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On one system of the Burgers equations arising in
the two-velocity hydrodynamics

G.S. Vasiliev, Kh.Kh. Imomnazarov, B.J. Mamasoliyev

Abstract. A system of the Burgers equations of the two-velocity hydrodynamics
is obtained. We consider the Cauchy problem in the case of a one-dimensional
system. The estimate of the stability of the solution is obtained. We have obtained
a formula for the Cauchy problem for the one-dimensional system of equations
that arises in the two-velocity hydrodynamics. It is shown that with disappearance
of the kinetic friction coefficient, which is responsible for the energy dissipation,
this formula turns to the famous Cauchy problem for the one-dimensional Burgers
equation. The existence and uniqueness of solutions to the Cauchy problem for the
one-dimensional systems of the Burgers type are proved using the method of weak
approximation.

Keywords: two-velocity hydrodynamics, Burgers type system, Florin-Hopf-Cole
transformation, method of weak approximation.

1. Introduction

In recent decades, mathematicians have become increasingly interested in
the problems associated with the behavior of solutions to systems of par-
tial differential equations with a small parameter in high derivatives with
allowance for the kinetic parameters. These problems arose from the phys-
ical applications, mostly from contemporary hydrodynamics (compressible
multiphase fluids with low viscosity). An analog to the Burgers equation
arises, for example, in studying a weak nonlinear one-dimensional acoustic
wave moving with a linear velocity of sound. In this case, nonlinear velocity
terms in the system of the Burgers equations come from the sound velocity
depending on the amplitude of the sound wave, on the second derivative
terms and on the difference in the velocities representing the attenuation
of sound waves associated with energy dissipation. In other words, these
terms provide the continuity of solutions and are dissipative processes asso-
ciated with the production of entropy. These terms in turn provide non-roll
waves [1]. The system under consideration is a special case of a two-velocity
system of hydrodynamics equations [2–6].

A one-dimensional analog of the Navier–Stokes equations for a compress-
ible fluid can be considered as a system of the Burgers equations which is a
system of nonlinear convection-diffusion equations [7]
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ut + uux = νuxx − b̃ (u− ũ), (1)

ũt + ũũx = ν̃ũxx + b (u− ũ), (2)

where the quantities u and ũ can be regarded as velocity subsystems with
the dimension [x]/[t], constituting two-velocity components with the corre-
sponding partial continuum densities ρ and ρ̃, ρ̄ = ρ̃ + ρ is the common

density of the continuum, b̃ =
ρ̃

ρ
b, b > 0 is the coefficient of friction with

the dimension 1/[t], which is the analog to the Darcy factor for porous me-
dia. The positive constants ν and ν̃ play the role of kinematic viscosities
subsystems of the dimension [x]2/[t].

A two-velocity system of hydrodynamic equations and a system of the
Burgers equations have much in common. For example, the quadratic non-
linearity with respect to the terms u and ũ with advective terms correspond-
ing to the sound, depending on the amplitude of the sound waves and linear
viscosities ν, ν̃, the coefficient of friction b of the right-hand side is responsi-
ble for the attenuation of the sound waves [1]. With regard to the properties
of the solutions, they are totally different. The system of the Burgers equa-
tions in the vanishing coefficients ν, ν̃, b is formed of both strong (shock
waves), and weak discontinuities, while the solution of the system of two-
velocity hydrodynamics does not have such features. However, the range of
applicability of this system is by no means limited to the above example.
These systems arise in many problems, thus confirming their significance.

2. The Cauchy problem for the system of the Burgers type
equations

For system (1), (2) in the domain Ω[0,T ] = {(t, x) : 0 ≤ t ≤ T, x ∈ R} let
us consider the Cauchy problem with the following initial data

u|t=0 = u0(x), ũ|t=0 = ũ0(x), x ∈ R. (3)

We are interested in the classical solution of the Cauchy problem for the
system of the Burgers equations (1), (2), namely, u, ũ ∈ C1,2(Ω) is the class
of functions once continuously differentiable with respect to t and twice
continuously differentiable with respect to x.

