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Numerical experiments
with one ILP algorithm*

G.I. Zabinyako

In this paper, a branch and bound algorithm with branching in depth for prob-
lems of the integer linear programming (ILP) is considered. The results of solution
to large problems of integer and mixed-integer linear programming are presented.
A brief information is given on the software for solution to large ILP problems with
sparse matrices. '

1. The algorithm

Let a problem of the ILP be given in the form:

find

max f(z) = (¢, 2)

with constraints
Az = b, a<z<p,

where ¢, z,a,3 € R"* and b € R™ are vectors, A is m X n matriz, and the
components ; of the vector x are integer numbers.

One also may consider the components of the vectors o and B to be
integers too.

The algorithms with in-depth branching are attractive because they
make it possible to construct compact lists of estimation problems [1]. We
consider an algorithm in which any problem is described by five elements of
the array. :

The choice of a variable for branching is made by analyzing the penalties
[1, 2] for increasing P; (decreasing P;) of the basic non-integer variable z;
to an integer value. In the scheme given below, the array h corresponds to
the list of problems.

PO. .Let i = 0, k = 0 and the value of the incumbent r° = —c0, a® = o
B° = p.
P1. Solve the current problem of LP.

)
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(2) If f© < r' (f* is an optimal value of the objective function) or
the system of constraints is inconsistent, then assume ritl = pi,
t =1+ 1 and go to P3.

(b) The integer solution is consistent. Let rt! = fi § = ¢4 1. If
fi = f°, then go.to P5, else go to P3.

P2. Calculate penélties. Among the penalty estimations for basic non-
integer variables find the minimal Pp;p,.

(a) If fi — Pmin < r*, then go to P3.
(b) Execute branching for the basic variable j that is matched by the

maximum penalty P; or PJ-. For consistency let 153 < 153-. Set a
variable

z={ 1, if fi-P;<ri

0, otherwise.

Increase k = k 4 1. Then perform the assignments

h(1,k)=j, h(2,k)=p: h(3,k) =1,
J

h(4,k) = f', h(5,k) =

Set the upper boundary of the variable j equal to [3:';], go to P1.
If P; < Pj, then perform the assignments

h(1,k)=—j, h(2,k)=a}, h(3,k)=1,
h(4,k) = f', h(5,k) = P;.

Here the parameter [ is defined as mentioned above and the lower
boundary for the variable j is taken to be equal [z}] + 1.

P3. If kK =0, then go to P5. Select | = h(3, k).

(a) If I = 1, then go to P4. If F — P < r*, where F = h(4,k) and
P = h(5,k), then go to P4.

(b) Using the array h, construct an alternative problem (which is al-
ternative to the problem formed in P2.b), assign A(3,k) = 1 and
go to P1.

P4. Restore the values of constraints on the variable z; using the informa-
tion from the array h (h(1,k) and h(2,k)). Assign k =k —1 and go to
P3.

P5. Stop.
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During the calculation of the penalties (P2) there may occur a degenerate
case when the maximum value among all P; and P; is equal to zero. In this
case branching is performed using the variable z; selected among the basic
ones as it has a value most deviating from integer.

In the schemes with one-sided branching, one can realize an efficient

passage to the next estimation problem. One should note two cases arising
in the formation of the problem (P2.b):

1) the variable z; is assigned a fixed value z; = oz} = ﬁj;
2) the variable must vary in the ranges Cvj— <z; < ﬂ; and 0‘} < ﬂ;

In the first case, a fictitious variable z, is introduced to the basis (the
optimal basis of the preceding problem with the basic matrix B) instead of
the variable z;. For this purpose a vector 27 = egB_1 is calculated, where
€p is the p-thort in R™ and p is the number assigned to the variable z; in the
basis. A number k is found, on which the maximum of |z;| fori=1,...,m
is reached. The ort k from R™ corresponds to the variable z,(v = n + k).
Then the matrix B! is corrected in the standard manner with allowance
for the substitution of the variable z, for the variable z; in the basis, and
the values of basic variables are calculated in a new basis. In the solution,
if such exists in the estimation problem, z, is equal to zero.

In the second case, there is no need to correct B~1. One always starts a
solution of any estimation problem with eliminating the infeasibility of the
values of basic variables. For this purpose the expression

B(z)= ) (&5 —z)+ ) (z;-5)

.1:_,'(0(3 1:_,),6;

is minimized on the set Az = b. While eliminating the infeasibility of basic
variables, a special method [3] of the shift value calculation on the simplex
method iterations is used which makes it possible to minimize a piecewise
linear function ®(xr + As) in A along a selected direction. _

After the elimination of the infeasibility of basic variables in defining the
value of a shift the concept of “an expanding sequence of tolerances” [4] is
used. For any variable z; the fulfillment of the conditions a;—6 < z; < 8;+6
is controlled, where the value of a parameter § is increasing by a small
amount 7 > 0 at each iteration of the simplex method.

2. