+4
Rp=~ = TP

h :

-1 1 UN+1 UN+L

For any v € U and v € V the formula of summation by parts is valid

N Uig1 — U b= b N vt'-l--]; - vi—-‘i b h
; 5, Vsl = —uovih - Z; B E—— + UNUNLh, (1.5)
1= - =

which is written, in terms of scalar products, as follows:
(Rhu,v)v = (u, Rpv)u.

Here the operator R} acts from V to U and is of the form
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¢ v1
—f, i=0,
. Uiyl — V1 —_—
(Rjv)i = 4 -Jﬂ—h:—i’ i=1,N, (1.6)
’UN 1
et i=N+1
\

Thus, we have constructed the operator R} adjoint to R, the rectan-
gular matrix with (N 4 2) lines and (N + 1) columns (transposed to Rj)
corresponding to it

-1 2 Ug
. 1 . vl-i'-% (51
Rh = ‘}‘; 1 T . . —_— : . (17)
_1 'vN+% UN 41

So far we have not made use of the form of the boundary conditions

] o
(1.2). Now let U = Uy denote the subspace of N dimensionality (the num-
ber of internal nodes of the grid W) of the space Uy 42 and be determined
as follows:

[+]
U={ueU: u =uns =0}
[} [}
~ Denote the narrowing of the operator Ry on U by Rj. It is evident that

o o ' .
Ry : U —V and the matrix with (N + 1) lines and N columns correspond
to it

1
_ 1 Y4
1 1 vty
o 1 . U3 1+35
Ry =— -1 .. : ) J —_— . . (1.8)
h . . :
_ UN 1;N+%

It directly follows from (1.5) that R} : V — U and the matrix trans-

o
posed to Ry, corresponds to this operator i.e.,

A S | vL [“1
o 1 1 -1 V141 U -
Rp=~ . | — [ . (1.9)
h

Determine the difference analogue of the multiplication operator by the
function Bu = k(z)u, in the following manner:
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(Brv)iyy = kiygvq1, i=0,N,

where k; 1= k(z;, 1 ). The diagonal matrix

k .
; ¢ vy
k1+§ U141 U1+}
-Bh = . . . —_—
kN+% N+ UN+1

corresponds to operator By, : V — V.
Finally, as an approximation of the operator of problem (1.1)—(1.2_), we
take the expression

Ay = RiByRs. (1.10)

Direct verification shows that

Apu = —(k_yuz)s, Yuel,

=3

l.e., the proposed technique brings about the well-known approximation of
problem (1.1)-(1.2) (see [5]). :

We have considered the case of the Dirichlet boundary conditions. It
is evident that this scheme can be also implemented for the Neumann
boundary conditions and the case when a Dirichlet condition is given on
one end of the segment (interval) while a Neumann condition is given on
the other one.

1.2. Two-dimensional case

Consider equation (4), which with allowance for (6), is written as
R*BRu = f, (z,y)€ D = (a,b)x (c,d). (1.11)
Consider the Dirichlet conditions
U ’r =0 (1.12)

as conditions on the boundary I.
Construct three grids in the domain D

W = {(x,-,yj); i=a+ihg, i =0,N, 1,

Y =c+jhya j‘—“O,Ny-f-l},
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o1 e ———

W, = {(:ri__%,yj). .‘1?2-_1E =a+ (%-n—é)h_r, 1=1,N.+1,
v = ctjhy, =0 Ny T 1},
W, = {(:a;i,yj_%): zi=a+thy, i=0,N;+1,

gy =c+(i- %)hy, i=TN,+1}.
Here N,, N, are the number of internal nodes in W along the z and y
directions, respectively. Thus, hy = (b—a)/(Nz+1), hy = (d—¢)/(Ny+1).

In Section 1.1 we first constructed approximation of R irrespective of
the type of boundary conditions. Then the operator approximation for the
Dirichlet boundary conditions was constructed from the general form. The
same approach can be used for problem (1.11) as well. However, in this
Section, for simplicity, we will at once take into consideration the type of
the boundary conditions (1.12). Thus, let

= {u;,j: t=0,N;+1, j=0,N,+1, u=0on F},

i=0,Ns;, j=0,Ny+1, v=0o0nT},

° o ]
S §e S

Il

—~—

NC.‘?