Theorem 1. Let u0, ũ0 ∈ C2(R) ∩W 1
2 (R), where W 1

2 (R) is the Sobolev
space. Then the Cauchy problem (1)–(3) has in the class C1,2(Ω[0,T ]) a
unique solution, and the following estimate of stability holds∫

Ω[0,T ]

(u2(t, x) + ũ2(t, x)) dx dt ≤ T max{b, b̃}
min{b, b̃}

∫ ∞
−∞

(u2
0(x) + ũ2

0(x)) dx. (4)
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Proof. Multiply both sides of equations (1) and (2) by u and ũ, respectively.
After integration with respect to x and after simple transformations we
obtain

1

2

∂

∂t

∫ ∞
−∞

u2 dx = −ν
∫ ∞
−∞

(ux)2 dx− b̃
∫ ∞
−∞

(u2 − uũ) dx, (5)

1

2

∂

∂t

∫ ∞
−∞

ũ2 dx = −ν̃
∫ ∞
−∞

(ũx)2 dx+ b

∫ ∞
−∞

(uũ− ũ2) dx. (6)

Hence, multiplying (5) by b, (6) by b̃ and summing the results obtained,
after simple transformations we arrive at

∂

∂t

∫ ∞
−∞

(bu2 + b̃ũ2) dx ≤ 0.

Now, we can find the function m(t) =
∫ ∞
−∞

(u2(t, x) + ũ2(t, x)) dx satisfies
the inequality

m(t) ≤ max{b, b̃}
min{b, b̃}

m(0).

Hence, integrating from 0 to T , we obtain (4). The uniqueness is proved in
a standard way.

3. The formula for solving the Cauchy problem for the
Burgers type system of equations

Next, assume as in [8] that the Cauchy data u0(x), ũ0(x) for large |x| satisfy
the following conditions∫ x

0
u0(ξ) dξ = o(x2),

∫ x

0
ũ0(ξ) dξ = o(x2). (7)

For simplicity, assume suppu0, supp ũ0 ⊂ [0,∞).
It is convenient to use the Florin–Hopf–Cole transformation

φ(t, x) = exp

[
− 1

2ν

∫ x

−∞
u(t, ξ) dξ

]
, ψ(t, x) = exp

[
− 1

2ν̃

∫ x

−∞
ũ(t, ξ) dξ

]
,

herewith the functions u and v are expressed in terms of the functions φ and
ψ by the formulas

u = −2ν
φx
φ
, ũ = −2ν̃

ψx
ψ
.

In terms of the functions φ and ψ the system of dynamic equations (1) and
(2) takes the form
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(φt
φ

)
x

=
(
ν
φxx
φ

)
x
− b̃

ν

(
ln
φν

ψν̃

)
x
,(ψt

ψ

)
x

=
(
ν̃
ψxx
φ

)
x

+
b

ν̃

(
ln
φν

ψν̃

)
x
.

Hence, after the integration with respect to x, we obtain

φt = νφxx −
b̃

ν
(ν lnφ− ν̃ lnψ)φ+ C1(t)φ, (8)

ψt = ν̃ψxx +
b

ν
(ν lnφ− ν̃ lnψ)ψ + C2(t)ψ, (9)

where C1(t) and C2(t) are arbitrary functions. Taking into account the
behavior of ψ and φ at x→ −∞, we conclude C1(t) = C2(t) = 0.

The Cauchy problem for system (8), (9) with the data

φ|t=0 = φ0(x), ψ|t=0 = ψ0(x)

has the form

φ(t, x) =

∫ ∞
−∞

Gν(x, ξ, t)φ0(ξ) dξ −

b̃

ν

∫ t

0

∫ ∞
−∞
Gν(x, ξ, t− τ)[ν lnφ(τ, ξ)− ν̃ lnψ(τ, ξ)]φ(τ, ξ) dξ dτ,

(10)

ψ(t, x) =

∫ ∞
−∞

Gν̃(x, ξ, t)ψ0(ξ) dξ +

b

ν

∫ t

0

∫ ∞
−∞
Gν̃(x, ξ, t− τ)[ν lnφ(τ, ξ)− ν̃ lnψ(τ, ξ)]ψ(τ, ξ) dξ dτ,

(11)

where

Ga(x, ξ, t) =
1√

4πat
exp
(
−(x− ξ)2

4at

)
is the fundamental solution of the one-dimensional heat equation.

