Bull. Nov. Comp. Center, Comp. Science, 2(1993), 63-77
(© 1993 NCC Publisher

Parallel algorithm for solving systems
of linear equations for processors using
dynamically changed length of operands

A.P. Vazhenin and V.V. Kozhevnikov

Peculiarity of the most direct algorithms for solving system of linear equations is *he
use of divisions for the elimination of unknowns. Divisions require a great time for
its execution, when the multiprecision arithmetic is used because in this case they are
realized by special programs. The paper describes the parallel algorithm implementing
the elimination procedure without divisions. Some results of time, speedup and accuracy
measurements implemented on a system supporting parallel high-accuracy computations
by dynamically changed length of operands are presented.

1. Introduction

One of important factors effecting the accuracy of data processing results
is rounding in arithmetic operations. Rounding is necessitated by fixed
relatively small length of operands in most computers. Note also that
parallel algorithms used in modern supercomputers can provide very high
performances. However, they are actually noneffective in minimizing the
rounding errors for operations of single or double precision format [1].-

Rounding errors may be often avoided by means of multi-precision and
interval arithmetics. Super-long operands may be processed either by spe-
cialized coprocessors [2], [3], [4], [5], or by program implementation of
multiprecision arithmetic algorithms in terms of a basic computer architec-
ture [6], [7], [8]. However, the program implementation or micro-program
interpretation of high accuracy computations leads to the fast decrease of
problem solution rate and non-effective use of memory. The development of
computer science and current VLSI-technology allows for designing parallel
systems functioning with varying operand length [9], [10].

An example of such approach is the SPARTH-processor [11], [12], [13]
which is implemented within the basic STARAN-like architecture and in-
tended for solving problems containing many vector and matrix operations.
A number of new parallel algorithms was developed for solving problems

64 A.P. Vazhenin, V.V. Kozhevnikov

of linear algebra (adaptive accurate dot products, matrix multiplication
with multidigital elements, iterative algebraic linear equations solving with
dynamic control of result accuracy, etc.), accurate polynomial evaluation,
calculating of transcendent functions, etc. SPARTH-processor ensures the
similar accuracy of results as the known dedicated programming systems
for high-precision computations on sequential computers. Moreover, this
accuracy is achieved in this case simultaneously for numerous data sets in
corresponding processing elements of massively parallel system. This ap-
proach may be used for other massively parallel systems (CM, DAP, MPP,
etc.) as well.

The solution of many scientific and applied problems results in the
computational solution of systems of linear equations. Peculiarity of the
most direct algorithms for solving system of linear equations is the use of
divisions for the elimination of unknowns. Divisions require a great time
for its execution, when the multiprecision arithmetic is used because in this
case they are realized by special programs. Note also that some processors
execute this operation by programming way.

~ The paper shows the parallel algorithm implementing the elimination
procedure without division. Some results of time, speedup and accuracy
measurements on a SPARTH-processor are presented.

2. Theoretical background

A well-known direct method for solving systems of linear equations of Az =
b is the Gauss elimination [14]. A modification of this approach is the
Jordan algorithm [15] which transforms the matrix A to the diagonal mode.
Peculiarity of the most algorithms for solving system of linear equations is
the use of divisions in the diagonalization of A. Usually, great time and/or
hardware resources are required to execute these arithmetic operations. It
is very important, when the multiprecision arithmetic is used because in
this case the arithmetic operations are realized by special programs [6], [7],
[9], [10], [13]. -

The possibility of A transformation using multiplications and subtrac-
tions is shown in [16]. We have used this approach to develop the algorithm
transforming A without division. In this section its principle peculiarities
are explained. .

There is given the matrix equation

AX = B, | (1)

where A = [a;;]nxn is a given N x N matrix, X = [2i;]nxar is a matrix
of unknowns and B = [b:j]nxar is a given N x M matrix of right-hand

Parallel algorithm for solving systems of linear equatlions 65

parts. In other words, (1) is a set of M systems of linear equations with
the different right-hand parts.