+

=

LY

= {’w‘-'_?-_}_%: t=0,N+1, 5=0,N,, w=0on F},

dmU = N,N,, dimU, = (N, + 1)N,, dimU, = No(N, +1),

mean a subspace of spaces of the grid functions given on the grids W, W,
W, respectively.
The scalar product will be determined as follows:

Nz'+1 N!J+1 o
1,2 1 2

Z Z “ij“ijhxhya vV ou ,u” € U,

1i=0 =0

Nz Ny+1 o

1,2 _ 1 2 1 .2
(v',v )[.}z = Z Z vl._[_%’j'vi_l_;_,jhrhy, Vv, v e Uy,
1=0 7=0

NI+1 N&' °
1 2 1 2

> Zwi.ﬂ%wi.ﬁ%hzhw V', w® € Uy

=0 7=0

Il

(”11“2)['}

1 2
(w',w )(n]y

o] o [+ (+]
Denote, by R : U — U, and Rg : U — Uy, the difference operators given
by formulas
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Cuj -
B - g Vo
Uitl,j = Ui ; ;
(Blwhpy; = = =LNe-Li=0N+1,
T
—UN,,j .
{ Tj'v 2=N1:7
T
( Uil 0
hy, ‘ ]—0’
Ui j41 — Uij . .
(RZU)".H_% = ¢ 'L-ﬁh_uv ]=1,Ny—1,l=0,Nx+1,
! y
—u; N, .
_—, = N,.
| hy =

As an R-approximation, we select the operator
[

Ro= 2|0 — [¢7| = U,
" [Ri,‘ i A

93

(1.13)

(1.14)

. . R"u o lojz:
acting according to the rule Ryu = [R,’,u]. Here Uy = [lo}] the space of
Yy y

o o
vectors z = [;’,], such that v € U, w € Uy, with the scalar product

1,2 (1,2 1,2 1_ v! 2 _ v?
(z,z)[} = (v°,0%)s +(w,w)£,, 2= g 2 =
y

» Us ! w?
Let
u; = [ulj,’u,zj,...,UN:j]T, ; Jj= 1’Nys
T)j=[v%,j,...,sz+%,j]T, j=1,Nya
u_)j+% = [wij+%’°."’wN,j+15]T’ ] = 0, Ny,

E be a unit matrix of N -dimension, and P be the matrix from (N, + 1)

lines and N, columns of the form

then the matrices
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F.P iy v ]
1 P @ o
R: = — i e (1.15)
L P ﬁNy UN,
B o
1
-E E U _ 2
1 i w1+l
Ry = — -E 2l — > | (1.16)
y
E| |. _
i _E . uNy _'l‘.‘)j\[!"+l5

correspond to linear operators (1.13) and (1.14). The matrix R® is block-
diagonal, with N, blocks on the diagonal, and the matrix R" consists of
(Ny + 1) block lmes and N, block columns.

Here and in what follows as in the previous section, we denote both
the operator and the appropriate matrix by the same letter.

. ]
Using formulas of summation by parts (1.5), Yu € U and Vz = [2] €

°
Uzy, we have

— h h _ *
(Rhu, z)[.hy = (qu,v)i.ry + (Ryu, w)fry = (H’ha){}'

Here R; = [(RR)*,(Rk)*]: (}Iy — 5’ is the matrix-operator adjoint to R,
]
acting on the element 2 = [”] € U, by the rule R}z = [(R")*v + (RE)*w],

o ° [+] L]
while the operators (R")*: U, — U, (R;‘)* : Uy — U are adjoint to R and
R;‘. The matrices

[ P 7 Uy T
1 P v U
(RE) = — : =, (1.17)
hy T : :
L P frﬁy uy,
E -F oy [y
. 1 E -FE Wil i
(Rhy = — o T — | ] s
h, P : :
- E-E mNy+% "ﬁNy

correspond to them.
kl

0 ’?2], we take the

As an approximation of the operator B = [

operator
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Bl 0 o [
By = [ o B;‘l] tUsy = Usy

