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Orographic retardation of a cold atmospheric front∗

M.S. Yudin

Abstract. The propagation of a cold front over a mountain is simulated by a
local non-hydrostatic finite difference model. New conservative difference operators
are proposed for the advection terms inside the computational domain. Temper-
ature transport is calculated with semi-Lagrangian scheme and data produced by
the finite difference model. Comparisons are made between model calculations
and theoretical and experimental results obtained by other authors. The model
realistically describes the effect of orography on the front propagation.

1. Introduction

This paper is intended to be a preliminary study to simulate the propaga-
tion of a cold atmospheric front near a lake. The mesoscale meteorological
phenomena that take place at the coastal sites have received much attention
of researchers in recent years. This is due to the fact that these phenomena
may have a considerable impact on the local climate.

The problem of simulating the local climatic characteristics of aerosol
transfer in the atmosphere in the vicinity of a water basin is also important
from a computational view point. It is necessary to use efficient numerical
algorithms in the domains of an abrupt variation of calculated fields without
using mesh refinement and suppression of spurious oscillations near the front
of aerosol cloud propagation. In this paper, a simple finite-difference scheme
is used, which is based on a semi-Lagrangian approach. This scheme is
accurate and robust.

Hydrostatic models have played a great role in the simulation of atmo-
spheric flows that occur at land-water boundaries [1]. Later, the advent of
nonhydrostatic models enabled a wider class of flow phenomena to be sim-
ulated, specifically small-scale phenomena as, for instance, sea breeze front
propagation.

This paper originated from an attempt to realistically simulate the me-
teorological flows that occur at water-land boundaries. Here, even with low
topography, the changes in roughness from water to land and local terrain
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variations produce dynamic effects that are difficult for simulating by hy-
drostatic models.

Special methods have been developed to correct the hydrostatic approach
by parameterizing the nonhydrostatic terrain effects in hydrostatic models
[2, 3].

In this paper, a preliminary investigation is carried out to simulate the
cold front propagation over a steep mountain in three dimensions to test the
proposed discretizations for the advection terms.

The paper is organized as follows: the model equations and the dis-
cretizations are described in Section 2. Section 3 is devoted to a numerical
scheme for the advection transport of temperature in the atmosphere. The
calculation algorithm here is based on a semi-Lagrangian approach. In Sec-
tion 4, results of model simulation of the orographic retardation of a cold
front by a steep mountain are discussed. Conclusions to the paper are given
in Section 5.

2. Model equations

The necessary input data for the pollutant transport calculation are obtained
from a small–scale meteorological model. The basic equations for motion,
heat, moisture and continuity of a non-hydrostatic version of the model in
a terrain–following coordinate system are as follows:
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U = ρ̄G1/2u, V = ρ̄G1/2v, W = ρ̄G1/2w, P = G1/2p′, where p′, θ′ are
deviations from the basic state pressure p̄ and the potential temperature θ̄,
s is specific humidity, Cs is the sound wave speed, ug, vg are components of
the geostrophic wind representing the synoptic part of the pressure, η is a
terrain-following coordinate transformation:
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zs is the surface height, H is the height of the top of the model domain.
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The terms Ru, Rv, Rω, Rθ, Rs refer to subgrid-scale processes. As turbu-
lence parameterization, we use a simple scheme:

Km =

 l2
√

1
2
D2(1− Ri), Ri < 1,

0, Ri ≥ 1,

Ri =
g(d ln θ/dz)

D2/2
, D = ∇u+ u∇.

In the hydrostatic version of the model, the vertical velocity is not deter-
mined from the third equation of motion, as is the case in the non-hydrostatic
version, but calculated diagnostically with the help of the continuity equa-
tion. At the top of the model domain in the hydrostatic version, we have a
free surface that satisfies an additional evolutionary equation.

We approximate the advective terms in the above described model by
the following difference operators:

δdϕ =
ϕ(d+ ∆d/2)− ϕ(d−∆d/2)

∆d
,

ϕd =
ϕ(d+ ∆d/2) + ϕ(d−∆d/2)

2
,

ADVX = δx(ux(ρxu)x) + δy(vx(ρxu)y) + δz(ωx(ρxu)z),
ADVY = δx(uy(ρyv)x) + δy(vy(ρyv)y) + δz(ωy(ρyv)z),
ADVZ = δx(uz(ρzw)x) + δy(vx(v(ρzw)y) + δz(ωz(ρzw)z),
ADVT = δx(u(ρθ)x) + δy(v(ρθ)y) + δz(ω(ρθ)z).