In general terms, the diagonalization of (1) may be represented as a
sequence of N matrix multiplications

CN-1CN—3+--C---C1CoAX =CN_1CN_3---Cy---C,CoB, (2)

where C) are matrices formed in a special way.

Matrix multiplications are implemented for both parts of equation (1).
Therefore, (2) is equivalent to (1). Another way of considering the proce-
dure of elimination of unknowns is in deriving the matrix

D=CN_1CNn_y---C}---C1CoA, (3)
where A = [@;;]nxL is the expanded matrix, L = N + M and

_ Gij if 0<j<N-1,
a;; =
’ bijon if N<j<L-1.

The conversion is started fro_m the zeroth row of A. The matrix
Co = [ci;]nxn is composed from A by
1 if i=5=0,
C—tgo lf 1= j,
Cij = _ e
—a;0 if J= 05

0 otherwise.

It is easy to verify that the matrix multiplication Ag= CpA = [a(-q)] NxL

13
is reduced to
m_{Mj if i=0,

a; =
1 —_ —_ — — .
7 doodij — Giodg; otherwise.

After implementation of this operation the elements of the zeroth col-
(0)

umn of Ag are all zero except agp,. Execute similar-transformations for

the following rows. In the k-th iteration the matrix Cy = [cﬁf’]NxN is
composed from Ay_; by

1 if i=j=k,
. g, if 1 =7,
C(L) = kk J (4)
—ay o if j=k,
0 otherwise,

and the elimination procedure is implemented by

66 AP Vazhenin, V. V. Kozhevnikov

(k1)

v a;; if 1= k,
) (5)
Y (k-1) (k-1) (k=1) (k—1) .
L I T otherwise.

After implementation of this operation the elements of the k-th column
of Ay are all zero except ag;;). Therefore, if N similar transformations for
0 <k < N —1 are executed then the matrix D = [d;;]nxL is formed. It

contains the elements:

N if i =,
dij={ 0 if 0<j<N, (6)
(N=-1) .
ar, otherwise.

ij
It is easy to obtain the result matrix X = [2;;]nxpm by

d;x

where k =35+ N.

Theorem 1. A sequential algorithm (5) for solving the matriz equation (1)
has an arithmetic operation count of O4(N%(N + M)).

Proof. As shown above, the solution of matrix equation (1) is implemented
in two stages: the diagonalization of A by (5) and the calculation of ma-
trix X by (7). Two multiplications and one subtraction are necessary to
compute each ut(-;-c). Therefore. the matrix A, = CrAi_; = [ag-c)]NxL can
be obtained in O4(N L)-time, and the computation of D is implemented
in O4(N2L)-time. To obtain the matrix X, it is necessary to execute
N x M divisions. Thus, an arithmetic operation count for solving the
matrix equation (1) is O4(N?(N. + M)). 0

Corollary 1. Let A be a given N x N matriz. The computation of the
inverse matriz A~ by algorithm (5) can be implemented in O 4(N3)-time.

Proof. Let B = E, where E is the N x N unit matrix. The solution of
matrix equation (1) is X = A~!. Therefore, an arithmetic operation count
of matrix inversion is O 4(N?3), because N = M. O

Similarly to the Gauss elimination, the strategy using the pivot element
may be used to improve the stability of method (5). Let the k-th iteration
be executed. Select the element aﬁ,‘l from the k-th-row of A;_;. which

Parallel algorithm for solving sysiems of linear equations 67

|af§_l)| > |a$_])| for 0 < 7,/ < N —1. We name it the pivot element. The

column in which aﬁ,‘l is placed is named the pivot column. Implement the
permutation of k-th and /-th rows of A;_y. After this operation the pivot
element is placed on the diagonal of Ax_;. The elimination procedure is
implemented for the I-th row by

(k-1) I
a““) — f aij If 1= [, (8)
Y i “Sik_l)“e('ful) - aff””a,‘f'l) otherwise.

