Joint NCC & IIS Bull., Comp. Science, 7 (1997), 85-93
© 1997 NCC Publisher

Model checking of time Petri nets*

L.B. Virbitskaite, E.A. Pokozy

The intention of the paper is to develop a model checking algorithm for real
time systems represented by time Petri nets [5], and a real time extension of the
branching time temporal logic CTL, called TCTL. Since time Petri nets model real
time systems over dense time domain, the number of states of any net is infinite.
Using a notion of region [1], we construct a finite representation of the behaviour
of a time Petri net — the region graph — to which model-checking algorithm can
be applied. Some results about the complexity of the model checker proposed are
given.

1. Introduction

Nowadays the importance of using temporal logic as an appropriate formal-
ism for specification and verification of concurrent and distributed systems
is widely accepted. Research in this area seems to emphasize two directions.
The first one concentrates on the proof-theoretic paradigm of manual pro-
gram verification (7], while the second concerns itself with algorithmically
solving special cases, such the case where the system is finite [3]. In the
latter strategy, model checker finds out whether a temporal logic formula
is true or false in a state transition graph representing the behaviour of a
concurrent system.

In reality, concurrent systems must meet hard time constraints. How-
ever, traditional logic methods for reasoning about these systems [3] ab-
stract quantitative time away preserving only qualitative properties. R.Alur,
C.Courcobetis and D.Dill in [1] have proposed a real time extension of the
branching time temporal logic CTL (3], called TCTL, and have defined its
semantics based on continuous computation trees. A TCTL model checker
with respect to timed graphs (state transition graphs extended with constant
bounds on the delays between the state transitions) has also been developed.

Petri nets constitute a powerful automata-theoretic formalism that is
often employed to model concurrent and distributed systems. Effective and
fairly powerful verification algorithms are known to be successfully adopted
to net models. Deductive and algorithmic approaches based on CTL have
been proposed in [7] so as to verify behavioural properties of Petri nets. A

*Partially supported by the Volkswagen Foundation under Grant 1/70 564, the INTAS-
RFBR under Grant 95-01-0378, and the Russian State Committee of High Education for
Basic Research in Informatics (Graph-Theoretical Methods in Programming).



86 LB. Virbitskaite, E.A. Pokozy

temporal logic based approach to analysis of fairness properties of labelled
Petri nets has been suggested in [4]. A method of verifying the behaviour of
high level nets by means of S-invariants written as temporal logic formulas
has been elaborated in [6]. However, in the case of time Petri nets 5],
the situation is less advanced. There are only a few reports on verification
methods for real time systems represented by time Petri nets. In (8], a model
checker, based on a partial order approach, for one-safe time Petri nets and
a real time linear time temporal logic has been suggested.

In this paper, we aim at developing a TCTL model checking algorithm
for one-safe time Petri nets in which the timing constrains are expressed by
associating lower and upper bounds with each transition. As time Petri nets
have a more complex structure in comparing with timed graphs, it is nec-
essary to study a possibility of using TCTL and to evaluate the complexity
of a model checking algorithm for net systems.

The rest of the paper is organized as follows. The basic definitions con-
cerning time Petri nets are given in the next section. Section 3 recalls the
syntax and semantics of TCTL. In section 4, for a time Petri net we define
a notion of a region and construct the region graph. A model checking algo-
rithm is then provided. Some remarks about the complexity of the algorithm
are finally given. -

2. Time Petri nets

‘Time Petri Net’ [5] is a Petri net with temporal constraints associated to
its transitions and expressed as intervals of time.

Let N be the set of constants {0,1,2, ...} denoting the natural numbers
and R be the set of nonnegative real numbers.

Definition 1. A time Petri net is a tuple N = (P, T,F,Eft, Lft,my),
where

e P= {pi,pg, -+ ,Pm} is a finite set of places;

o T ={t1,t3, ... ,t,} is a finite set of transitions (PNT = 0);

e FC(PxT)U(T x P) is the flow relation;

e Eft,Lft:T — N are functions for the earliest and latest firing times
of transitions satisfying Eft(t) < Lft(t) for all ¢ T;

e my C P is the initial marking.
ForteT,*t={pe P|(p,t) € F} and t* = {p € P | (t,p) € F} denote

the preset and postset of ¢, respectively. To simplify the presentation, we
assume that *£N¢* = @ for each transition ¢. For the sake of convenience, we



Model checking of time Petri nets 87

fix a time Petri net N = (P, T, F, Eft, L ft, myp) and work with it throughout
what follows.

Figure 1 shows an example of a time Petri net where a pair of numbers,
corresponding to a transition, represents its earliest and latest firing times.

