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Transition system semantics

for flow event structures∗

Nataliya Gribovskaya, Irina Virbitskaite

Abstract. In this paper, we deal with event-oriented models of concurrent pro-
cesses which are generalizations of the well-studied model of prime event structures.
In particular, we translate flow event structures into structures for resolvable conflict
(the most expressive event-oriented model) and back, define two structurally differ-
ent methods of generating transition systems from the models under consideration,
and demonstrate that, despite their differences, the methods lead to isomorphic
results in interleaving and step semantics.
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1. Introduction

Flow event structures [5] extend the well-studied class of prime event struc-
tures [22] in several ways: in flow structures, the causality ordering repre-
sented by a flow relation is no longer a partial order; the symmetric conflict
relation can be reflexive; the flow and the conflict relations can overlap; the
principles of finite causes and conflict inheritance are dropped.

Transition systems play an important role in concurrency theory. As-
sociating a transition system with a true concurrency model has proved
to be a suitable technique for studying various problems related to reac-
tive systems including consistency, bisimulation, implementation and veri-
fication. Two structurally different methods of associating transition sys-
tem semantics to event structure models are distinguished in the literature.
One of them is based on configurations (states are sets of executed events),
e.g., see [1, 2, 8, 9, 10, 11, 13, 14, 19, 21]), the other on residuals (states
are model fragments left after a partial execution of the model), e.g., see
[5, 6, 12, 14, 15, 16, 17, 20]. Configuration-based transition systems seem
to be predominantly used as the semantics of event structures, but residual-
based transition systems are actively used in providing operational semantics
of process calculi and in demonstrating the consistency of operational and
denotational semantics.

In the literature, the two semantics have occasionally been used alongside
each other (see [14] as an example), but their general relationship has not
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been studied too deeply. In a seminal paper, viz. [18], bisimulations between
configuration-based and residual-based transition systems have been proved
to exist for prime event structures [22]. This result has been extended in
[3] to more complex event structure models. A crucial technical subtlety
pertains to the removal operator that lies at the heart of residual semantics.
Counterexamples illustrate that an isomorphism cannot be achieved with
the various removal operators defined in [3, 18]. The paper [4] demonstrates
that, nevertheless, the removal operators can be tightened in such a way
that isomorphisms, rather than just bisimulations, between the two types of
transition systems belonging to a single event structure can be obtained.

In this paper, we consider flow event structures and translate them into
event structures for resolvable conflict (the most expressive event-based mo-
del) and back. Also, we define removal operators for the models under con-
sideration and provide isomorphism results on the two kinds of transition
systems belonging to a single event structure, in interleaving and step se-
mantics.

The rest of paper is organized as follows. In Section 2, the models of
flow event structures and event structures for resolvable conflict are consid-
ered, translations between them are provided, and removal operators for the
models are developed. Section 3 contains the definitions of construction op-
erators of two types of transition systems from the event structure models
that are proven to lead to isomorphism results. Section 4 concludes. The
proofs of the results obtained can be found in Appendix.

2. Event structure models

2.1. Flow event structures

Flow event structures introduced in [5] are another kind of event structures
having a similar representation as prime event structures1 [22] but being
much more relaxed. First, the causality ordering in flow event structures is
represented by an irreflexive flow relation that is not necessarily transitive
and acyclic. Second, the symmetric conflict relation is not assumed to be
irreflexive; this means that self-conflicting events are allowed. Such events
cannot in general be removed from a flow structure without affecting its
set of configurations. Third, there is no requirement on the relationships
between the flow and the conflict relations. Fourth, the principles of finite
causes and conflict inheritance are dropped.

1A prime event structure is a tuple E = (E, ♯,≤), where E is a set of events; ≤ ⊆ E×E

is a partial order (the causality relation), satisfying the principle of finite causes: ∀e ∈
E : ⌊e⌋ = {e′ ∈ E | e′ ≤ e} is finite; ♯ ⊆ E × E is an irreflexive and symmetric relation
(the conflict relation), satisfying the principle of hereditary conflict: ∀e, e′, e′′ ∈ E : e ≤ e′

and e ♯ e′′ then e′ ♯ e′′.
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Definition 1. A flow event structure (F -structure) over L is a tuple E
= (E, ♯, ≺, L, l), where E is a set of events; ♯ ⊆ E × E is a symmetric
relation (the conflict relation); ≺ ⊆ E×E is an irreflexive relation (the flow
relation); L is a set of labels; l : E → L is a labeling function.

Consider the notion of a configuration of F -structures. First, configura-
tions must be finite and, moreover, conflict-free (hence, self-conflicting events
will never occur in any configuration, i.e. they are impossible). Second, for
an event to occur it is necessary that a complete non-conflicting set of its
immediate causes has occurred. Here, we say that d is a possible immediate
cause for e iff d ≺ e, and a set of immediate causes is complete if for any
cause which is not contained there is a conflicting cause which is included.
Third, no cycles with respect to causal dependence may occur. A set X ⊆ E

is a configuration of an F -structure E iff X is a finite set, conflict-free (i.e.,
for all e, e′ ∈ X ¬(e ♯ e′)), left-closed up to conflicts (i.e., for all d, e ∈ E if
e ∈ X, d ≺ e and d 6∈ X then there is f ∈ X such that d ♯ f ≺ e), and does
not contain flow cycles. The set of configurations of E is denoted Conf (E).

In the graphical representation of an F -structure, e ≺ e′ is drawn as an
arrow from e to e′; the pairs of the events included in the conflict relation are
marked by the symbol ♯; and the self-conflicts are pictured as dotted circles
around the events.

Ef : a b c

d e f

♯ ♯
♯ ♯

Figure 1. A flow event structure Ef

Example 1. Figure 1 presents the F -structure Ef over L = {a, b, c, d, e, f},
with Ef = L; ♯f = {(a, b), (b, a), (b, b), (b, c), (c, b), (a, d), (d, a), (c, f),
(f, c)}; ≺f= {(d, e), (a, e), (b, e), (c, e) (f, e)}; and the identity labeling
function lf . The set of configurations Conf (Ef ) consists of the sets: ∅, {a},
{c}, {d}, {f}, {a, c}, {a, f}, {c, d}, {d, f}, {a, c, e}, {a, f, e}, {c, d, e}.

We are ready to define the removal operator of F -structures.

Definition 2. For E = (E, ≺, ♯, L, l) ∈ E
f
L and X ∈ Conf (E), a removal

operator is defined as follows: E \X = (E′, ♯′, ≺′, L, l′), with

E′ = E \X
♯′ = (♯ ∩ (E′ × E′)) ∪ {(e, e) | e ∈ ♯(X)},

where ♯(X) = {e′ ∈ E | ∃e ∈ X : e ♯ e′}
≺′ = (≺ ∩ (E′ × E′)) \ {(e, f) ∈≺ | ∃e′ ∈ X : e ♯ e′ ≺ f}
l′ = l |E′.