A more detailed description of the model and the numerical algorithms
used in calculations can be found in [4].
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3. Advection of temperature

The problem examined in this study has very small physical diffusion, and
the governing equations can be considered as almost inviscid and adiabatic.
The schemes used for the advection of momentum were discussed in the
previous section. Here we consider a suitable scheme for the advection of a
scalar, e.g. temperature.

For fully hyperbolic problems explicit schemes have been widely used in
the past and will probably continue to be used in the future. Traditionally,
problems for which the governing equations are hyperbolic everywhere have
been solved by the method of characteristics. Sometimes traditional meth-
ods of characteristics are slower than competitive finite difference methods.
However, some finite difference schemes use a form of the governing equa-
tions such that knowledge of the characteristic locations can be exploited
very efficiently [5].

A flux-corrected transport scheme developed by Smolarkiewicz was suc-
cessfully applied to simulation of the propagation of an idealized atmospheric
front by Schumann [6]. This is an example of a general technique of the
predictor-corrector type in which large diffusion is introduced at the predic-
tor stage and an almost equal amount of antidiffusion is introduced at the
corrector stage.

In this paper, the advection of temperature is treated with an efficient
semi-Lagrangian finite difference scheme [7, 8]. Here the advection of a
scalar is calculated in two steps:

1. Determination of so-called departure points. This is the point from
which the point under consideration is reached at the next time step.

2. Interpolation of values of the advected scalar from grid points on the
departure point:

xD = x−
∫
u dt, f(x, t+ ∆t) = f(xD, t).

Here u is the velocity vector and ∆t is the time step size.

At the first step, interpolation of the velocity vector is performed. The
second step is devoted to interpolation of the advected scalar. The procedure
of interpolation determines the accuracy of the method. For velocity, linear
interpolation is used. At the second step, a third-order accuracy scheme will
be used in this paper for reasons to be discussed below.

The total advection of temperature is split into horizontal and vertical
components. For simplicity, we present here only a one-dimensional scheme.
The scheme is designed as follows: an arbitrary function f is expanded into
a Taylor series up to terms of the fourth order. The free coefficients of
this expansion are determined through values of the function at grid points.
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Denote λ = (xD−xi)/∆x. Here ∆x is the grid size. By solving the resultant
system of linear equations for the free coefficients, we finally obtain:

f(t+ ∆t) = fi(1− λ/2− λ2 + λ3/2) + fi+1(λ+ λ2/2− λ3/2) +

fi+2(−λ/6− λ2 + λ3/6) + fi−1(−λ/3 + λ2/2− λ3/6).

Experiments have been performed to compare various semi-Lagrangian
schemes. Some conclusions follow:

1. The first-order schemes have large numerical diffusion.

2. The second-order schemes are nonmonotonic and have a small-scale
wavelike structure.

3. In the third-order schemes, the above two effects are essentially re-
duced.

4. The schemes of order higher than 3 have a significant increase in cost
but only a small increase in the solution quality.

Therefore, we will use the above third-order semi-Lagrangian scheme as
a reasonable compromise between cost and accuracy.

4. Simulation of cold front propagation

In this section, we apply the above model to simulating the propagation of a
cold atmospheric front over a steep obstacle in three dimensions. The input
parameters are taken from [6]: the obstacle is a circular mountain with an
axially symmetric sinusoidal height profile of 2 km and a surface diameter
of 200 km. The computational domain is 600× 400× 6 km.

Figure 1 shows results of simulations on the propagation of a cold atmo-
spheric front with an asymptotic height of 4 km and a temperature jump of

Figure 1 Figure 2
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3 K for neutral stratification. Surface isochrones at a sequence of nondimen-
sional time varying from 0 to 1 are shown. In Figure 2 the same is shown
for a stably stratified atmosphere. The results show acceleration of the front
on the northern side and retardation near the mountain center. Examina-
tion of the flow also shows strong anticyclonic motion over the mountain,
which causes significant front deformation. It follows from Figure 2 that the
stratification greatly increases the effects of acceleration and retardation.
A qualitative agreement is observed between the above results and similar
temperature patterns obtained in [6] with different schemes.

5. Conclusions

We have described an application of the nonhydrostatic version of a small-
scale meteorological model to simulating flows that occur due to the re-
tardation of a cold front by a steep mountain in three dimensions. The
preliminary results of simulations described above were carried out to test
the discretizations for the advection operators proposed in this paper. The
simulation results are in qualitative agreement with the existing theoretical
insight, observations, and calculations performed by other authors.
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