A marking m of N is any subset of P. A transition ¢ is enabled in a
marking m if *¢ C m (all its input places have tokens in m), otherwise
it is disabled. Let enable(m) be the set of transitions enabled in m. Let
I' = [T — R™] be the set of time assignments for transitions from T.
Assume v € T" and § € Rt. Then v + § denotes the time assignment of the
value v(t) + 4 to each t from T

A state g of N is a pair <m,v>, where m is a marking and v € T'. The
initial state of N is a pair gy = <my, vy >, where v(t) =0forallt e T.
Let S denote the set of states of V.

The states of time Petri nets change if time passes or if a transition fires.
In a state ¢ = <m,v> of N, time § € R can pass if for all ¢ € enable(m),
v(t) + 8 < Lft(t). In this case, the state ¢ = <m’,’> of N is obtained by

passing & from q (written g > q), if
e m'=m, '
o V(t)=v(t)+dforallteT.

In a state ¢ = <m,v> of N, a transition t € T is fireable if t € enable(m)
and v(t) > Eft(t). In this case, the state ¢ = <m/,/ > of N is obtained
by firing t from q (written g =% ¢' ), if

e m =(m\*t)Ute,

0, if ¢ € enable(m’) \ enable(m),
v(t'), otherwise.

e V' eT. V(') = {

A g-run r of N is an infinite sequence of states g; € S and time values
d; € RT of the form

§ b On— ]
9=q =5Q2=5--- ::>1an1 = Qn.--

We define time(r,¢,) = Y1<i<, 6i- A state g is reachable, if it belongs to
some go-run. Let RS denote the set of all reachable states of A/.

As an illustration, we construct the following go-run r of the time Petri
net N (see Figure 1):

d1=0.7 =0.

r={p1,p2},» = 0) "= ({py,po},v = 0.7) 03
62=0.3 d3= = -
22 o,y = 1) "5 ({pr, s = 1) 5 (fpy, ps )y = 2) %550

65‘30 ({P4,P5},V = 2) 562::"0 <@;V = 2) 67:?3 (011" = 5) 68;10 o
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" Then time(r, (0,v = 5)) = 3°7_, 8; = 5.

N is one-safe, if for every <m,v> € RS and for every ¢ € enable(m),
t* N'm = 0 holds. To guarantee that in any g—run time is increasing beyond
any bound, we need the following progress condition: for every set of tran-
sitions {t1,f2,...,¢,} such that V1 <i<n tfN*¢;1 # 0 and ¢, N* ¢, # 0,
Yi<i<n Eft(t;) > 0 holds. Since in the time Petri net A7 (see Figure 1)
Eft(t1) + Eft(ts) = 1, time is increasing beyond any bound in any go-run
of M.

In the sequel, N will always denote a one-safe time Petri net satisfying
the progress condition.

3. TCTL: syntax and semantics

Timed Computation Tree Logic (TCTL) was introduced by R. Alur, C. Co-
urcoubetis, D. Dill [1] as a specification language for real time systems. We
now review the syntax and semantics of TCTL. Let AP be a set of atomic
propositions.

For our purpose, it is convenient to take AP = P.

Definition 2. The formula ¢ of TCTL is inductively defined as follows:

$:=p| 1|1 = ¢ | Vhilncta | Ip1U~ct2,

where p € AP, c € N, ¢; and ¢ are formulas of TCTL, ~ stands for one
of the binary relations {<, <, =, >, >}.

Informally, 3¢1U- .2 means that for some computation path there exists
an initial prefix of time length less then ¢ such that ¢, holds in the last state
of the prefix, and ¢; holds in all its intermediate states.

We define the derived connectives of the propositional connectives of the
propositional calculus such as V and A in terms of — and — in the usual
way. In addition, some of commonly used abbreviations are:

o VO b = Virue U..p,
"o 3O = Itrue U oo,
o VO o = IO b,
L] HDch) = __lVONc.-‘¢'
The unrestricted temporal operators correspond to TCTL-operators sub-
scripted with “> 0”. In TCTL we can also define temporal operators sub-
scripted with time intervals. For instance, the formula 3 (a,5)® Which says

that @ holds at least once during the time interval (a, ) along some compu-
tation path, can be written as 30,30 (,_q)¢.



Model checking of time Petri nets 89

Definition 3. Given a time Petri net N and a state g = <m,v> € RS,
we define the satisfaction relation g = ¢ inductively as follows:

9Fp <=> pem

9k - <=> g ¢y

IEd > ¢ <=> q - é1 or g |= ¢by;

g Ilocds <=> for some grun r of N 7 |= ¢yU....bo;
qEVoilhocpy <=> for every g-runr of N r = ¢1ld...hs.