Now we give a numerical example of this algorithm. Let AX = B be
the system defined by

2z0 + 5z — 8y = 8,
4:E0 + 32?1 — 9222 = 9,
23’,‘0 + 3.’1)1 - 5.’1?2 =T.

Compose the expanded matrix

A=

2 5 -8|8
4 3 -9|9|.
2 3 5|7

Now we can calculate D.

e Iteration O:
) 1 0 0 2 5 —-8(8 2 5 -—-8| 8
CoA=]|9 -8 0 4 3 -919|=|-14 21 0 0 .
5 0 -8 2 3 5|7 —6 1 0 | -16

¢ Iteration 1:

i 21 -5 0 . 112 0 - -168| 168
CiCoA=| 0 1 0 [(CoA=| -14 21 0 0
0 -1 21 -112 0 0 |[-336
¢ Iteration 2:
i 0 0 18816‘ 18816
D=C;CiCoA=| 0 -2352 0 |-4704 |.
-112 - 0 0 . -336

Therefore, the equivalent system is

68 A.P. Vazhenin, V.V. Kozhernikov

1881625 = 18816,
—23522; = —4704,
—112z¢ = —336,

and the solution of the initial system is zg = 3,21 =2, 29 = 1.

The proposed algorithm is more computation intensive than the Gauss
elimination. However, as shown below it is well suitable for parallel imple-
mentation.

3. Architecture of SPARTH-processor

The programming system for parallel computations with dynamically chan-
ged length of operands is described in more detail in papers [11], [13]. Here
we explain only its main features needed to analyze the parallel realization
of algorithm (5). From the user’s viewpoint the system represents a parallel
vector processor with programmable word length called SPARTH-processor.
It is one for Superprecision Parallel ARiTHmetic computations (SPARTH-
computations).

Figure 1 shows the SPARTH-processor architecture implemented within
the STARAN-architecture. The main elements of SPARTH-processor are:

* super-digital vector registers VRy — VR,_; (up to 512 bits);
¢ high-precision parallel summator (HPS) V §, — V §3;

e scalar registers 5

¢ operational STARAN-registers X, Y, M;

e index registers / for storage of constants defining the number of loop
iterations, modes of access to vector registers, etc.;

¢ registers for temporal storage of masks RMy — RM,_, intended for
storing the masks and bit slices resulting from performance of parallel
vector operations (overflow, search operations, etc.);

e the FLIP-interconnection network.

Computations in the SPARTH-processor may be performed in two mo-
des: with the fixed or dynamic accuracy. The first mode is characterized
by the constant length of operands. In this case, the number v of available
vector registers is determined by required capacity

o[t

Parallel algorithm for sotving systems of linear equations 69

i1 i1 an annnn

Figure 1. The SPARTH-processor architecture

where n is the ordered capacity (bits), [is the number of RM-registers
and s is the size of parallel memory of STARAN. The user is able to
choose between the problem solution rate, the amount of processed data
and required accuracy.

In the dynamic accuracy mode, the capacity of operands may be altered
in the interval defined by the user. To implement this, the SPARTH-
processor may be switched to a next capacity limit by means of precision
control procedures.

In the SPARTH-processor three types of data are used:

e integer type format;
e fized-point type format (without integer part);

e real type format (with integer and fractional parts).

Arithmetic operations are executed in two stages. At first, the exact result
(without rounding) is formed in HPS, then it is stored into destination reg-
isters using the rounding operations for multiplication and division. In the
dynamic accuracy mode, the data located in HPS may be stored without
rounding. ‘

In Figure 1 m denotes the number of processing elements (PE’s). All
m components of vectors are processed in parallel. Therefore, if we assume
the duration of operations with words to be a time unit, then parallel addi-
tion and subtraction of vectors have an arithmetic operation count of O (1)
and a bit operation count of Op(n) (for n-bit words). Operation counts
of both parallel multiplication and division are 04(1) and Op(n?). The
change-over of capacity limits from n to 2n bits has a bit operation count
of Op(vn). Data transmission instructions allow the user to assign differ-
ent operations of data exchange between subsystems of SPARTH-processor
using the properties of the FLIP interconnection network [17].