Let us introduce the following functions

F (u, x, y, t) =
(x− y)2

2t
+

∫ y

0
u(t, η) dη, (12)

F1(u, x, y, t, τ) =
(x− y)2

2(t− τ)
+

∫ y

0
u(τ, η) dη. (13)
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Note that the following equalities for any x, y, t, τ are valid

F (u0, x, y, t)− F (ũ0, x, y, t) =

∫ y

0
[u0(η)− ũ0(η)] dη,

F1(u, x, y, t, τ)− F1(ũ, x, y, t, τ) =

∫ y

0
[u(τ, η)− ũ(τ, η)] dη.

Differentiate both sides of equalities (9) and (10) with respect to x. After
simple transformations we obtain

φx(t, x) = − 1

2ν

∫ ∞
−∞

u0(ξ)Gν(x, ξ, t) exp

[
− 1

2ν

∫ ξ

0
u0(η) dη

]
dξ +

b̃

2ν

∫ t

0

∫ ∞
−∞

x− ξ
t− τ

Gν(x, ξ, t− τ) exp

[
− 1

2ν

∫ ξ

0
u(τ, η) dη

]
×∫ ξ

0
[u(τ, η)− ũ(τ, η)] dη dξ dτ,

ψx(t, x) = − 1

2ν̃

∫ ∞
−∞

ũ0(ξ)Gν̃(x, ξ, t) exp

[
− 1

2ν̃

∫ ξ

0
ũ0(η) dη

]
dξ −

− b

2ν̃

∫ t

0

∫ ∞
−∞

x− ξ
t− τ

Gν̃(x, ξ, t− τ) exp

[
− 1

2ν̃

∫ ξ

0
ũ(τ, η) dη

]
×∫ ξ

0
[u(τ, η)− ũ(τ, η)] dη dξ dτ.

Hence, taking into account (12), (13) and the definition of the fundamental
solution of the operator of conductivity we obtain

φx(t, x) = − 1

2ν
√

4πνt

∫ ∞
−∞

u0(ξ) exp

[
− 1

2ν
F (u0, x, ξ, t)

]
dξ +

b̃

2ν

∫ t

0

∫ ∞
−∞

1√
4πν(t− τ)

x− ξ
t− τ

F2(u, ũ, x, ξ, t− τ, τ) dξ dτ, (14)

ψx(t, x) = − 1

2ν̃
√

4πν̃t

∫ ∞
−∞

ũ0(ξ) exp

[
− 1

2ν̃
F (ũ0, x, ξ, t)

]
dξ −

b

2ν̃

∫ t

0

∫ ∞
−∞

1√
4πν̃(t− τ)

x− ξ
t− τ

F̃2(u, ũ, x, ξ, t− τ, τ) dξ dτ. (15)

In formulas (14) and (15) the following notation is used

F2(u, v, x, ξ, t−τ, τ) = exp

[
− 1

2ν
F1(u, x, ξ, t−τ, τ)

]∫ ξ

0
[u(τ, η)− v(τ, η)] dη,

F̃2(u, v, x, ξ, t−τ, τ) = exp

[
− 1

2ν̃
F1(v, x, ξ, t−τ, τ)

] ∫ ξ

0
[u(τ, η)− v(τ, η)] dη.