24 N. Gribovskaya, I. Virbitskaite

The intuitive interpretation of the above definition is the following. All
the events in X are removed from E; the conflict relation ♯′ contains the pairs
of remaining conflicting events and newly-added self-conflicting events being
in conflict with some events in X; and the flow relation ≺′ includes the pairs
of remaining events related by ≺ without the pairs (e, f) with e conflicting
with some e′ in X and f having immediate causes e and e′. We remove the
pairs (e, f) because e and e′ being in conflict belong to different complete sets
of causes of f and the self-conflicting event e not being in conflict with the
events from the intersection of the complete sets would prohibit a possible
execution of f .

Consider properties of the removal operator.

Lemma 1. Given an F -structure E and X ∈ Conf(E),

(i) E \X is an F -structure;

(ii) X ⊆ Y ∈ Conf (E) ⇒ Y \X ∈ Conf (E \X).

2.2. Event structures for resolvable conflict

In this section, we consider event structures for resolvable conflict, which
were put forward in [10] to give semantics to general Petri nets. A structure
for resolvable conflict consists of a set of events and an enabling relation ⊢
between sets of events. The enabling X ⊢ Y with sets X and Y imposes
restrictions on the occurrences of events in Y by requiring that for all events
in Y to occur, their causes – the events in X – have to occur before. This
allows for modeling the case when a and b cannot occur together until c

occurs, i.e., initially a and b are in conflict until the occurrence of c resolves
this conflict. Notice that flow event structures are unable to model the phe-
nomena of resolvable conflict. In resolvable conflict structures, the enabling
relation can also model conflicts: events from a set Y are in irresolvable
conflict iff there is no enabling of the form X ⊢ Y for any set X of events.

Definition 3. An event structure for resolvable conflict (RC-structure) over
L is a tuple E = (E, ⊢, L, l), where E is a set of events; ⊢ ⊆ P(E)×P(E)
is the enabling relation; L is a set of labels; l : E → L is a labeling function.

Let E be an RC-structure over L, X ⊆ E, and e ∈ E. We write Con(X)

iff ∀X̂ ⊆ X : ∃Z ⊆ E : Z ⊢ X̂, and Coni(X) iff ∀X̂ ⊆ X : | X̂ |= i : ∃Z ⊆

E : Z ⊢ X̂ (i ∈ {1, 2}). The direct causality relation ≺rc⊆ E × E is defined
as follows: d ≺rc e ⇐⇒ ∃X ⊆ E : X ⊢min e, d ∈ X and Con2(X).
The immediate conflict relation ♯rc ⊆ E × E is given by: d ♯rc e ⇐⇒
(d = e ⇒ ¬Con1({d})) ∨ (d 6= e ⇒ ¬Con2({d, e})). We also determine the
(strong) conflict relation ♯ ⊆ E × E as follows: d ♯ e ⇐⇒ ¬Con({d, e}).
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Let ↓rc e be a maximal subset of E such that ∀e′ ∈↓rc e : e′ ≺rc e and
∀e′ 6= e′′ ∈↓rc e : ¬(e′ ♯rc e′′).

A set X ⊆ E is left-closed iff X is finite, and for all X̃ ⊆ X there
exists a set X̂ ⊆ X such that X̂ ⊢ X̃. The set of the left-closed sets of
E is denoted as LC(E). Clearly, any left-closed set is conflict-free. A set
X ⊆ E is a configuration of E iff X can be represented as an ordered set
{e1, . . . , en} (n ≥ 0) such that for all i ≤ n and for all Y ⊆ {e1, . . . , ei},
there is Z ⊆ {e1, . . . , ei−1} such that Z ⊢ Y . Let Conf (E) be the set of
configurations of E . Clearly, any configuration X is a left-closed set but not
conversely.

The direct causality relation within a configuration X ∈ Conf (E) and
within a subset X ′ ⊆ X are respectively defined as follows: ≺rc

X= {(ei, ej) ∈
X ×X | ∀Y ⊆ X : (Y ⊢ ej ⇒ ei ∈ Y ), and ≺rc

X′= {(ei, ej) ∈ X ′ ×X ′ | ei ≺
rc
X

ej}. We take ≤rc
X′ as the reflexive and transitive closure of ≺rc

X′ .

Consider some properties of event structures for resolvable conflict.

Definition 4. An RC-structure E = (E,⊢, L, l) is

• rooted iff (∅, ∅) ∈ ⊢;

• pure iff X ⊢ Y ⇒ X ∩ Y = ∅;

• singular iff X ⊢ Y ⇒ X = ∅ ∨ | Y |= 1;

• with binary conflict iff | X |> 2 ⇒ ∅ ⊢ X;

• with flow order iff for all e ∈ E, it holds:

(a) Con1(e) ⇒↓rce ⊢ {e}, for all ↓rce ⊆ E,

(b) X ⊢min {e} ∧ Con2(X) ⇒ X =↓rce, for some ↓rce ⊆ E;

• in standard form iff ⊢ = {(A,B) | A ∩B = ∅, A ∪B ∈ LC(E)}.

Example 2. As an example, consider the RC-structure Erc = (Erc,⊢rc, L,
lrc) from [11], where Erc = {a, b, c}; ⊢rc consists of ∅ ⊢ X for all X 6= {a, b}
and {c} ⊢ {a, b}; L = Erc; and lrc is the identity labeling function. The RC-
structure is rooted, pure, non-singular, with binary conflict and flow order.
It is easy to see that LC(Erc) = Conf (Erc) = {∅, {a}, {b}, {c}, {a, c},
{b, c}, {c, a, b}}. This RC-structure models the initial conflict between the
events a and b that can be resolved by the occurrence of the event c. The

structure Erc can be presented in standard form Ẽrc with ⊢̃
rc

consisting of

A ⊢̃B such that B ⊆ C ∈ LC(E) and A = C \B, i.e. ⊢̃
rc

= {(∅, ∅), (∅, {a}),
({a}, ∅), (∅, {b}), ({b}, ∅), (∅, {c}), ({c}, ∅), (∅, {a, c}), ({a, c}, ∅), ({a}, {c}),
({c}, {a}), . . ., (∅, {a, b, c}), ({a, b, c}, ∅)}.



26 N. Gribovskaya, I. Virbitskaite

Lemma 2.

(i) Any RC-structure E = (E,⊢, L, l) can be transformed into the RC-

structure SF (E) = (E, ⊢̃, L, l)2 in standard form such that LC(E) =
LC(SF (E)). Moreover, SF (E) is rooted if E is rooted;

(ii) Conf (E) = Conf (SF (E)), if E is a pure RC-structure.

An event is called impossible (non-executable) if it does not occur in any
of the configurations. In RC-structures, events can be impossible because
of their unspecified enabling relations, or because of their infinite causes or
impossible causes/predecessors.