-

70 A.P. Vazhenin, V.V. Kozhevnikov

The peculiarity of the SPARTH-library implementation is that it is re-
duced to few basic operations, which execute structural transformations of
vectors, and provide special types of computations. This allows effective
mapping of algorithms on SPARTH-processor architecture. Some impor-
tant operations of this kind are the expansion and compression of vectors.
These operations were developed to provide the processing of vectors of
arbitrary N. The vector-expansion forms from an initial vector

— 0 .0 0 k-1 _ k-1 k-1
X——{J:O,;Ll,---,ﬂ;N_l,...,xo ’ml 9"'1$N_1

contained k groups of N components each for m > N - k a vector

’

0 0 k-1 k-1
X = {:LO’“"mN—l’ci"'vcv'"!x{) ’”"mN—l’c’“.’c}’
Ny N
where N; = 2M°& N1 and, ¢ is a constant. The vector-compression

transforms X having k groups of Ny = 2 each to

1 0 .0 0 k=1 k-1 k-1
X—{.’co,ml,...,xN_l,...,a:O y 2y ”"’xN-lvw""}v

Nk

where 271 < N < Ny and z,--- is a “tail” of length k(N; — N). The
operation counts of both vector-expansion and vector-compression proce-
dures in the SPARTH-processor are O 4([log, N1), and Op(n[log, N1).

Another type of structural transformations of vectors is implemented by
the procedures executing the data duplicating. One such procedure called
the element-duplicating makes from an initial vector X having k groups
of N = 2' components each N copies of the I-th element inside each group
by '

X = {f?,--‘,Eg,"',l'f"l,"-,xf_l}

—

N N

in O4(log, N)- and Op(nlog, N)-time. The other procedure called .the
group-duplicating forms N copies of the selected I-th group by

b 1.1 I L1 !
X = {fl)a"]'la'“s:‘:N—la'"3305313"":‘:]\’—1}

-

—

N-k

in O 4([log, k])- and Opg(n[log, k])-time.

Parallel algorithm for solving systems of linear equations 71

4. Features of parallel algorithm

The parallel realization of algorithm (5) can be implemented by different
ways depending on the relation between the problem size of N and M,
and the number of PE’s of m. We distinguish three types of this relation:
m>N(N+M), NN<m<N(N+M)and N <m < N2,

Theorem 2. The solution of matrir equation (1) containing n-digital
elements by algorithm (5) can be obtained in O (N [logy(N + M)])-
and Op(Nn(n+ [logy(N + M)]))-time for SPARTH-processor having
m > N(N + M) PE’s.

Proof. As shown in Figure 2 (for N = 4, M = 2, and k = 2), the
expanded matrix A composed from A and B is placed in the vector
register by columns. The elimination procedure (5) is implemented by
parallel subtraction of vectors placed in VRO and VR1 taking into ac-
count the mask RM2 in O4(1)- and Opg(n)-time. The minuend vec-
tor VRO is formed by multiplication of the matrix A and the pivot
element in O4(1)- and Op(n?)-time. The subtrahend vector VR1
is the result of parallel vector multiplication. One such vector is ob-
tained by group-duplicating the pivot column for N + M groups in
O 4([logy(N +M)])- and Op(n[log,(N +M)])-time. The other vector is re-
sulted by the parallel element-duplicating of the k-th element executed
for groups of N components each in O 4(logy N)- and Op(nlog, N)-time.
Therefore, operation counts of each iteration (5) are O([logs(N + M)])
and Og(n?+ n[logy(N + M)]), and the diagonalization of (1) can be imple-
mented in O4(N [logy(N + M)])- and Op(Nn(n + [logy(N + M)]))-time.