Thus, we come to the following
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Theorem 2. Let u0(x), ũ0(x) be measurable functions that satisfy rela-
tion (7). Then for the solution of the Cauchy problem (1)–(3) we have the
formula

u(t, x) =

{∫ ∞
−∞

u0(ξ) exp

[
− 1

2ν
F (u0, x, ξ, t)

]
dξ −∫ t

0

∫ ∞
−∞

b̃
√
t√

t− τ
x− ξ
t− τ

F2(u, ũ, x, ξ, t− τ, τ) dξ dτ

} /
{∫ ∞
−∞

exp

[
− 1

2ν
F (u0, x, ξ, t)

]
dξ −∫ t

0

∫ ∞
−∞

b̃
√
t√

t− τ
F2(u, ũ, x, ξ, t− τ, τ) dξ dτ

}
,

ũ(t, x) =

{∫ ∞
−∞

ũ0(ξ) exp

[
− 1

2ν̃
F (ũ0, x, ξ, t)

]
dξ +∫ t

0

∫ ∞
−∞

b
√
t√

t− τ
x− ξ
t− τ

F̃2(u, ũ, x, ξ, t− τ, τ) dξ dτ

} /
{∫ ∞
−∞

exp

[
− 1

2ν̃
F (v0, x, ξ, t)

]
dξ +∫ t

0

∫ ∞
−∞

b
√
t√

t− τ
F̃2(u, ũ, x, ξ, t− τ, τ) dξ dτ

}
.

Corollary. Let u0(x), ũ0(x) satisfy the conditions of Theorem 2. Then for
solving the Cauchy problem (1)–(3) we have the formulas

u(t, x) =

∫ ∞
−∞

u0(ξ) exp
[
− 1

2ν
F (u0, x, ξ, t)

]
dξ∫ ∞

−∞
exp
[
− 1

2ν
F (u0, x, ξ, t)

]
dξ

+

b̃

∫ t

0

∫ ∞
−∞

√
1 +

τ

t− τ

(
u(t, x)− x− ξ

t− τ

)
F2(u, ũ, x, ξ, t− τ, τ) dξ dτ∫ ∞

−∞
exp
[
− 1

2ν
F (u0, x, ξ, t)

]
dξ

,

(16)

ũ(t, x) =

∫ ∞
−∞

ũ0(ξ) exp
[
− 1

2ν̃
F (ũ0, x, ξ, t)

]
dξ∫ ∞

−∞
exp
[
− 1

2ν̃
F (ũ0, x, ξ, t)

]
dξ

−

b

∫ t

0

∫ ∞
−∞

√
1 +

τ

t− τ

(
ũ(t, x)− x− ξ

t− τ

)
F̃2(u, ũ, x, ξ, t− τ, τ) dξ dτ∫ ∞

−∞
exp
[
− 1

2ν̃
F (ũ0, x, ξ, t)

]
dξ

.

(17)
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Remark 1. With disappearance of the friction coefficient b (in the absence
of dissipation energy due to friction) solution (16), (17) turns to the famous
Cauchy problem for the Burgers equation [8].

4. The method of weak approximation for the Cauchy
problem for the Burgers type system of equations

Let us consider problem (1)–(3) relative to the Cauchy data u0, ũ0, assuming
that u0, ũ0 ∈ C2(R) and∣∣∣∣dnu0(x)

dxn

∣∣∣∣ ≤ cn, ∣∣∣∣dnũ0(x)

dxn

∣∣∣∣ ≤ c̃n, x ∈ R, n = 0, 1, 2,

where cn, c̃n are some non-negative constants.
First, we consider the case of infinitely differentiable Cauchy data. Let

us assume that u0, ũ0 ∈ C∞(R) and∣∣∣∣dnu0(x)

dxn

∣∣∣∣ ≤ cn, ∣∣∣∣dnũ0(x)

dxn

∣∣∣∣ ≤ c̃n, x ∈ R, n = 0, 1, . . . (18)

Following [9, 10], we use a weak approximation of the Cauchy problem
(1)–(3) with the help of a series of problems

uτt = 3νuτxx, ũτt = 3ν̃ũτxx, nτ < t ≤
(
n+

1

3

)
τ, (19)

uτt + 3uτuτx = 0, ũτt + 3ũτ ũτx = 0,
(
n+

1

3

)
τ < t ≤

(
n+

2

3

)
τ, (20)

uτt = −3b̃(uτ − ũτ ), ũτt = 3b(uτ − ũτ ),
(
n+

2

3

)
τ < t ≤ (n+ 1)τ, (21)

uτ (0, x) = u0(x), ũτ (0, x) = ũ0(x), (22)

where Nτ = t∗, provided that N is integer exceeding 1, n = 0, 1, . . . , N − 1,
and the constant t∗ satisfies equality (25) below.