Standard form of an RC-structure and the ability to specify impossi-
ble events in the model allows for developing a relatively simple structural
definition of a removal operator.

Definition 5. For an RC-structure E = (E, ⊢, L, l) in standard form and
X ∈ LC(E), a removal operator is defined as follows: E \ X = (E′, ⊢′, L,
l′), where

E′ = E \X
⊢′ = {(A′, B′) | ∃(A,B) ∈⊢ s.t. A′ = A∩E′, B′ = B∩E′,

(A′∪B′∪X) ∈LC(E)}
l′ = l |E′

According to the definition above, all the events in X are removed; how-
ever, we retain the events, not forming left-closed sets with the events in
X and hence conflicting with some events in X, making the retained events
impossible by deleting their enabling relations.

Consider properties of the removal operator.

Lemma 3. Given an RC-structure E in standard form and X ∈ Conf (E),

(i) X ⊆ Y ∈ LC(E) ⇐⇒ Y \X ∈ LC(E \X).

(ii) E \X is a rooted RC-structure in standard form;

(iii) X ⊆ Y ∈ LC(E) and Y ′ ∈ LC(E) for all X ⊆ Y ′ ⊆ Y ⇒ Y \ X ∈
Conf (E \X).

2An RC-structure SF (E) = (E, ⊢̃, L, l) can be directly obtained by putting ⊢̃ =
{(A,B) | B ⊆ C ∈ LC(E), A = C \ B}.
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We translate F -structures into RC-structures and conversely. Given an
F -structure F = (E, ♯, ≺, L, l) over L and e ∈ E, define ↓ e as a maximal
subset of E such that ∀e′ ∈↓ e : e′ ≺ e and ∀e′ 6= e′′ ∈↓ e : ¬(e′ ♯ e′′). For an
F -structure F = (E, ♯, ≺, L, l), let RC(F ) = (E′ = E,⊢′,L, l = l′), where

X ⊢′ Y ⇐⇒





either Y = {e},¬(e ♯ e),X =↓ e,

or Y = {e, e′}, e 6= e′,¬(e ♯ e′),X = ∅,
or | Y |6= 1, 2,X = ∅.

For an RC-structure RC = (E, ⊢, L, l), let F(RC) = (E, ♯rc, ≺rc, L, l).

Lemma 4.

(i) For F an F -structure, RC(F ) is a rooted, pure, singular RC-structure
with binary conflict and flow order s.t. Conf (F ) = Conf (RC(F )).

(ii) For RC a rooted, pure, singular RC-structure with binary conflict and
flow order, F(RC) is an F -structure s.t. Conf (RC) = Conf (F(RC)).

2.3. Different semantics

In this subsection, we define interleaving and step semantics for the event
structure models under consideration. From now on, we treat E as an event
structure over L specified in Definitions 1 and 3, if not defined otherwise.

We first introduce auxiliary notations. Given an event structure E over
L and configurations X,X ′ ∈ Conf (E), we write

• X →int X
′ iff X ⊆ X ′ and | X ′ \X |= 1;

• X →step X
′ iff X ⊆ X ′ and X ′′ ∈ Conf (E), for all X ⊆ X ′′ ⊆ X ′.

For an event structure E over L and ⋆ ∈ {int, step}, a configuration
X ∈ Conf (E) is a configuration in ⋆-semantics of E iff ∅ →∗

⋆ X, where →∗
⋆

is the reflexive and transitive closure of →⋆. Let Conf ⋆(E) denote the set of
configurations in ⋆-semantics of E .

Lemma 5. Given an event structure E over L and ⋆ ∈ {int, step},
Conf (E) = Conf ⋆(E).

Proposition 1. Let E be an F -structure or a rooted RC-structure in stan-
dard form, and ⋆ ∈ {int, step}. Then,

(i) for any E ′ = E \ X, with X ∈ Conf (E), and E ′′ = E ′ \ X ′, with
X ′ ∈ Conf (E ′), X ∪X ′ ∈ Conf (E) and E ′′ = E \ (X ∪X ′);

(ii) for any X,X ′′ ∈ Conf (E) such that X →⋆ X
′′, X ′′ \X ∈ Conf (E \X)

and, moreover, ∅ →⋆ X
′′ \X in E \X.
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For ⋆ ∈ {int, step}, an event structure E over L, and configurations
X,X ′ ∈ Conf (E) such that X →⋆ X

′, we write

• lint(X
′ \X) = a iff X ′ \X = {e} and l(e) = a, if ⋆ = int;

• lstep(X
′ \X) = M iff M(a) = |{e ∈ X ′ \X | l(e) = a}|, for all a ∈ L,

if ⋆ = step.

3. Transition systems TC (E) and TR(E)

In this section, we first give some basic definitions concerning labeled tran-
sition systems, and then define the mappings TC (E) and TR(E), which
associate two distinct kinds of transition systems – one whose states are
configurations and the other whose states are residual event structures –
with an event structure E over L.

A transition system T = (S,→, i) over a set L of labels consists of a set
of states S, a transition relation →⊆ S × L × S, and an initial state i ∈ S.
Two transition systems over L are isomorphic if their states can be mapped
one-to-one to each other, preserving transitions and initial states. We call
a relation R ⊆ S × S′ a bisimulation between transition systems T and T ′

over L iff (i, i′) ∈ R, and for all (s, s′) ∈ R and l ∈ L: if (s, l, s1) ∈→, then
(s′, l, s′1) ∈→ and (s1, s

′
1) ∈ R, for some s′1 ∈ S′; and if (s′, l, s′1) ∈→, then

(s, l, s1) ∈→ and (s1, s
′
1) ∈ R, for some s1 ∈ S.

We need an additional auxiliary notation. For a fixed set L of labels of
event structures, define Lint := L, Lstep := N

L
0 (the set of multisets over L,

or functions from L to the non-negative integers), being other sets of labels
of the transition systems.

We are ready to define labeled transition systems with configurations as
states.

Definition 6. For an event structure E over L, and ⋆ ∈ {int, step}, TC ⋆(E)

is the transition system (Conf (E), ⇁⋆, ∅) over L⋆, where X
p
⇁⋆ X ′ iff

X →⋆ X
′ and p = l⋆(X

′ \X) in E.

For an event structure E over L and ⋆ ∈ {int, step}, define Reach⋆(E) =
{F | ∃E0, . . . , Ek (k ≥ 0) s.t. E0 = E , Ek = F , and Ei ⇀

X
⋆ Ei+1 (i < k)},

where Ei ⇀
X
⋆ Ei+1 iff ∃X ∈ Conf (Ei) : Ei+1 = Ei \X and ∅ →⋆ X in Ei;

Lemma 6. Given an event structure E over L and ⋆ ∈ {int, step},
Reachint(E) = Reachstep(E) = Reach(E).