To compute the matrix of solutions of X (Figure 3), it is necessary to
execute 1 +log, N parallel data transmissions and permutations in groups
containing 2N,4N,..., N2, 2Ml&(N+M)] elements each according the mask
RM1 in O4(logy N)- and Op(nlog, N)-time. After that, parallel division
is implemented in O4(1)- and Op(n?)-time. Because the elimination pro-
cedure is more computation intensive than the forming of matrix X, we
have the desired result. o

If N # 2°, then the vector-expansion of A is implemented, and compu-
tations are provided for N; = 2Mlo& N1,

Theorem 3. The solution of matriz equation (1) containing n-digital el-
ements by algorithm (5) can be obtained in O(N([XM] + 1)[log, N1)-
and Op(Nn([2M] 4 1)(n + [log, N))-time for SPARTH-processor having
N?2<m< N(N+ M) PE’s.

72 A.P. Vazhenin, V.V. Kozhevnikouv

VRO RMO0O RM1 VRO VR1 RM2 VRO

ago 0o 0 @oolaa @g2dag 1 Qgodaz — Ggad2p
a0 0 0 @10@22 @12a30 1 a10a22 — Aj2G20
@20 0 1 @spa2 @gaag 0 @320

asp 0 0 azoQz2 @azadag 1 G30022 — A32820
ap1 0 0 @p1azs dgaaz; 1 @122 — Apadsny
an 0 0 @112 a12aa 1 a11a92 — @120z
as 0 1 a21a32 @Agadg) 0 asy

asy 0 0 a31azs Gazday 1 a31a22 — aszada
ag2 0 0 Gp2022 Gpadsap 1 0

a2 0 0 @120z @y2as9 1 0

@an 1 1 aadan Azada) 0 g2

a3z 0 0 aza@zz Azaazg 1 0

ag3 0 0 @o1a32 Qgadaz 1 @03@22 — Qgada3
a3 0 0 a11az2 G12a23 1 @132 — A12a23
33 0 1 a21a32 anadsg 0 a3

as3 0 0 asi1dzs 32023 1 a33ap — a32023
boo 0 0 booazs agabao 1 booaas — agabap
bio 0 0 bioazs ai2bag 1 bioazs — a1abag
bao 0 1 bagaaz asabag 0 bao

bao 0 0 bagazs agaboo 1 bapazs — azabap
bo1 0 0 borazs agabay 1 bo1aga — agaba;
b1, 0 0 biiaza ajaby 1 biiazz — ajaba
bay 0 1 barazs. azsbay 0 bay

b3y 0 0 barazz aszzbay 1 b3 — agzabay

Figure 2. Executing the elimination procedure in SPARTH-processor

Proof. In this case, the matrix A is placed in vector register. |—N_"11\4-|
additional vector registers are needed to store B. Therefore, the group-
duplicating is implemented in O4([log, N)- and Op(n[log, N])-time,
and the element-duplicating is implemented in O 4(([24] 41)[log, N])-
and Op(n([2M] 4 1)[log, N])-time. Operation counts for (5) are
OA([%] + 1) and Opg(n%([%M] +1)). This allows to obtain the desire

asymptotic estimations of execution time. a

Theorem 4. The solution of matriz equation (1) containing n-digital el-
ements by algorithm (5) can be obtained in OA(N[N—L',E.G\”—I] [log, N1)- and
N

Op(Nn [ﬁL}EJM](n + [logy N1))-time for ~ SPARTH-processor having
N
N <m < N? PE’s,

Parallel algorithm for solving systems of linear equations 73

VRO RMO RM1 VRO RM1 VRO VR1 VR1

agp 1 0 oo 0 agp boo zoo = boo/ano
0 0 1 ay 0 ap; bio T10 = bip/aq;
0 0 1 0 1 o2 bao z20 = bao/azs
0 0 1 0 1 ass bso @30 = bso/ass
0 0 1 doo 0 o big zo1 = bo1/ago

ar 1 0 an 0 ary boo 11 =b11/an
0 0 1 0 1 @22 bao 221 = ba1/ass
0 0 1 0 1 asz bag z31 = b3;/ass
0 0 1 0 1 apo * *
0 0 1 0 1 apy * *