Foragrunr=(g=g¢ 4 g2 LY ...), the relation r E ¢1ld .02 holds iff
there exists k and § < 0k such that:

1) (6 +time(r, gx_1)) ~ ¢;

2) q = ¢o;
3) VlSi<kV0§J’<J¢. <m,~,vi+5’>l=¢1;
h V1< <s§. <mk,uk+5’>]:¢1.

N satisfies a TCTL-formula ¢ (written N |= ¢) iff % = ¢. A TCTL-
formula ¢ is satisfiable iff there is a time Petri net A such that A/ = ¢.

Theorem 1. [1] The satisfiability question for TCTL is Xi-hard.

4. Region graphs and mode] checking

In this section we will develop an algorithm for deciding whether a time
Petri net meets its specification given as a TCTL-formula,

Since a time Petri net constitutes a dense time model, the number of its
states is infinite. In order to get a finite representation of the behaviour of a
time Petri net, we define a notion of a region [1]. Two states of a time Petri
net in the same region are, in some sense, equivalent, i.e., the corresponding
time assignment values agree on the integral parts and on the ordering of
the fractional parts.

For any § € R, fract(d) denotes the fractional part of 4, and |§|
denotes the integral part of §.

Definition 4. Let v,V €T. Then v ~ 1/ iff the following conditions are
met:

e foreacht € T, either [¥(t)] = [¥'()] or both v(t) and 1/ (t) are greater
than Lft(t);

e for each ¢, t' € T such that v(t) < Lft(t) and v(t') < Lft(t): -
- fract(v(t)) < fract(v(t')) iff fract(v'(t)) < fract(v'(¢));
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— fract(v(t)) = 0 iff fract(v'(t)) = 0.

Let [v] denote the equivalence class of I' which v belongs to. For t € T,
we define [v(t)] = {v(t) | v € [v]}.

Lemma 1. Let <m,v>,<m,v'> € RS with v ~ v'. For every TCTL-
formula ¢, <m,v> = ¢ iff <m,v' > = ¢.

Proof. Immediately follows from Lemma in [1, Section 5]. O

Lemma 2. The number of equivalence classes of T' induced by ~ is bounded
by
| T |t 22T TT(Lfe(t) +1).

teT

Proof. Immediately follows from Definition 3 and Lemma in [1, Section 5].
O

A region of N is a pair <m, [v] >, where <m,v> € RS.

Let <m, [v]>, <m/, [V'] > be regions of N. Then <m',[v']> =
succ(<m, [v]>) iff for some positive § € R* m = m/, v + 6 € [/] and
fw+810<8 <5} U]

As an example, we consider the time Petri net N> (see Figure 2) and
its state <m,v> with m = {p2,ps}, v(t;) = v(t;) = 0.7 and v(t3) = 0.
Then <m,[v]> = <m,{V' | V(t1) = V'(t2) € (0,1), V'(t3) = 0}> and
succ(<m, [V]>) = <m, {V' | V'(t;) = V/(2) € (0,1), V' (t3) € (0,1),
fract(V'(ts)) < fract(v'(t1))}>, suce(suce(<m, [V]>)) = <m, {V'| V() =
v(ta) =1, v(ts) € (0,1)} >, etc. :

Definition 5. The region graph G(N) is defined to be a graph (V, E),
where:

e a vertex set V is the set of all regions of N;

e an edge set E consists of two types of edges:

— edges representing the passage of time:

(<m, [V]>, succ(<m,[v]>)) € E, if <m, [v]>,
suce(<m,[v]>) € V;

— edges representing the firings of transitions:

(<m,[V]>,<m',[V']>) € E, if <m,v>, <m/,v'> €V,
and <m/,v' >

is obtained by firing some t € T from <m, v >.
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The region graph of N is shown in Figure 3.
Lemma 3. The number of regions of N is bounded by

| T |- 22THPL T (L ra(e) + 1).
teT

Proof. Assume <m,[v]> to be a region of . Since m is an array of the
length | P | consisting of 0’ and '1’, then the number of different markings of
N is 217, Moreover, the number of equivalence classes of time assignments
is | T |1 2271 [T,ep(Lft(t) + 1), by Lemma 2. So, the number of regions of
Nis | T |1 22THPL T, o (LFE() + 1). o