Consider the definition of labeled transition systems with residuals as
states.
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Definition 7. For an event structure E over L and ⋆ ∈ {int, step}, TR⋆(E)

is the transition system (Reach(E), ⇀⋆, E) over L⋆, where F
p
⇀⋆ F ′ iff

F ⇀X
⋆ F ′, for some X ∈ Conf (F), and p = l⋆(X) in F .

Proposition 2. Let E be an F -structure or a rooted RC-structure in stan-
dard form, and ⋆ ∈ {int, step}. Then,

(i) for any X ∈ Conf (E), E \X ∈ Reach(E);

(ii) for any E ′ ∈ Reach(E), there exists X ∈ Conf (E) such that E ′ = E \X;

(iii) for any X ′,X ′′ ∈ Conf (E), if X ′ p
⇁⋆ X ′′ in TC ⋆(E), then E \X ′ p

⇀⋆

E \X ′′ in TR⋆(E);

(iv) for any E ′, E ′′ ∈ Reach(E), if E ′ p
⇀⋆ E ′′ in TR⋆(E), then there are

X ′,X ′′ ∈ Conf (E) such that E ′ = E \X ′, E ′′ = E \X ′′, and X ′ p
⇁⋆ X

′′

in TC ⋆(E).

Theorem 1. Let E be an F -structure or a rooted RC-structure in standard
form, and ⋆ ∈ {int, step}. Then, TC ⋆(E) and TR⋆(E) are isomorphic.

Theorem 2. For ⋆ ∈ {int, step}, it holds:

(i) TR⋆(E) and TR⋆(SF (RC(E))) are isomorphic, if E is an F -structure;

(ii) TR⋆(SF (E)) and TR⋆(F(E)) are isomorphic, if E is a rooted, pure,
singular RC-structure with binary conflict and flow order.

4. Concluding remarks

In this paper, we treated two event-oriented models of concurrent processes:
flow event structures, being a generalization of prime event structures, and
event structures for resolvable conflict, being the most expressive event-
oriented model. In particular, we define removal operators for the mod-
els under consideration and demonstrated that the configuration-based and
residual-based transition systems belonging to a single event structure are
isomorphic, in interleaving and step semantics. Also, translations from flow
event structures into structures for resolvable conflict and back have been
developed to exhibit expressiveness capabilities of the former in compari-
son with those of the latter. Finally, we have shown that our translations
preserve residual-based transition systems up to isomorphism.

Work on extending our approach (e.g., to precursor [7], probabilistic [23],
and local [13] event structures, to event structures with dynamic causality
[1] and to labeled event structures with invisible actions) is presently under
way and has yielded promising intermediate results. Another future line of
research is to extend our results on comparing two kinds of transition systems
to the non-pure case of resolvable conflict structures [10] and to the multiset
transition relation.
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Appendix

Proof of Lemma 1. (i) Clearly, ♯′ is a symmetric relation, because ♯ and
{(e, e) | e ∈ ♯(X)} are symmetric relations. Next, since ≺ is an irreflexive
relation and ≺′⊆≺, ≺′ is an irreflexive relation as well. So, E \ X is an
F -structure.

(ii) Assume X ⊆ Y ∈ Conf (E). Then, Y \X is a finite and conflict-free
set in E , and, moreover, Y \X ∩ ♯(X) = ∅. So, Y \X is a conflict-free set of
events in E \X. Check that Y \X is left-closed up to conflict. Take arbitrary
e, d ∈ E \X such that e ∈ Y \X, d ≺′ e, and d 6∈ Y \X. Clearly, e, d 6∈ X

and d 6∈ Y . Moreover, we have that d ≺ e and ¬(d ♯ x ≺ e), for all x ∈ X,
by the definition of ≺′. Due to Y ∈ Conf (E), we can find f ∈ Y such that
d ♯ f ≺ e. Then, f ∈ Y \ X. Hence, d ♯′ f . As X ⊆ Y ∈ Conf (E) and
f ∈ Y , it holds that ¬(f ♯ x), for all x ∈ X. Hence, f ≺′ e. Since Y does
not contain flow cycles in E and ≺′⊆≺, Y \X does not contain flow cycles
in E \X. Thus, Y \X ∈ Conf (E \X). 2

Proof of Lemma 2. For the transformation, we can directly put ⊢̃ =
{(A,B) | B ⊆ C ∈ LC(E), A = C \B}.

(i) Suppose X ∈ LC(E). For any Y ⊆ X, take Z := X \Y . Then Z ⊆ X

and Z ⊢̃ Y . So, X ∈ LC(SF (E)). Conversely, suppose X ∈ LC(SF (E)).
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Then, there is Z ⊆ X such that Z ⊢̃ X. By the definition of ⊢̃, X = Z∪X ∈
LC(E). Thus, LC(E) = LC(SF (E)). It is easy to see that SF (E) is rooted
if E is rooted.

(ii) Assume that E is a pure RC-structure. Take an arbitrary X ∈
Conf(SF (E)). This means X = {e1, . . . , en} (n ≥ 0) such that for all
i ≤ n and for all Y ⊆ {e1, . . . , ei}, there is Z ⊆ {e1, . . . , ei−1} such that

Z ⊢̃ Y . Let Xi = {e1, . . . , ei} (0 ≤ i ≤ n). Clearly, Xi ∈ LC(SF (E)), for
all i ≤ n. Hence, Xi ∈ LC(E), due to item (i). Take arbitrary i ≤ n and
Y ⊆ Xi. Consider two possible cases:

ei ∈ Y Since Xi ∈ LC(E), there is Z ⊆ Xi such that Z ⊢ Y . Due to the
fact that E is a pure RC-structure, Z ∩ Y = ∅. Hence, ei 6∈ Z. So,
Z ⊆ Xi−1.

ei 6∈ Y This means that Y ⊆ Xi−1. Since Xi−1 ∈ LC(E), there is Z ⊆ Xi−1

such that Z ⊢ Y .

Thus, X ∈ Conf(E).
Take an arbitrary X ∈ Conf (E). Notice that SF (E) is a pure RC-

structure. Applying reasonings analogous to those in the proof of the oppo-
site direction, we obtain that X ∈ Conf (SF (E)). 2

Proof of Lemma 3. (i) (⇒) First, notice that X ∩ Y = ∅. Suppose

(X ∪ Y ) ∈ LC(E). Then, for all Ỹ ⊆ Y , (Ỹ ∪ Ŷ ) ∈ LC(E), where

Ŷ = X ∪ Y \ Ỹ . As E is in standard form, Ŷ ⊢ Ỹ , for all Ỹ ⊆ Y and

the corresponding Ŷ . Obviously, (Ỹ ∪ (Ŷ ′ = Ŷ \ X) ∪ X) ∈ LC(E) and

Ŷ ′ ⊆ Y . Due to the definition of ⊢′, for all Ỹ ⊆ Y , there exists Ŷ ′ ⊆ Y such
that Ŷ ′ ⊢′ Ỹ . Thus, Y ∈ LC(E \X).