ayy 1 0 as2 0 asy * *
0 0 1 a33 0 as3 * *
0 0 1 0 1 ago * *
0 0 1 0 1 ayy * *
0 0 1 ano 0 aa9 * *

az3 1 0 ass O ass * *

boo 0 0 boo 0 boo * *

bao 0 0 bay 0 bao * *

bag 0 0 b3o 0 bag * *

boy 0 0 bo1 0 boy * *

b1y 0 0 b1 0 b11 * *

ba1 0 0 bay 0 bsy * *

b3y 0 0 b3y 0 baq * *

Figure 3. Computing the matrix of solutions

R n be i ister, and [
Proof. | %] columns can be stored in one vector register, an [Ti_ﬁ'l vector

registers are needed to place N + M columns of A. Therefore, [%JM] arith-

metic and duplicating operations are needed to implement each iteration
(5), and the diagonalization of A can be executed in OA(NI_LV—?'_;TM] [log,NT)-
N

L
and OB(Nn.[NTE]"i](n + [log, N1))-time.
N
To calculate X, the diagonal elements of A are moved into one vec-
tor register in OA([[—‘%—J-'] [logy N1)- and OB(nI'F%ﬂ [log, N1)-time. Then
[TAE%] parallel divisions are executed.
N

Because the elimination procedure is more computation intensive than
the forming of matrix X, we have the desired result. a

74 . A.P. Vazhenin, V.V. Kozhevnikov

Given theorems confirm the possibility of effective SIMD-parallelization
of method (5). Note also that the selection of the pivot element is a usual
search operation for systems of this kind. It can be implemented in O 4(1)-
and Op(n)-time. '

Rounding errors can be avoided by the accurate calculation of (5). To
do this, multiplications and subtractions are implemented in HPS without
rounding. The dynamically changed length of operands allows exact calcu-
lations for a sequence of iterations (5). The necessity of switching to next
capacity limit can be selected, for example, by analyzing overflows for in-
teger type of data. The fast growing of the operand length can be avoided
by scaling down the values of elements placed in rows of A. It is possible
to implement this operation as a shift of numbers to the least-significant
bits for all elements of each row.

5. Results of numerical experiments

In this section the results of some numerical experiments are presented.
Computations were implemented in STARAN-like system with following
characteristics: m = 256, execution times of addition and multiplication
are t, & 6nr and t, = 6n’r correspondingly, where T = 200ns is the
average execution time of each parallel bit operation.

Figure 4 shows the dependence of the execution time from the problem
size of N and the length of operands of n (in bits) for M = N. Computa-
tions were implemented according to the relation between N and m. One
of three parallel algorithms described in Section 4 was selected to support
the optimal solution rate.

Figure 5 contains results of estimating a relative speedup defined as a
ratio between times needed for sequential (in one processing channel) and
parallel solutions.

To estimate the accuracy of proposed algerithm we have used the
“hard” input data. One example of such data is the following system:

1] To 1
1.07 1 | | 207
1.02 1.10 1 Nay | T | 322
a; oy B 1 T3 ¥

where oy = 0.993-10', a; = —(a; +4), f= —0.34-10~3 and v = —4.00017.
Computations were implemented in the following stages:

Parallel algorithm for solving systems of linear equations 75

: t,sec "103

0o 100 200

Figure 4. Execution time

e parallel conversion of input floating point numbers to SPARTH-
format with an automatic selection of capacity needed for their exact
representation;

e parallel solution of initial system executing the iteration (5) without
rounding;

e parallel transformation of results to the floating-point format.

It is easy to verify that the capacity needed for the exact representation
of this matrix is 128 bits. Computations implemented for this capacity
limit allow to obtain the exact solution. It is To = 23 = 29 = 1 and
z3 =0.17-1073,

6. Conclusion

Our experience of the implementation of SPARTH-processor confirms that
it can be a serious basis for parallel high-accuracy computations. A great
attention is directed to experiments with ill-conditioned matrices like
the Hilbert one. In this case we not only employ very-long operand words

76 A.P. Vazhenin, V.V. Kozhevnikov

1S
100
50
1 N
0 T T T 110|0 T T T T 20|0 T T T T

Figure 5. Relative speedup

but excluding the intermediate division operations. The proposed algorithm
illustrates this approach.

