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Condition number of collocation method
on a quasiuniform grid for the integral
equation of the 1st kind
with logarithmic singularity”

V.V. Voronin

The paper is devoted to the substantiation of the direct numerical method for
the integral equation of the first kind with logarithmic singularity on the closed
curve; it is based on the piecewise-linear approximation of unknown function from
its values at quasiuniform grid and collocation condition in the same gridpoints. As
it is shown, if the initial integral equation is uniquely solvable and the quasiuniform
parameter does not exceed 23.3, then for a step small enough the condition number
of a matrix obtained in this method is not less than a constant multiplied by the
step.

We consider the equation of the 1st kind defined initially on a smooth
closed curve. If we parameterize the curve and separate the logarithmic
singularity from the kernel, then the equation may be written in the form:
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where A is a constant not equal to 1. All functions are 27-periodic.

Let us call the equation of this type “almost-model”, if the junior term
of its kernel K;(¢,7) is smooth enough (as a rule, infinitely smooth). Then
there are some simple operations, reducing the equation to a singular integral
equation with a kernel of the Hilbert type or to the Fredholm equation of
2nd kind with a smooth junior term. These operations are the differentiation
of both sides or multiplying the equation by the operator which is inverse
to the main part of the integral operator. After that, we can solve the new
equation numerically using many well-known methods.

But if equation (1) is an equation of general form, then the junior term
K (t,7) may contain singularities of the form rlogr, r?logr and so on. In
this case, the simple analytic operations mentioned above do not make the
problem easier because the real accuracy of numerical method will mainly
depend on the accuracy of approximation of a junior term. So fulfilling the
differentiation or applying the inverse operator, we do not gain anything,
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therefore these operations are useless. Furthermore, if the kernel is given in
any complicated form, the fulfilling the analytic operations may cause some
difficulties.

Such troubles do often arise in diffraction problems, (for example, see [1]);
the kernels of integral operators do there consist of any combinations of
functions similar to the Hankel ones. Therefore an immediate discretization
of the initial equation (1) can be the most suitable method for such problems.

Applying the interpolation and collocation method, let us define any
gridpoints {7j; j = —Ni,..., N2} on the segment [, 7] and interpolate the
unknown function f(7) piecewise-linearly from its values at these gridpoints,
i.e., represent f in the form

N>

f(n)= > ajei(), (2)

j=—MN1

where @; are the basic functions of this interpolation:

(r—11)/ (75— 15-1)y, I 7€ [15-1,74]
pi(t) =8 (G — /T — 1)y £ 7€ [75,734) (3)
0 elsewhere.

Let us search the unknown coefficients a; from the collocation conditions
at the same gridpoints:

N>
Kf(m)= Y. aj(Kej)(m) =g(r%), k=-Ny,...,No.  (4)

Jj=—N1

If the initial integral operator is not degenerate, then the images Ky;
of basic functions are linearly independent. But it does not provide the
solvability of system (4) with respect to {a;}. What we really need is the
independence of their restrictions onto the grid {7;}. Moreover, since some
estimates of stability of the method are desired, we should get an information
about the condition number of the matrix of system (4).

In previous investigations of this problem (see [2-5]), the uniform grids
were only considered; these results are based on the fact that trigonometric
functions are eigenfunctions for the main part of the integral operator, and
restrictions of images of their interpolants onto a uniform grid preserve the
orthogonal properties. This approach fails on non-uniform grids.

The new approach uses convex properties of images of the basic functions,
and so some quasiuniform grids may be considered.

Let us denote steps of the grid h;1/; = 7j41 — 7, let h be the minimum
of them. Let us consider the sequence of grids such that the quantity
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__ max; hj+1/2

min; hj /o

(quasiuniform parameter) is the same for every grid.
Then the following theorem has been proved.

Theorem 1. Let f(7) be of form (2), max|a;| = 1, the quasiuniform pa-
rameter satisfies the condition Q < 23.3, and g = Kf. Then, for sufficiently
small h, there ezists such a gridpoint 7; that |g(7;)| > ch, where c is any
constant independent on h.

Or, in other words, the condition number of the matrix of (4) is not less
than ch.

The way of its proof consists of the considerations exposed below.

1. Firstly, the “standard” equation without the junior term is considered:
(o)) = [ log 3o S)dr = 90, telomal (9

The following statement can be proved easily.

Theorem 2 (The case of non-zero average). There erist positive constants
c and C, independent on h such that the following statement is valid: if f(7)
is a function of form (2), where max |aj| = 1, the average value of f has a
modulus greater than Ch, and h is small enough, then

lg(75)| = [Kof (75)| > ch
at some gridpoint ;.