(⇐) Assume Y ∈ LC(E \ X). Then, for Y there is Ŷ ⊆ Y such that

Ŷ ⊢′ Y . By the definition of ⊢′, this implies that (X ∪ Ŷ ∪ Y ) = (X ∪ Y ) ∈
LC(E).

(ii) We now show that E \X is in standard form.
(⇒) Suppose A′ ⊢′ B′. Then, we can find A ⊢ B such that A′ = A ∩ E′,

B′ = B ∩E′ and (A′ ∪B′∪X) ∈ LC(E), due to the definition of ⊢′. Since E
is in standard form, it holds that A ∩B = ∅. This implies that A′ ∩B′ = ∅.
Thanks to item (i), we get that (A′ ∪B′) ∈ LC(E \X).

(⇐) Assume C ′ ∈ LC(E \X). Take B′ ⊆ C ′ and A′ = C ′ \B′. According
to item (i), (C ′∪X) = (A′∪B′∪X) ∈ LC(E). Moreover, since (A′∪X)∩B′ =
∅, we get that A′ ∪ X ⊢ B′, due to E being in the standard form. Hence,
A′ ⊢′ B′, by the definition of ⊢′.

(iii) Assume that X ⊆ Y ∈ LC(E) and Y ′ ∈ LC(E), for all X ⊆ Y ′ ⊆ Y .
We shall show that Y \X ∈ Conf (E \X). Since Y ∈ LC(E), we have that
Y \ X is finite. W.l.o.g. assume Y \ X = {e1, . . . , en} (n ≥ 0). Take an
arbitrary i ≤ n and arbitrary set A ⊆ {e1, . . . , ei}. Clearly, X ⊆ X ∪A ⊆ Y .



Transition system semantics for flow event structures 33

So, X ∪ A ∈ LC(E). Due to item (i), it holds that A ∈ LC(E \ X). By
item (ii), we get that E \X is in the standard form. Hence, ∅ ⊢E\X A and
∅ ⊆ {e1, . . . , ei−1}. Thus, Y \X ∈ Conf (E \X). 2

Proof of Lemma 4. (i) By the definition of RC(F ), it is clear that RC(F ) =
(E′,⊢′, L, l) is a rooted, pure, singular RC-structure with binary conflict. It
is routine to show that for all e ∈ E such that Con1({e}) it holds that
A =↓ e ⇐⇒ A =↓rc e, for all A ⊆ E. Then, RC(F ) has flow order, due to
the definition of ⊢′. Next, check that Conf (F ) = Conf (RC(F )).

Assume X ∈ Conf (F ). Then, using Proposition 2.3 from [5], we get that
X = {e1, . . . , ek} (k ≥ 0) such that ¬(ei ♯ ej), for all i, j ≤ k, and for all
i ≤ k and for all e ∈ E it holds that if e ≺ ei then there is j < i such that
e = ej or there is j < i such that e ♯ ej ≺ ei. Then, ↓ ei ⊆ {e1, . . . , ei−1}, for
some ↓ ei and for all i ≤ k. Verify that X ∈ Conf (RC(F )). Take arbitrary
1 ≤ l ≤ k and A ⊆ {e1, . . . , el}. According to the definition of ⊢′, three cases
are admissible. If A = {ej} for some j ≤ l, then {e1, . . . , ej−1} ⊇↓ej ⊢

′ {ej},
for some ↓ej , because ¬(ej ♯ ej). If | A |= 2, i.e. A = {ep, eq} and ep 6= eq,
then ∅ ⊢′ A, thanks to ¬(ep ♯ eq). If | A |6= 1, 2, then ∅ ⊢′ A. Thus,
X ∈ Conf (RC(F )).

Next, suppose X ∈ Conf (RC(F )), i.e. X = {e1, . . . , en} (n ≥ 0) such
that for all i ≤ n and all A ⊆ {e1, . . . , ei}, there is B ⊆ {e1, . . . , ei−1} such
that B ⊢′A. Check that X is conflict-free. Take arbitrary i, j ≤ n. Since
{ei, ej} ⊆ X, we can find B ⊆ X such that B ⊢′ {ei, ej}. By the definition
of ⊢′, we have that ¬(ei ♯ ej). Take arbitrary i ≤ n and e ∈ E such that
e ≺ ei. As {ei} ⊆ X, there is B ⊆ {e1, . . . , ei−1} such that B ⊢′ {ei}. Due
to the definition of ⊢′, we have B =↓ ei, for some ↓ ei, thanks to ¬(ei ♯ ei).
Then, ∃j < i such that e = ej or ∃j < i such that e ♯ ej ≺ ei. Hence, using
Proposition 2.3 from [5], we get that X ∈ Conf (F ).

(ii) Assume that RC = (E,⊢, L, l) is a rooted, pure, singular RC-struc-
ture with binary conflict and flow order. By the definition of F(RC) = (E,
♯rc, ≺rc, L, l), ♯rc is a symmetric relation. Since RC is pure, ≺rc is an
irreflexive relation. Hence, F(RC) is a flow event structure. Check that
Conf (RC) = Conf (F(RC)).

Suppose X ∈ Conf (RC), i.e. X = {e1, . . . , en} (n ≥ 0) such that for all
i ≤ n and all A ⊆ {e1, . . . , ei}, there is B ⊆ {e1, . . . , ei−1} such that B ⊢A.
Take arbitrary i, j ≤ n. Since {ei, ej} ⊆ X, we can find B ⊆ X such that
B ⊢ {ei, ej}. This implies that ¬(ei ♯

rc ej), for all i, j ≤ n. Take arbitrary
i ≤ n and e ∈ E such that e ≺rc ei. As {ei} ⊆ X, there is B ⊆ {e1, . . . , ei−1}
such that B ⊢ {ei}. Clearly, we can find B′ ⊆ B such that B′ ⊢min {ei}.
Since RC has flow order, we may conclude that ↓rc ei = B′, for some ↓ ei,
because Con2(X), i.e. Con2(B