Note also that the given results were obtained for a system having
relatively low performance. The modern computers are significantly dif-
ferent from a system used in our investigations (for example, m = 65536,
T 2 50ns, t, & 2nt and t, = 2n’r for CM-computers). This can allow
very effective implementation of proposed method.

References

[1] D. Ratz, The effects of the arithmetic of vector computers on basic numerical meth-
ods, Proc. of Int. Conf. “Contributions to Computer Arithmetic and Self-Validating
numerical methods”, IMACS, Scientific Publishing Co., 1990, 499-514.)

(2] A.L. Lucke, Programmed word length computer, Proceedings of A.C.M. National
Meeting, 1967, 57-65.

(3] M.S. Cohen, T.E. Hull, V.C. Hamacker, CADAC: a controlled-precision decimal
digital arithmetic Unit, IEEE Trans. on Comput., 32, 1983, 370-377.

(4] B. Serpette, J. Vullemin, J.C. Herve, A portable efficient package for arbitrary-
precision arithmetic, PRL reports, DEC, Paris, Research Lab., 85, France.

(5]
(6]

[7]
(8]

(9]
(10]

[11]

(12]

[13]

(14]

[15]
[16]

(17]

Parallel algorithm for solving systems of linear equations 77

J.J. Thomas, S.R. Parker, Implementing exact calculations in hardware, IEEE Trans.
Comput. 36, 1987, 764-768.

Fr. Kriickeberg, Arbitrary accuracy with variable precision arithmetic, Interval
Mathematics 1989, Proc. Int. Symp., Freiburg, FRG, 1985, eds. K. Nickel, Lecture
Notes in Comput. Sci., 212, 95-101.

E. Lange, Implementation and test of the ACRITH facility in a System/370, IEEE
Trans. on Comput. 36, 1987, 1088-1096.

J.H. Bleher, S.M. Rump, U. Kulish, M. Metzger, Ch. Ullrich, W. Walter,
FORTRAN-SC: a study of a FORTRAN extension for engineering/scientific compu-
tation with access to ACRITH, Computing 39, Springer, Berlin, 1987, 93-110.

N.N. Mirenkov, Parallel Computers for Overcoming Rounding Errors, Prepr. of In-
stitute of Mathematics, OBC-08, Novosibirsk, 1979 (in Russian).

D. Buell, R. Ward, A multiprecise integer arithmetic package, The Journal of Su-
percomputing, 3, 1989, 89-107.

A. Vazhenin, Programming system of High-accuracy computations for associative
array processor, Proc. on CONPAR-90/VAPP-1V, Volume of special technical con-
tributions, Ziirich, 1990, C69-C72.

A. Vazhenin, Hardware and algorithmic support of high-accuracy computations in
vertical processing systems, Proc. of Int. Conf. “Paralle] Computing Technologies”,
1993, Obninsk, Russia, Vol. 1 ReSCo J.-8.Co., Moscow, 1993, 149-162.

A. Vazhenin, Implementation of high-accuracy computations in vertical processing
systems, Bulletin of the Novosibirsk Computing Center, Series: Computer Science,
Issue: 1, NCC Publisher, Novosibirsk, 1993, 51-62.

J.R. Rice, Matrix Computations and Mathematical Software, McGraw-Hill Book
Company, New York, 1981.

A.G. Kurosh, Course of Higher Algerbra, FISMATGIS, Moscow, 1963 (in Russian).

D.C. Fadeev, V.N. Fadeeva, Computational Methods of Linear Algebra, FISMAT-
GIS, Moscow, 1963 (in Russian).

K.J. Thurber, Large-scale Computer Architecture: Parallel and Associative Pro-
cessors, Rochelle Park, Hayden Book Comp., New York, 1976.

