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The memristor crossbar-based
WTA neural network

M.S. Tarkov, M.I. Osipov

Abstract. The problems of programming memristor arrays (memristor crossbars)
are considered. An estimate for the pulse width to set the desired memristor resis-
tance (memristance) value is obtained. The implementation of the Winner-Take-All
(WTA) neural network on the memristor crossbar and the NMOS transistors for bi-
nary images recognition is proposed. The proposed WTA network implementation
by simulation on the LTspice IV software was approved.

1. Introduction

An artificial neural network, typically, uses a weighting coefficients matrix to
represent a set of neurons layer synapses. Accordingly, the computation of
the layer neurons activations can be considered as the weighting matrix mul-
tiplication by the input layer signals vector. The neural network hardware
implementation requires large volume of memory for storing the weights
matrix of the neurons layer and is expensive. Solving this problem is simpli-
fied by using a device called “memristor” as a memory cell. The memristor
was theoretically predicted in 1971 by Leon Chua [1]. First, the memristor
physical implementation in 2008 was demonstrated by a Hewlett Packard
laboratory as a thin film structure TiO2 [2]. In Russia the first memris-
tor based on TiO2 was developed in Tyumen State University [3] in 2012.
The memristor has many advantages such as non-volatile storage media,
low power consumption, high density integration and excellent scalability.
A unique ability to retain traces of the device excitation makes it an ideal
means for the implementation of electronic synapses in neural networks [4].

2. Memristor crossbar

The memristor behaves like a synapse: it “remembers” the total electric
charge passed through it [5]. The memristor memory can reach very high
degree of integration of 100 Gbit/cm2, several times higher than that based
on the flash memory technology [6]. These unique properties make the
memristor a promising device for creating massively parallel neuromorphic
systems [7–9].

A memristance (the memristor resistance) (Figure 1) can be represented
as (cf. [10])

M(p) = pRon + (1− p)Roff , (1)
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Figure 1. Memristor: D is a low resistance
zone, U is a high resistance zone, p ∈ [0, 1] is the
doping front position, h is the total TiO2 film
thickness

where 0 ≤ p ≤ 1 is the doping front position relative to the total film
thickness h of TiO2, Ron is the memristor minimum resistance, Roff is the
memristor maximum resistance.

When a voltage V above a certain threshold Vth is applied to the mem-
ristor, its memristance decreases due to the expansion of the doped band D
having a low resistance and reducing the zone U of pure oxide having a high
resistance. Accordingly, the memristance increases by applying a voltage V
lower than −Vth due to the zone D reduction and the zone U expansion.
After the voltage switches off, the current memristance is preserved.

The velocity of the doping front motion is defined as follows:

at V (t) > Vth :
dp

dt
= µν

Ron

h2

V (t)− Vth

M(p)
, (2)

at V (t) < −Vth :
dp

dt
= µν

Ron

h2

V (t) + Vth

M(p)
. (3)

Here µν is the average ion mobility and V (t) is the current voltage value on
the memristor.

Setting the memristor to a desired level of the memristance Md depends
on the ratio between Md and the initial memristance value M0. The memris-
tance adjustment is made by applying to the memristor a constant voltage
V > Vth for M0 > Md or a voltage V < −Vth for M0 < Md due to some
time τ . Solving equations (1)–(3) yields the desired time

τ =


M2

0 −M2
d

2k(V − Vth)
, V > Vth,

M2
0 −M2

d

2k(V + Vth)
, V < −Vth,

(4)

where k = µν
Roff

h2 (Roff −Ron).

Figure 2 shows a layer of neurons (neurons are indicated by triangles)
with a matrix of weighting coefficients realized on memristors. The matrix is
called a memristor crossbar which is a typical memristor memory structure.
It contains a memristor at each intersection of the horizontal and vertical
wires. The vertical wires are the neuron layer inputs. The horizontal wires
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realize the weighted input summa-
tions, i.e. calculate the neuron acti-
vations. The weighting factors are
set by the memristor conductivities
located at the intersection of wires.

In this paper, a model of the
WTA neural network hardware im-
plementation is proposed. This net-
work implements the crossbar-based
associative memory. The network
training procedure is implemented
in the hardware. The memristor
synapse includes the NMOS transis-
tor to control the current through
the memristor.

Figure 2. Example of neural layer
based on a memristor crossbar

3. WTA neural network

The WTA network functioning is described by equation (5), where wi is a
weight vector of the ith neuron, i = 1, . . . , P , f is an activation function, x is
the input vector, yi is an output vector of the ith neuron. We suppose that
xj , j = 1, . . . , N , are signals produced by an input pattern, and x0 = −1 is
the threshold signal. Then

yi = f(ai), ai =
N∑
j=0

wijxj . (5)

The input vector x belongs to a class i when ai > aj , j = 1, . . . , P , j 6= i
(WTA principle). Let

f(a) =

{
1, a > 0,
0, a ≤ 0.