′). Then, ∃j < i such that e = ej or ∃j < i

such that e ♯rcej ≺
rc ei. Hence, using Proposition 2.3 from [5], we get that

X ∈ Conf (F(RC)).
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Next, assume X ∈ Conf (F(RC)). Then, using Proposition 2.3 from [5],
we get that X = {e1, . . . , ek} (k ≥ 0) such that ¬(ei ♯

rc ej), for all i, j ≤ k,
and for all i ≤ k and for all e ∈ E it holds that if e ≺rc ei then there is j < i

such that e = ej or there is j < i such that e ♯rc ej ≺ ei. Clearly, we have
that Con1(X), Con2(X), and, moreover, ↓rc ei ⊆ {e1, . . . , ei−1}, for some
↓rc ei. We have to show that X ∈ Conf (RC). Take arbitrary 1 ≤ l ≤ k

and A ⊆ {e1, . . . , el}. Four possible cases are admissible. If | A |= 0 then
{e1, . . . , el−1} ⊇ ∅ ⊢ A, as RC is rooted. Consider the case when | A |= 1, i.e.
A = {ei} (i ≤ l). As Con1({ei}) and ↓rc ei ⊆ {e1, . . . , ei−1}, for some ↓rc ei,
we get that {e1, . . . , el−1} ⊇↓rc ei ⊢ {ei}, thanks to RC having flow order.
If | A |= 2, i.e. A = {ep, eq} and ep 6= eq, then there is B ⊆ E such that
B ⊢ {ep, eq}, because Con2({ep, eq}). Since RC is singular, we may conclude
that B = ∅ ⊆ {e1, . . . , el−1}. If | A |≥ 3 then {e1, . . . , el−1} ⊇ ∅ ⊢ A, as RC
has binary conflict. Thus, X ∈ Conf (RC). 2

Proof of Lemma 5. Consider the more complex case when E is an RC-
structure.

Take an arbitrary X ∈ Conf int(E). This means that ∅ = X0 →int X1

. . . Xn−1 →int Xn = X, where n ≥ 0, Xi ∈ Conf (E), Xi−1 ⊆ Xi, and Xi \
Xi−1 = {ei}, for all 1 ≤ i ≤ n. Clearly, A ∈ Conf (E), for all Xi−1 ⊆ A ⊆ Xi,
(1 ≤ i ≤ n). Then, we get that ∅ = X0 →step X1 . . . Xn−1 →step Xn = X,
i.e. X ∈ Conf step(E). So, Conf int(E) ⊆ Conf step(E).

By definition, Confstep(E) ⊆ Conf(E).
Take an arbitrary X ∈ Conf (E). Since X ∈ Conf (E), we have X =

{e1, . . . , en} (n ≥ 0) such that for all i ≤ n and all A ⊆ {e1, . . . , ei}, there
is B ⊆ {e1, . . . , ei−1} such that B⊢A. Clearly, Xi = {e1, . . . , ei} ∈ Conf (E),
for all i ≤ n. This means that ∅ = X0 →int X1 →int . . . →int Xn = X.
Hence, X ∈ Conf int(E). So, Conf(E) ⊆ Confint(E).

Summing up all the inclusions above, we get that Conf (E) = Conf int(E)
= Conf step(E). 2

Proof of Proposition 1. Consider the proof of the more complex case
when E is a rooted RC-structure in standard form.

(i) Assume that X ∈ Conf (E) and X ′ ∈ Conf (E ′), where E ′ = E \ X.
Due to Lemma 3(ii), E \X is a rooted RC-structure in standard form. Since
X ∈ Conf (E), we get that X = {e1, . . . , en} (n ≥ 0) such that for all i ≤ n

and for all A ⊆ {e1, . . . , ei}, there is B ⊆ {e1, . . . , ei−1} such that B ⊢E A.
As X ′ ∈ Conf (E ′), it holds that X ′ = {e′1, . . . , e

′
m} (m ≥ 0) such that for all

j ≤ m and for all A′ ⊆ {e′1, . . . , e
′
j}, there is B′ ⊆ {e′1, . . . , e

′
j−1} such that

B′ ⊢E ′ A′. Check that X ∪X ′ = {e1, . . . , en, e
′
1, . . . , e

′
m} = {e1, . . . , en+m} ∈

Conf (E). Take an arbitrary i ≤ n + m. If i ≤ n, then the result follows
from the fact that X ∈ Conf (E). Consider the case when n < i ≤ n +m.
Take an arbitrary set A ⊆ {e1, . . . , ei}. Define A′ = A ∩ E′ = A \ X ⊆
{e′1, . . . , e

′
i−n}. Then, we can find B′ ⊆ {e′1, . . . , e

′
i−n−1} such that B′ ⊢E ′ A′.
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By the definition of ⊢E ′ , A′ ∪ B′ ∪X ∈ LC(E). Since A′ = A \X, we have
A ⊆ A′∪X ⊆ A′∪B′∪X and (A′∪B′∪X)\A ⊆ B′∪X ⊆ {e1, . . . , ei−1}. Due
to E being in standard form, (A′ ∪B′∪X) \A ⊢E A. So, X ∪X ′ ∈ Conf (E).
Thus, X ∪X ′ ∈ Conf (E), by Lemma 5.

Define E ′′ = (E \X) \X ′ and Ẽ = E \ (X ∪X ′). We need to show that

E ′′ = Ẽ . Due to Lemma 3(ii), Ẽ and E ′′ are rooted RC-structures in standard
form. Notice that X ∪ X ′ ∈ Conf (E). By definition, E′′ = E′ \ X ′ =

E \ X \ X ′ = E \ (X ∪ X ′) = Ẽ, and l′′ = l |E′′= l |
Ẽ
= l̃. Verify that

LC(E ′′) = LC(Ẽ). Take an arbitrary Y ∈ LC(E ′′). According to Lemma
3(i), Y ∈ LC(E ′′) ⇐⇒ Y ∪X ′ ∈ LC(E \X) ⇐⇒ Y ∪X ′ ∪X ∈ LC(E)

⇐⇒ Y ∈ LC(E \ (X ∪X ′)) = LC(Ẽ). Then, ⊢′′= ⊢̃.

(ii) Assume that X,X ′′ ∈ Conf (E) and X →⋆ X ′′ in E . Then, X,X ′′ ∈
Conf (E) and X ⊆ X ′′, by definitions. Notice that E \ X is rooted and in
standard form, due to Lemma 3(ii). Since X →⋆ X ′′ in E , X ⊆ X ′′ and we
have the following.

⋆ = int Then, | X ′ |= 1. This implies A ∈ Conf (E) ⊆ LC(E), for all X ⊆ A ⊆
X ′′. Hence, B ∈ Conf (E \X), for all ∅ ⊆ B = A \X ⊆ X ′, by Lemma
3(iii). So, ∅ →int X

′ in E \X.

⋆ = step Then, A ∈ Conf (E) ⊆ LC(E), for all X ⊆ A ⊆ X ′′. Hence, B ∈
Conf (E \ X), for all ∅ ⊆ B = A \ X ⊆ X ′, by Lemma 3(iii). So,
∅ →step X

′ in E \X. 2

Proof of Lemma 6. Consider the more complex case when E is an RC-
structure.