' [
acting on the element z = [!] € U, according to the rule

_[BL o v] _ Biv]
me= [T ] [o] = 5]

o

The operators B} : U, — ff,; and B} : Ijry — lofy are defined as follows:

(Bivdisys = kiypsiags  i=0Na =1 N, (1.19)
(ng)i,j+% = k?,j_}_%wi'j_}_%, i=1,Ng j=0,Ny,

1 2 : s 1 =
where k; +1.0° kl.,j +1 can be given in different ways, for example, k.‘ e
1 2 — 1.2
k' (z;11,9) and ki'H% = k(i y;41)-
If one introduces the notations

’kl '
1.3
1 klé J
Il’j = 2 - , j= 1,Ny,
1
- kN-i"";"eJ
- ]2
Ll.j+%
K2
-2 2,0+5 .
I‘J+';' - 3 . N J:O’Ny’
2
- kNyy.?+%

then the operators (1.19) (and hence Bj) can be written in the form of
block-diagonal matrices

[ 1.1 A —
1"1 . " O}
) k3 o) 7y
Bk — . . — . )
kl N v
L Ny Ny 4 Ny
- .2
Ll_ [ _l QI)
2 2 - 7 3
v w, 1 Wy, 1
Bz _ 1+;— 1+3 1+3
= —
: .1 TH T
L I‘Ny+15 LEN+} UNy+}
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Finally, as the difference analogue of the operator of problem (1.11),
(1.12), we select the operator

Ap = Ry BrRy,.
Direct verification shows that
Anu = —(k'(z;_y, yj)uz)x - (K* (@i 9;_1)ug)ys Vu €U,

i.e., it coincides with one of the standard approximations [5].

2. The new direct method of solution
In this section we present a new direct method for solving difference equa-
tions, which is based on the use of a factorized structure of constructed

operators and is in the part-by-part inversion of each operator being a part
of the representation Ap.

2.1. One-dimensional case

In the one-dimensional case, it is necessary to find a solution of the equation
(] ]
R;BrRpu = f, (2.1)
[+] o
where R, and R} are determined by the equalities (1.8), (1.9).

Before the presentation of the method, let us formulate two statements,
whose proofs are trivial.

[+]
Statement 1. The kernel of the matriz Ry, i.e., the set of vectors satisfying

]
the equation Rpyp = 0, consists of a zero element.

o
Statement 2. The kernel R}, consists of vectors of the form
const(1,1,..., 1)T.

The factorized form of operator allows us to solve problem (2.1) in
three stages.
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| Stage 1. Find the solution v of the equation
"~ Rjv=f. ‘ (2.2)

The solution (2.2) exists if and only 11' the rlght hand side is orthogona,l

to the kernel of the adjoint operator ( W= Rh Since the kernel Rh
consists only of a zero element, (2.2) is solvable for any f-
The solutlon of equatlon (2. 2) is non- umqne and is found within an

element from the kernel R“‘ Let vp be a solution to (2.2), then Vo = vo+ap,
¢ = (1,1,...,1)T for any a also solution (2.2). From all possible vy we
select such that

(B vayp) = 0 (2.3)

be fulfilled, i.e., we select a from the relation

_(ijlvo';{p)
(B;'e,¢)

This selection will be clear when describing the third stage.
Stage 2. Solve a system with a diagonal non-singular matrix B
Brw = v,. (2.4)

Stage 3. Find a solution of the system of linear algebraic equations
|

Ruu = w. (2.5)

" The system (2.5) is 'solvable not for all right-hand sides w, but only for

. . [+
those which are orthogonal to the kernel R;. Since from (2.4) w = B;'v,
and a was selected from'thé relation (2.3), then (w,y) = 0 and the system

e
(2.5) is solvable. Besides, the solution (2.5) is unique, as the kernel Ry is
empty.

It is easy to check that the solution u obtained at the third stage is the
solution of the initial system (2.1). To obtain it, it is necessary as in the
sweeping method, to make about 8N arithmetic operations. However, if
the sweeping method includes 3N miltiplication operations, 2N additions
and 3N additions,. the method proposed here requires N multiplication
operations, 2N divisions and 5N additions.