There is a simple correspondence between runs of N and paths through
G(N). Let <mq, 1> U <mg, vy > % <mg,v3> % . be a <mi, v >-
run r of N. For each i > 1, we can find a finite path S; through G(N) as
follows. If <mj;;, ;1> is obtained by passing 4; from < m;, v; >, then §; =
{<my, (1] > = v}, vf, ..., vF = <myy1,[111] >}, where v;?“ = succ(v]) for
all 1 < j < k. Otherwise, S; = {<m;, [15]>, <my,1,[v511)>}. The path
through G(N') obtained by concatenation of sequences S; corresponds to r
in a natural way. Conversely, given path

{<my, 1] >, <mg, [vs] >, <mg, [v5] > ...}

through G(N), we can construct a corresponding <m;,v; >-run of N as
follows. For each i > 1, if <m1,[vi1]> = suce(<my, [14]>), then there
exists a positive time value § such that <m;,v; > LA <mi4+1,¥ +d> and
vi + 8 € [vi+1]. Otherwise, <m;,v;> 2 <m;y1,¥;>. So, the given path
through G(N) corresponds to a constructed <my,v; >-run of A.

Given any region <m, [v]> of N, satisfaction <m,[v]> F ¢ is defined
in an obvious way.

Labelling algorithm

Suppose we want to determine whether v = <m,[v]> + ¢. We label the
regions with subformulas of ¢ starting from the subformulas of length 1,
then of length 2, and so on.

The region graph has information only about reachability, and not about
“time” reachability. The time reachability analysis can be performed by
introducing an auxiliary transition ¢* which is never enabled in any marking
of N. T* = [T U{t*} — R"] is the new set of time assignments. We
extend the equivalence relation ~ to t* supposing that L ft(t*) is equal to
the maximal constant appearing in the formula ¢. For a time assignment
v and z € R, let [[z]v] denote the time assignment from I'™* that assigns
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z to v(t*) and agrees with v on the values of the remaining transitions. To
compute the value of ¢ at v, we consider <m, [[0]v]> as an initial region
of N. ‘

Let p... be a new proposition corresponding to every subscript ~ ¢ ap-
pearing in ¢ and v' = <m/,[V']> be a region of N such that <m’,v' >
belong to some <m,v>-run r. Then v' - p.., if <m',v'> | V/(t*) ~ ¢,
else v' F —p.c. 7

Let v be a subformula of ¢. Assume that the regions are already labelled
with each subformula of .

Case ¢ € P. If Yy € m, then v |- 9, else v - —p.

Case 1) = ~¢p. If v - ¢, then v - ), else v - 1.

Case Yy = ¢y = 2. If v - ~¢py or v |- ¢y, then v - 9, else v - —ap.

Case Y = Q¢1l..cp2, where Q is either an existential or universal quan-
tifier. The vertices of G(N') are labelled with ¢; or its negation, and with ¢,
or its negation. v should be labelled with 1, if some (or, every, depending
upon Q) path through G(N, @) starting at v, has a prefix vy, va, ... , vy,
such that for each 1 <i <n vt ¢y, v, F ¢o, and v, - p. ]

As an example, we consider an application of the labelling algorithm to
the time Petri net A; (see Figure 1) and the TCTL-formula

¢ = Viruel>1(ps A ps).

Figure 3 shows truth labellings of the regions of A; with ¢. So, using the
labelling algorithm, we obtain A = ¢.

Lemma 4. Let v be a subformula of ¢ or the negation of a subformula of ¢.
If the above labelling algorithm labels <m,[v]> with v, then <m,v> |= 1.

Proof. Notice that for each g-run of A there exists a path through G(N)
and vice versa. We will prove <m, [v]> - ¢ = <m,v> & v by induction
on the structure of 1. According to the induction hypothesis, for each
subformula 9’ of ¥ <m,[v]> F ¢' = <m,v> = 4. Then by the above
labelling algorithm and Definition 3, we have <m, [v]> Fy=><m,v> = 9.

O

Theorem 2. Let ¢ be a TCTL-formula. There is a decision procedure for
checking whether or not N' |= ¢ which runs in time

O[l¢]-|T|t-2P1. ] Lt(z)].

teT

Proof. From Lemma 3, it follows that |V |= O[| T |!- 2P - [],cp LFt(t)].
For a vertex v of G(N), there are at most | T' | output edges representing
the firings of transitions and one output edge representing the passage of
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time. Hence, |E|=O[ T |!- 21Pl . [Tyer Lft(t)]. Moreover, G(N) can be
constructed in the time O[|V | + | E|]. So, the labelling algorithm takes the
time O[1¢|-(V | + |ED] = Ollg]-| T |1 27! T,er LIL(E)- :

The model checking algorithm proposed has been implemented as a part

of the system PEP (Programming Environment based on Petri Nets) [2].
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