Remark 2. When building the solution of (19)–(22), at the first fractional
step, we solve the Cauchy problem for the heat equation, at the second
fractional step, we solve the Cauchy problem for the transport equation

vt + 3vvx = 0, (23)

and, at the third fractional step, we solve the Cauchy problem for systems
of ordinary differential equations.

It is known that in the case of the Cauchy problem for equation (23)
with the initial data
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v(0, x) = v0(x) (24)

bounded together with their derivatives, the solution may be a gradient
catastrophe, that is, there can exist t1 > 0, such that the classical solution
v of this problem would exist in the domain Ω[0,t1), be bounded in this

domain, but the derivative vx in the neighborhood of a point (t1, x
0) is

becoming unbounded: vx(t, x)→∞ with t→ t1, x→ x0 [1, 11, 12].

It is easy to show that if
∣∣∣dv0(x)

dx

∣∣∣ ≤ c1, the classical solution of problem

(23), (24) in the domain Ω[0,t∗] is bounded and the following estimate holds

|vx(t, x)| ≤ c1

1− 3c1t
, (t, x) ∈ Ω[0,t∗],

where t satisfies the inequality 1− 3c1t
∗ > 0.

Let relations (18) be performed and the constants c1, c̃1 and t∗ satisfy
the conditions

1− c1t
∗ > 0, 1− c̃1t

∗ > 0. (25)

Then the solution uτ , ũτ in the domain Ω[0,t∗] exists and is bounded together
with all its derivatives with respect to the variables t, x.

It is obvious that for any fixed τ , the solution of uτ and ũτ of problem
(19)–(22) is bounded regardless of the value τ :

|uτ (t, x)| ≤ c0, |ũτ (t, x)| ≤ c̃0. (26)

Repeating the argument from [9], we can show the boundedness of the
derivative solutions uτ and ũτ of any order with respect to x:∣∣∣∣∂kuτ (t, x)

∂xk

∣∣∣∣ ≤ Ck, ∣∣∣∣∂kũτ (t, x)

∂xk

∣∣∣∣ ≤ C̃k, (t, x) ∈ Ω[0,t∗], k = 0, 1, . . . ,

(27)
where Ck, C̃k are some positive constants such that C0 = c0, C̃0 = c̃0.

Independent of τ , from expressions (26), (27) and from equations
(19)–(21) follow the estimates:∣∣∣∣∂k+1uτ (t, x)

∂t∂xk

∣∣∣∣ ≤ sk, ∣∣∣∣∂k+1ũτ (t, x)

∂t∂xk

∣∣∣∣ ≤ s̃k, (t, x) ∈ Ω[0,t∗], k = 0, 1, . . .

These estimates suggest that uτ , ũτ and their derivatives with respect to
x of any order are uniformly bounded and equicontinuous in Ω[0,t∗]. By
the Arzela theorem, using the diagonal method we can choose subsequences
{uτk}, {ũτk} of sequences {uτ}, {ũτ} converging in Ω[0,t∗] to the functions
u and ũ, respectively, together with all the derivatives with respect to x,
uniform in every bounded region of the domain Ω[0,t∗], whereby the functions
u and ũ have derivatives of any order with respect to x and satisfy the
following relations
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u(0, x) = u0(x), ũ(0, x) = ũ0(x),∣∣∣∣∂ku(t, x)

∂xk

∣∣∣∣ ≤ Ck, ∣∣∣∣∂kũ(t, x)

∂xk

∣∣∣∣ ≤ C̃k, (t, x) ∈ Ω[0,t∗], k = 0, 1, . . . .

The uniqueness of the solution is proved in a standard way. Consequently,
the sequences of the functions {uτ}, {ũτ} with τ → 0 uniformly converge in
the domain Ω[0,t∗] to u and ũ, respectively, together with all their derivatives.

The case when u0, ũ0 ∈ C2(R) is proved using the average functions [13].
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