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Coordinate transformation for
a small-scale meteorological model*

M.S. Yudin

A terrain-following coordinate transformation is introduced into a small-scale
meteorological model by using a variational approach based on the Hamiltonian
principle. The coordinate transformation is explicitly formulated in the correspond-
ing Lagrange function. In this way, limitations on orography steepness can be easily
obtained. An example of a mountain wave calculation with the small-scale model
is given.

1. Introduction

Terrain-following coordinate transformations are widely used in computa-
tional meteorology [1]. They are most popular tools to calculate problems
with smooth terrain orography. However, these transformations have some
limitations on orography steepness. For instance, in a survey paper on non-
hydrostatic meteorological models [2], each of the many models considered
has its limitation. It is not always an easy task to estimate theoretically the
maximum permissible orography steepness for a model. Such estimates are
usually obtained by numerical experimentation.

In this paper, a coordinate transformation is used in a small-scale mete-
orological model by a variational approach based on the Hamiltonian prin-
ciple. The coordinate transformation is explicitly introduced into the corre-
sponding Lagrange function. Some steepness limitations can be obtained in
this way.

The paper is organized as follows: In Section 2, the variational approach
to coordinate transformations is described. Section 3 is devoted to a small-
scale meteorological model based on a coordinate transformation of the type
discussed above. To conclude, an example of a smooth orography calculation
with the model is given as an illustration in Section 4.

2. Variational formulation

Consider the following primitive equations of motion:
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du 13 1 dw
p—f, +_§£="'.fu: W = 9

dt p p Oz p Oy dt
In this section, the equation of continuity and thermodynamic equation are
not considered. The molecular friction terms are assumed to be neglected
here. Let z, y, and z be Cartesian coordinates, and h(z,y) the orography
height. H is assumed to be constant.
Under coordinate transformation n = f}_-hﬁ we have the new and old
coordinates as follows:

! =z, z =z,

z? =y, y =22,

o =n(z,y,2), z= £(31,32’33) at £ =n(H —h) +h.
Under the transformation, the original complex domain becomes a rect-
angle. Both systems of coordinates are related by conventional formulas

from the theory of metric spaces.
For covariant vectors, we have from ¢ = = Vz* that

n-10h, n—106h. 1
1_ . 2 __ = 3 _
=% 9= H H-hoz TH-hoy T H 5k

And for covariant vectors, from ¢g; = %:

dh éh
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For the metric tensor we have in contravariant form
n—1 6h
1 0 H—-h Oz
o g n-10h

n—1 8h n—1 oh i
H-hdoz H-hoy B3

d- () ) {®) 3}

and in covariant form
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The following relation between the new and old velomty components is
vahd

=Uu U = ‘u —_— -
w = v TH-h'oh TH-h'sy TH-RY™Y
Now, we reformulate the equations of motions into Hamiltonian form.
For this, we construct the Lagrange function L = T — U. From the above
formulas we have for the kinetic energy per unit mass in an absolute, non-
rotational system of coordinates:

1
T= E(uztm + U2sz + wzqss) + uvqiz + vwwqz + vwgos.

From this, the effect of orography steepness in the equations of motion can
be estimated as follows. We assume that Vh < 1, that is, the orography
is smooth enough. Thus, the terms outside the brackets become small and
can be neglected. The order of smallness can be estimated according to
assumptions on orography steepness. Returning to the rotation coordinate
system, we have

_Ll o2 .2, 2 n_f 22
T—Z(u +v* +w*(H - h)*) z(yu :cv)-l-s(m +y°).

The potential energy U is the sum of potentials of the gravity and the
rotational force:

U =g(n(H — h)+h)+--(m +47).

The Lagrange function is thus defined.
From the Hamiltonian principle, we have

i(a(T - U)) (T -U)
dt or or
where 7 = (u,v,w) and r = (z,y,7).
The Euler-Lagrange equations can be obtained now as follows:
du 1 6p c':lh

=0,

d d h

ot %(9(1 — )+ (H ~ b)) = ~fu,

dw 1 18p 2w ( 8h 3k —g
dt+(H—h)2p3n_H—h(u3:c ”%)‘H-h'

These equations can be further simplified by the Boussinesq approxi-
mation and splitting of the meteorological variables into a basic state and
deviations [1]. In the next section, we con31der a model reduced to such a
form.
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3. The model

From the computational viewpoint, it is possible, but not effective, to use
the above formulas in numerical calculations.

A much better way is to calculate the third equation of motion for the
old vertical velocity component rather than for the new one [3]. This is done
in the following meteorological model.

The basic equations of motion, heat, moisture, and continuity in a ter-
rain-following coordinate system are as follows:

U 9P  B(GBP)
E*‘a‘i‘a—q—h(v—%)—fzwﬁ--ﬁm
av P 3(GPP)

Tty T e = hU-U)+R,

dw 1 8P gP Glﬂpa'
@ tama Ut + R
do
= Rﬂi
ds
a = B

18P 8U 8V 8 ([, . 23 1 ) (G1/2pa')
028t+3+3y an(G U+G*V+ mmW) =2 (=5 )-

Here U = pG'/%u, V = pG /%v, W = pG'/?w, P = GV/%p', where p' and @'
are deviations from the basic state pressure 5 and potential temperature 8,
8 is the specific humidity, C, is the sound wave speed, u,, v, are the com-
ponents of geostrophic wind representing the synoptic part of the pressure,
7= 5({11—”')1 is a terrain-following coordinate transformation, z, is the sur-

face height, H is the height of the top of the model domain. In the model,
H = const,

Y2 _1_2 w__1 (m 9z, 23_ 1 (n  \0z
G = T H G —Gllz( l)a;,, G _Gllz(H l)ay‘

In the above equations we use the following notation: for an arbitrary
function ¢

dp 6<p+3wp+6v(p+3w<p By

i = Bt oy " op ~ at TADVe

where

1
w= El-—ﬁw + GB3u + GPBo.
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The terms R,, R,, R,, Ry, R, refer to subgrid-scale processes. As the
turbulence parameterization of the model, we use a simple scheme

2 Tp21 _mr R
Ky = l 2Q(l Ri), Ri<1,

0, Ri>1,
. g(dlnf/dz) _
Ri = DIz D =Vu+uV,

where K,, is the vertical exchange coefficient, Ri is the local Richardson
number, ! is the Blackadar mixing length {1]. A more detailed description
of the model and the numerical methods used for calculation, can be found
in [4, 5.

4. Example

In this section, an example of mountain wave calculation over smooth orog-
raphy is given.

A bell-shaped mountain with a height of 500 m is located at the center
of a 10 x 10 km domain. The top of the domain is at 5 km. A geostrophic
flow goes from the west, with uy = 5 m/s and v, = 0. As the basic state,
a standard atmospheric stratification % % = 3.5 K/km is assumed. An ab-
sorbing layer is located above a height of approximately 1500 m. The com-

Scale 1:1.75
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putational grid consists of 31 x 31 x 16 points, the horizontal grid size is
Az = Ay = 333 m, the vertical grid size Az is variable, increasing with
height. The mountain is slowly inflated during the first 15 minutes of the
computation.

A steady-state is achieved after one hour of physical time. The figure
shows the vertical velocity component at a north-south cross-section over
the center of the mountain. The mountain here is smooth and not steep,
therefore the above coordinate transformation is valid. '
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