Take an arbitrary F ∈ Reachint(E). Then, there are E0, . . . , Ek (k ≥ 0)

such that E0 = E , Ek = F , and Ei ⇀
Xi

int Ei+1, for all i < k, where Ei ⇀
Xi

int Ei+1

iff Ei+1 = Ei \Xi, for some Xi ∈ Conf (Ei) such that ∅ →int Xi. This means
that | Xi |= 1. Hence, A ∈ Conf (Ei), for all ∅ ⊆ A ⊆ Xi and for all i < k.

This implies that ∅ →step Xi, for all i < k. So, Ei ⇀
Xi

step Ei+1, for all i < k.
Thus, F = Ek ∈ Reachstep(E).

Take an arbitrary F ∈ Reachstep(E). Then, there are E0, . . . , Ek (k ≥ 0)

such that E0 = E , Ek = F , and Ei ⇀
Xi

step Ei+1, for all i < k, where Ei ⇀
Xi

step

Ei+1 iff Ei+1 = Ei \Xi, for some Xi ∈ Conf (Ei) such that ∅ →step Xi. This
means that A ∈ Conf (Ei), for all ∅ ⊆ A ⊆ Xi and for all i < k. Take
an arbitrary i < k. W.l.o.g. assume that Xi = {ei1, . . . , e

i
ni
} (ni ≥ 0). If

ni = 0 then Ei = Ei+1, by the definition of the removal operator, and the
result is obvious. Consider the case with ni > 0. Then, we get that {ei1} ∈
Conf (Ei) and, moreover, ∅ →int {e

i
1} in Ei. Furthermore, A′ ∈ LC(Ei), for

all {ei1} ⊆ A′ ⊆ Xi. By Lemma 3(iii), we have that A′′ ∈ Conf (Ei \ {e
i
1}),

for all ∅ ⊆ A′′ ⊆ Xi \ {e
i
1}. Repeating the reasonings for all 1 < j ≤ ni, we

get that {eij} ∈ Conf (Ei \ {ei1} \ . . . \ {eij−1}) and, moreover, ∅ →int {eij}
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in Ei \ {ei1} \ . . . \ {eij−1}, for all 1 ≤ j ≤ ni. This implies that Ei ⇀
ei
1

int

Ei \ {e
i
1} . . . Ei \ {e

i
1} \ . . . \ {e

i
ni−1} ⇀

eini

int Ei \ {e
i
1} \ . . . \ {e

i
ni
}. Thanks to

Proposition 1(i), we get that Ei \{e
i
1}\ . . . \{e

i
ni
} = Ei \{e

i
1, . . . , e

i
ni
} = Ei+1.

Due to the arbitrary choice of i, F = Ek ∈ Reachint(E). 2

Proof of Proposition 2. Consider the proof of the more complex case
when E is a rooted RC-structure in standard form.

(i) Take an arbitrary set X ∈ Conf(E). By Lemma 5, we get that
X0 = ∅ →⋆ X1 . . . Xn−1 →⋆ Xn = X (n ≥ 0) in E . This implies that
Xi ∈ Conf (E), for all i < n. Notice that E \ Xi (i < n) is rooted and in
standard form, due to Lemma 3(ii). We shall proceed by induction on n.

n = 0. E \X0 = E \ ∅ = E ∈ Reach(E).

n = 1. By the induction hypothesis, E \X0 ∈ Reach(E). Since X0 →⋆ X1 in
E , it holds X1 \X0 ∈ Conf(E \X0) and ∅ →⋆ X1 \X0 in E \X0, by
Proposition 1(ii). Clearly, E \X0 \ (X1 \X0) = E \X1. This implies

that E \X0 ⇀
X1\X0

⋆ E \X1. So, E \X1 ∈ Reach(E).

n > 1. By the induction hypothesis, E\Xn−2 ⇀
Xn−1\Xn−2

⋆ E\Xn−1 ∈ Reach(E).
Since Xn−1 →⋆ Xn in E , it holds Xn \ Xn−1 ∈ Conf (E \ Xn−1) and
∅ →⋆ Xn \ Xn−1 in E \ Xn−1, by Proposition 1(ii). Next, due to
Proposition 1(i), we have E \Xn−1 \ (Xn \Xn−1) = E \ (Xn−1 ∪ (Xn \

Xn−1)) = E \Xn. This implies that E \Xn−1 ⇀
Xn\Xn−1

⋆ E \Xn. Thus,
E \ (Xn = X) ∈ Reach(E).

(ii) Take an arbitrary E ′ ∈ Reach(E). Due to Lemma 6, we get that

E = E0 ⇀X0

⋆ E1 . . . En−1 ⇀
Xn−1

⋆ En = E ′ (n ≥ 0). By the definition of ⇀·
⋆,

it holds that Ei+1 = Ei \Xi, for some Xi ∈ Conf(Ei) such that ∅ →⋆ Xi in
Ei (i < n). Notice that Ei (i ≤ n) is rooted and in standard form, due to

Lemma 3(ii). Verify that Yi =
i⋃

j=0
Xj ∈ Conf (E) and Ei+1 = E \ Yi, for all

i < n. We shall proceed by induction on i.

i = 0. Then, Y0 = X0 ∈ Conf (E = E0) and E1 = E0 \X0 = E \ Y0.

i > 0. By the induction hypothesis, Yi−1 =
i−1⋃
j=0

Xj ∈ Conf (E) and Ei =

E \ Yi−1. Check that Yi =
i⋃

j=0
Xj ∈ Conf(E) and Ei+1 = E \ Yi.

As Ei+1 = Ei \ Xi, it holds that Ei+1 = (E \ Yi−1) \ Xi. According
to Proposition 1(i), we have that Yi−1 ∪ Xi ∈ Conf(E) and Ei+1 =
E \ (Yi−1 ∪Xi) = E \ Yi.

(iii) Take arbitrary X ′,X ′′ ∈ Conf (E) such that X ′ p
⇁⋆ X ′′ in TC ⋆(E).

Then, X ′ →⋆ X
′′, and l⋆(X

′′ \X ′) = p in E . Moreover, by item (i), there are
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E \X ′, E \X ′′ ∈ Reach(E). Notice that E \X ′ and E \X ′′ are rooted and in

standard form, due to Lemma 3(ii). We have to show that E\X ′ p
⇀⋆ E\X

′′ in
TR⋆(E). According to Proposition 1(ii), we get that X ′′ \X ′ ∈ Conf (E \X ′)

and ∅ →⋆ X ′′ \ X ′ in E \ X ′. Then, E \ X ′ ⇀
X′′\X′

⋆ E \ X ′ \ (X ′′ \ X ′).
According to Proposition 1(i), we get that E \ X ′ \ (X ′′ \ X ′) = E \ X ′′.
Due to the definition of the removal operator, l⋆(X

′′ \X ′) = p in E \X ′, if

⋆ ∈ {int, step}. Hence, E \X ′ p
⇀⋆ E \X ′′ in TR⋆(E), for ⋆ ∈ {int, step}.

(iv) Take arbitrary E ′, E ′′ ∈ Reach(E) such that E ′ p
⇀⋆ E ′′ in TR⋆(E).

By Lemma 3(ii), E ′ and E ′′ are rooted and in standard form. We have to
show that there are X ′,X ′′ ∈ Conf (E) such that E ′ = E \X ′, E ′′ = E \X ′′,

and X ′ p
⇁⋆ X ′′ in TC ⋆(E). Due to item (ii), there is X ′ ∈ Conf(E) such

that E ′ = E \X ′ ∈ Reach(E). According to the definition of
p
⇀⋆ in TR⋆(E),

there is X̃ ′ ∈ Conf ⋆(E
′) such that E ′′ = E ′ \ X̃ ′, ∅ →⋆ X̃ ′ and l⋆(X̃

′) = p in

E ′. Then, X ′′ = X ′ ∪ X̃ ′ ∈ Conf (E) and E ′′ = E \X ′′, by Proposition 1(i).
Consider two possible cases.

⋆ = int Since ∅ →int X̃ ′ in E ′, we have X̃ ′ = {e}. Hence, X ′ ⊆ X ′′ and

| X ′′ \X ′ = X̃ ′ |= 1. So, X ′ →int X
′′ in E . Moreover, lint(X

′′ \X ′) = p

in E , by the definition of the removal operator. Thus, X ′ p
⇁int X

′′ in
E .

⋆ = step Due to ∅ →step X̃
′ in E ′, we get that A ∈ Conf(E ′), for all ∅ ⊆ A ⊆ X̃ ′.

Then, by Proposition 1(i), X ′′′ = X ′ ∪ A ∈ Conf(E), for all ∅ ⊆ A ⊆

X̃ ′. Hence, X ′ →step X ′′ in E . Moreover, lstep(X
′′ \X ′) = p in E , by

the definition of the removal operator. Thus, X ′ p
⇁step X

′′ in E . 2

Proof of Theorem 1. Consider the proof of the more complex case when
E is a rooted RC-structure in standard form.

Define a mapping g : Conf (E) → Reach(E) as follows: g(X) = E \ X,
for all X ∈ Conf (E). Clearly, g(∅) = E . Due to Proposition 2(i), g(X) is
well-defined.

Check that g is a bijective mapping. Suppose that g(X) = g(X ′), for
some X,X ′ ∈ Conf (E). This means that E \X = E \X ′. By the definition
of the removal operator, we get that E \ X = E \ X ′. Since X,X ′ ⊆ E,
we have that X = X ′. Thus, g is an injective mapping. Take an arbitrary
E ′ ∈ Reach(E). Due to Proposition 2(ii), we get that E ′ = E \X, for some
X ∈ Conf (E). So, g is a surjective mapping.

According to Propositions 2(iii) and 2(iv) and the fact that g is a bijective

mapping, we have that X
p
⇁⋆ X ′ in TC ⋆(E) iff g(X)

p
⇀⋆ g(X ′) in TR⋆(E).

Thus, g is indeed an isomorphism. 2

Proof of Theorem 2. (i) Assume that E is an F -structure. According to
Lemma 4(i), it holds that RC(E) is a rooted, pure, singular RC-structure
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with binary conflict and flow order such that Conf (E) = Conf (RC(E)).
Furthermore, by Lemmas 2(i) and 2(ii), we get that SF (RC(E)) is a rooted
RC-structure in standard form, and Conf (RC(E)) = Conf (SF (RC(E))).
Therefore, Conf (E) = Conf (SF (RC(E))). From this fact, it follows that
X →⋆ X ′ in E , for all X,X ′ ∈ Conf (E), iff X →⋆ X ′ in SF (RC(E)), for
all X,X ′ ∈ Conf (SF (RC(E))), by the definition of →⋆ (⋆ ∈ {int, step}).
Due to the definition of RC(E) and the construction of SF (RC(E)), we
have that lE(e) = lRC(E)(e) = lSF (RC(E))(e), for all e ∈ X ′ \ X. Then,
using Definition 6, it is easy to see that for all X,X ′ ∈ Conf (E), it holds

that X
p
⇁⋆ X ′ in TC ⋆(E) iff X →⋆ X ′ and p = l⋆(X

′ \ X) in E , and for
all X,X ′ ∈ Conf (SF (RC(E))), it holds that X →⋆ X ′ and p = l⋆(X

′ \

X) in SF (RC(E)) iff X
p
⇁⋆ X ′ in TC ⋆(SF (RC(E))). This implies that

TC ⋆(E) and TC ⋆(SF (RC(E))) coincide. Thanks to Theorem 1, TC ⋆(E)
and TR⋆(E) are isomorphic, because E is an F -structure. Since SF (RC(E))
is a rooted RC-structure in standard form, we get that TC ⋆(SF (RC(E)))
and TR⋆(SF (RC(E))) are isomorphic, again thanks to Theorem 1. Hence,
TR⋆(E) and TR⋆(SF (RC(E))) are isomorphic.

(ii) Suppose that E is a rooted, pure, singular RC-structure with binary
conflict and flow order. Due to Lemma 4(ii), it holds that F(E) is an F -
structure such that Conf (E) = Conf (F(E)). Moreover, by Lemmas 2(i) and
2(ii), we get that SF (E) is a rooted RC-structure in standard form, and
Conf (E) = Conf (SF (E)). Therefore, Conf (F(E)) = Conf (SF (E)). From
this fact, it follows that X →⋆ X ′ in F(E), for all X,X ′ ∈ Conf (F(E)),
iff X →⋆ X ′ in SF (E), for all X,X ′ ∈ Conf (SF (E)), by the definition
of →⋆ (⋆ ∈ {int, step}). Due to the construction of SF (E) and the def-
inition of F(E), we have that lSF (E)(e) = lE(e) = lF(E)(e), for all e ∈
X ′ \ X. Furthermore, using Definition 6, it is easy to see that for all

X,X ′ ∈ Conf (SF (E)), it holds that X
p
⇁⋆ X ′ in TC ⋆(SF (E)) iff X →⋆ X ′

and p = l⋆(X
′ \ X) in SF (E), and for all X,X ′ ∈ Conf (F(E)), it holds

that X →⋆ X ′ and p = l⋆(X
′ \ X) in F(E) iff X

p
⇁⋆ X ′ in TC ⋆(F(E)).

This implies that TC ⋆(SF (E)) and TC ⋆(F(E)) coincide. Thanks to The-
orem 1, TC ⋆(SF (E)) and TR⋆(SF (E)) are isomorphic, because SF (E) is
a rooted RC-structure in standard form. Since F(E) is an F -structure,
TC ⋆(F(E)) and TR⋆(F(E)) are isomorphic, again thanks to Theorem 1.
Hence, TR⋆(SF (E)) and TR⋆(F(E)) are isomorphic.