It is interesting to note that in the case when for problem (1.1) on
one end of the segment the Neumann condition is given and the Dirichlet
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condition is given on the other end, then for obtaining a sclution, only .7V
divisions and 2N additions are required. This is due to the fact that in
this case all matrices in the factorized presentation of A, are quadratic and
non-singular.

2.2. Two-dimensional case

In this part of the paper we will describe a new efficient direct method
of solving difference equations approximating the Poisson equation to the
rectangular ones. In this case, By is a unit matrix and it is necessary to
find a solution of the equation

RiRyu = f. (2.6)

To make further considerations clearer, let us present the matrices R and
5 in the form

N!I
o TP ~ _ 1—51
rP .
2
5 B .
rP v % e
(753 UN,
R, =| sE 2] o | = @y s (29)
-sE  sE : =
) in, Witd
—‘8E *. Ny+1
4 sE _
Wy 41
I —sFE | - Nyts

In (2.7), there are given dimensions of the marked blocks, r = 7‘-1;— and
8 = 7{1;’ the matrix P and the vectors @;, j = m, v, J = rN—y, u')j+15,
J =0, N, is desribed in Section 1.2. The matrix R} contains 2N, + 1 block
lines and N, block columns, or (N, + 1)N, + (N, + 1)N, lines and NN,
columns.

The matrix R} is obtained by the transposition of R; and is of the
form

[ 71 ]
rP* |sE —sE 17N ;:
R} = e P s | =] (2.8)
rP* | sE —sE N -
3 u’Ny

L UNy+4
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It is proposed to solve equation (2.6) in the following manner. First,
by introdusing the notation v = Rpu, find a solution of the equation

Riv=f 29
and then, with v given, reconstruct u from the equation
Rpu =v. ' (2.10)

The aspects of existence and uniqueness of solutions of the systems
(2.9), (2.10) are determined by features of the kernels R, and R}. Now we
will turn to the elucidation of these features and then describe the proposed
algorithm of the solution (2.6) in more detail.

It is easy to show that the kernel of the matrix Rj consists only of a
zero element. Our main task will be to describe the kernel of the matrix
R;. |

Consider the grid vector-function u*" = [ ,m] € ny The a.pproprlate

vector of dimension M = (N, + 1)N,+ (N, + 1)N will be also denoted by
ukn

Determine uf™ and uf" in the following way:

kr(i+3) . nrj : .
kn 2 N
. . = ) = 07 N:57 = 15 ?
(41")iyy,; = cacos (N: +1) n(Ny+1) z ’ !
: . kmi nr(j+3) . -
kn - 2 = =
(3ijey = iy Ty s Ty Ty T LN T=0

Then, using elementary formulas, obtain that (R;‘luk”);j is equal

L kr 1 nw 2' ki nwj
_ sin —————| 2sin .

e SN+ 1) TRy A, 1 D) Vot D), + 1)

Having selected, for example, ¢; = hL sin m'ﬂrm and ¢ = —~,~11- sin TI\I’W-!T)’

obtain (R"‘uk"),j =0, Vi,j. Hence for all k =0, N, and n = 0, N, (k+n #
0) the vector u*" belongs to the kernel R;. On the whole, there will be
(Nz+ 1)(Ny+1)—1= N vectors U*". It is not difficult to note that their
number is equal to the dimension of the kernel Rj.

Having made trivial calculations and using the relation from [5], it is
possible to obtain that (uk"',u‘m)& = Ep1bpm || 0*™ |2

Ty zy
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bz _ b—a)d=c)[1 ., nx Loy km
e ”".-_,.y“ 1 2N, D TR oL i

Here &4 is the Kronecker symbol.

Thus, N pair wise orthogonal elements of the kernel R} are found,
whose dimension is also equal to N. Hence, the vectors «* form the basis
of the kernel of the matrix R}.