2. The further consideration uses the second finite differences. If i, j, k are
three numbers of the gridpoints (¢ < j < k), then the second finite difference
of a function g on these gridpoints is:

- . T T' —
Dy(g;4,4,k) = v l9(7i) — g(7)] + Ti -
1 1

and the simplified finite difference is:
~ § 5 1
Da(g3,5,k) = 5l9(m) — 9(m3)] + 5 [9 ) — 9(75)].

If )
|D2(g;4,5,k)| > ch or |Ds(g;i,5,k)| > ch, (6)
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where ¢ = Kyf, then evidently at least one of the values g(t) at these
gridpoints has a modulus greater than ch. So it suffice to prove one of
inequalities (6).

We have assumed before that max|a;| = 1, now let us suppose that
namely ap = —1. Since the sum of all basic functions ; is identically equal
to 1 and the operator Xy applied to a constant gives a constant, then we
may add 1 to f(r), denoting f(r) = f(7) + 1; the second differences of Ko f
are the same. The function f is of form (2) as well, but now 0 < a; <2,
where ag = 0. We may suppose that the average value of the function f is
not less than 1 — C,h, according to Theorem 2.

3. Two different situations are to be considered now: there is or there is
not a coefficient a; greater than vh (where vy is some constant) in a neigh-
bourhood of the gridpoint 7.

Theorem 3 (Nearest case). If
(a) f(‘r) is of form (2), where 0 < a; <2, ap =0;

(b) at least one of the coefficients a;, corresponding to any gridpoint 7; €
[—kuh, koh], is greater than vy, where k. and v are constants indepen-
dent on h;

(¢) the quasiuniform parameter Q does not exceed 23.3,

then for h small enough there exists such a constant ¢ independent on h that
at least one of inequalities

IDy(Kof;=2,~1,0)] > ch, |Da(Kof;—1,0,1)| > ch,
|D2(Kof;0,1,2)| > ch

“

(7)

is valid.

The proof is based on the convexity. As it may be verified, if @ < 4.25,
then the image Kop; of each basic function is discretely concave at its “own”
gridpoint 7; and discretely convex at every “alien” gridpoint 74; k # j; now
we mean by these words the negativeness or positiveness of the second finite
difference on neighbouring three gridpoints 7x_1, Tk, Tk+1. Moreover, the
positive second difference can be estimated from below by ch®/|r; — 7|?; so
it implies the validity of the second inequality in (7). That is because

N
Dy(Kf;-1,0,1) = Y a;jDa(Kepj;—1,0,1),
j=—MN1

where every member of the sum is non-negative and one of them satisfies
the required estimate.
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Unfortunately, if Q > 4.25 then the discrete convexity of K¢; may be
violated at one of the two nearest gridpoints. To be more precise, if two
ratios @ = hyj3/hy/; and b = h_y/5/hy/5 are small, then Dy(Kyq;—1,0,1)
may be negative.

As to this case, let us modify the criterium of convexity at the grid-
point number 0; namely, we replace the functional Dy(g;—1,0,1) by the
new functional

D(g) EDz(g,“l,O,].)—pDz(g,O,l,Q) (8)

The positiveness of this new functional may be named “generalized convex-
ity” of the function g at the point 7. It is possible to establish a connection
between the coefficient p in formula (8) and quantities a and b that provides
the generalized convexity of every function Kej; j # 0 at 79. Namely, this
connection can be defined by the formula:

a 1+5b
p=0088(1-a)(1—b) 5 .

So the statement of Theorem 3 is true for all Q < 23.3.

4. If the coefficients a; do not exceed any independent constant + in the
neighbourhood of 73, then the desired estimate for “local” differences at this
central point may be invalid. Then another statement concerning “global”
differences may be proved:

Theorem 4. There ezist positive constants k. and v independent on h,
such that:

(a) of f(r) is of form (2), where 0 < a; < 2; ag = 0;
(b) if for every 1; € [—k.h,k.h] the corresponding coefficient a; <;
(c) the average value of f is greater than 1 — C.h,

then for h small enough there exist two gridpoints T_; and 7; (where 1,5 > 0)
such that the simplified second difference Do(Kf; —i,0, ) is greater than ch.

The proof of this theorem is complicated enough.

5. At last the junior term may be returned and the general equation (1)
may be considered by the usual methods of the functional analysis. The
standard operator Ky acts from C%® into C12. If the junior term is more
smooth and acts from C%* into €%, then the functional consideration is
successful. Finally, we should remark that there was the only point where
the restriction for the quasiuniform parameter played its role: it concerns
the discrete convexity of the image of the basic function at the neighbouring
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gridpoint. But, according to numerical experiments, this restriction is not
necessary in the problem; this is due to a technique of our consideration
only. In order to weaken this restriction or to eliminate it, we can vary
the definition of discrete convexity. Namely, we can use as a criterium of
convexity the positiveness of some combinations of second differences. This
approach is not fulfilled completely.
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