(6)

Let the neural layer receive a set of pairwise distinct objects xi =
(xi1, . . . , x

i
N ), xij = ±1, i = 1, . . . , P , i.e. xi 6= xk for i 6= k. Such objects

could be binary images. Let each object xi contain m components equal to
1 (“white”), and n components of −1 (“black”), m + n = N , i.e. objects
differ from each other by permutation of white and black pixels (Figure 3).

We associate a weight wij = Wmax with the white pixel and a weight
wij = Wmin with the black pixel, where Wmax > Wmin are specified values.
Let wi0 = W0, i = 1, . . . , P , be threshold weights. The ith neuron wins the
competition on the input vector xi, because

ai = (xi, wi) = mWmax − nWmin −W0, (7)

aj = (xi, wj) < (m− 1)Wmax − (n− 1)Wmin −W0 < ai, j 6= i, (8)

which corresponds to the WTA principle.
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Figure 3. Symbols “T”, “X”, “L”: 8× 8 pixel pattern

Assuming W0 = (m− 1)Wmax − (n− 1)Wmin, we obtain from (5)–(8)

ai > 0, f(ai) = 1; aj < 0, f(aj) = 0, j 6= i.

A mapping of the proposed WTA network onto
the memristor crossbar is reduced to the network
weights assignment as the crossbar memristors con-
ductivities. The activation function (6) can be im-
plemented using the NMOS transistor (Figure 4)
[11].

Figure 4. Neuron activation function realization: the
function value is a voltage on the resistor “R”, “In” is
the function input, “V” is the supply voltage

4. A hardware model of the WTA network

In the experiments we use the SPICE model of memristor [11–15]. Before
setting each memristor, its resistance is evaluated by measuring the current
across it when the voltage pulse is applied. After evaluating the memris-
tances, for given voltages Vj , i = 1, . . . , 65, we calculate, in accord with (4),
the unipolar pulses durations for setting the memristances to the specified
values Mmin and Mmax.

The memristance settings are made successively for the crossbar rows
(Figure 5). First, the voltage hold1 is applied to the transistor gates of
the first row of synapses which corresponds to the first memorized pattern.
In this case, the memristances of other rows do not change because their
voltages hold2 and hold3 are zero. Further, the same procedure is realized
for all other rows of the crossbar.

The voltage sources holdi, i = 1, 2, 3, are used for opening the transistors
in synapses, and the voltages Vj , j = 1, . . . , 65, are used for the memris-
tances setting (see Figure 5). During the memristances setting, the crossbar
horizontal wires are grounded for removing parasitic currents. After the
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Figure 5. WTA network: Wij are synapses (Figure 6), Neuroni are the activation
functions (see Figure 4), holdi are the voltages for synapses control, i = 1, 2, 3,
j = 1, . . . , 65; Vj , j = 1, . . . , 64, are the input signals, V65 is the threshold signal

setting procedure completion the memristor
states are saved in a file. These states are
read as above.

The synapses Wij , i = 1, 2, 3, j = 1, . . . ,
64, conductivities are

Wmax =
1

Mmin
=

1

3 · 103
ohm−1,

Wmin =
1

Mmax
=

1

6 · 103
ohm−1.

The threshold Wi,65, i = 1, 2, 3, conductivi-
ties are equal to

Figure 6. Synapse construc-
tion: M is a memristor

W0 = (m− 1)Wmax − (n− 1)Wmin = 35Wmax − 27Wmin =
43

6 · 103
ohm−1.

White (“1”) and black (“−1”) pixels of the images are simulated by the
bipolar pulses (Figures 7a and 7b, respectively). The use of such bipolar
signals allows us to save the memristor conductivity unchanged after the
signal exposure.
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Figure 7. Signals

Each row in Figure 5 forms an adaptive adder that computes the neuron
activation (9) using the first half of the bipolar pulses. Neurons 1, 2, and 3
recognize the symbols “L”, “T”, and “X”, respectively. The ith neuron is
formed by the synapses Wij (see Figure 6), j = 1, . . . , 65, and the activation
function Neuroni (see Figure 4). The voltages on resistors of the activation
functions are considered to be output signals of the neurons. Input signals
are given by the source voltages Vj , i = 1, . . . , 64, and V65 is the threshold
voltage.

In the table, the voltages 3 · 10−4 volts and 2 · 10−9 volts correspond,
respectively, to values 1 and 0 of the activation function. The table shows
that the scheme proposed can be successfully used for image recognition
based on the WTA principle.

Output signals of the WTA network (in volts)

Output L T X

y1 3 · 10−4 2 · 10−9 2 · 10−9

y2 2 · 10−9 3 · 10−4 2 · 10−9

y3 2 · 10−9 2 · 10−9 3 · 10−4

5. Conclusion

The memristor is a promising element for the hardware synapses implemen-
tation. The memristor array (memristor crossbar) programming problems
are considered. The pulse width estimate for setting a desired memristor
resistance (memristance) value is obtained. The WTA neural network imple-
mentation on the memristor crossbar and the NMOS transistors is proposed
for the binary images recognition. The proposed WTA network implemen-
tation was approved by the simulation in the LTspice IV software. The
results can be used both in mathematical modeling, and in the physical im-
plementation of neural networks with interneuronal connections realized by
the memristors.
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