Now let us describe in detail the method of part-by-part inversion for
the solution of problem (2.6)

Rz R;,u = f
Stage 1. Find the solution of (2.9)
R;;‘L‘ = f

Since the kernel of the matrix 1) transposed to R} consists only of
zero element, the system (2.9) is solvable for any right-hand side of f. The
solution of (2.9) is found within an element from the kernel R;. Let vy be
some particular solution (2.9), then

N'J ‘Ny

Vo = Vg + Z Za;‘jui"’l (2.11)

=0 j=0

for any numbers a; ; 1s also the solution of (2.9).
A particular solution of (2.9) will be obtained as follows. Let us give
by zero N components of the sought for the vector
T
T T T T T
0= [P o Vg Py DY .y, .
[A {l] 2 Ny f% i ‘\:"+%
that is the component PLys Plgee e Uiy u"%, cees ‘?’Ny+%‘ The remaining
N, N, components of the vector vy satisfving (2.9). are uniquely defined
from the equation

i [AK] T -
7.1 r f]
rp- 'y
e Vet .
: = . (2.12)
r i)x "%..‘\'u
L .ff\', J
LA, LN, !
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where P* is the quadratic matrix of the form

Stage 2. From all possible (2.11) of the solutions v, of problem (2.9) select
the one satisfving the relations

(va ™™o =0, k=0.N,. n=0.N,. (2.13)

Ury
Due to orthogonality of the basis «*". from (2.13) it follows that
.f\'rz)

(vp.u

Uyy T T
Q) = — g, .’f:(},."\‘ e n:O.-\ .
n {UA”. “’\Il ) o + ¥

ry .

o

Stage 3. Find the solution of the system of linear equations (2.10)
Rh = "t'l'

Since v, is selected from the condition of orthogonality (2.13) to the
kernel Rj. (2.10) is solvable. The solution (2.10) is unique. since the kernel
R), is empty.

Taking into account the form of Ry. the solution (2.10) can be derived
from the equation

Riu = (va). (2.14)

. B} . h
where Hi‘. are the first N block lines of the matrix R, = [g,,] and (r, )y are
"]

the first of (N, + 1).V, components of the vector r, = }:‘;‘] (see (2.7)).

[t is easy to check that the solution obtained at Stage 3 is the solution
of the original problem (2.6). Evaluate the number of operations required
for its obtaining,.

Realization of Stages | and 3 requires the execution of 2.V, N, addition
operations, here a special form of the systems (2.12). (2.1.H) [)I'(‘)\'i(l(‘ﬁ the
possibility of parallelization.
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At Stage 2 it is necessary to calculate

(vg,uk”)&

zy

Oy = ——7————— k=0,N. n = 0,N,.

kn (uk”,uk“)o ’ y4Vxy y 4Vy
Uzy

The value (u*",u"). is presented above. Due to the special choice
Ty

of vg, at the first stage:

kn kn
Uy = Un =
(vo, u )E}:y ((vo)1, ug )IOJI;.,.

Ny /N, o . (2.15)
1 nmw - nr(i+ 3) - nrs

1. nr L ——22h, | sin ——=h,.

e sin 5N, £ 1) JZ:; (; Vigk,j €08 (N:+1) (Ny+1) "

After oy, are calculated, it is necessary to construct the vector v, by
formula (2.11). Since at the third stage it is sufficient to the solve system
(2.14), only (va)1 is to be determined.

It follows from the sa.ic}v above that it is sufficient to calculate the com-
. N:r Y -
ponents of the vector Yy aknui"", that is the values
k=0n=0

% gja cos krr(i+-12-) sin nrj ! sin o (2 16)7
k —_— —_— —_—. .
AL 7)) A D | By 2N D)

It is easy to see [5] that the cost of arithmetic operations to fulfil of
formulas (2.15)—(2.16) are exactly equal to the cost required to implement
the method of separation of variables (expansion in the double series) and
are of the order:

3N,N,In NN, - addition and substraction operations,
NyN,In NN, - multiplication operations.

As a result, if one does not distinguish between arithmetic operations
then the proposed method will take about NN, In(N;N,) arithmetic ope-
rations.

The following remark should be made about the algorithm stability
to round-off errors. Numerical implementation of Stages 1 and 3 in fact
reduces to calculations by formulas of the form

Tit1 = i + by,

where b; are given, and z; are calculated. It is evident that in calculating
Tk, the error does not exceed ke, where ¢ is determined by the stability of
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calculations at Stage 2, which is implementated with the help of the well
examined algorithm.

To conclude, let us note that the proposed algorithm is generalized
to the problems of greater dimension and to the other types of boundary
conditions.
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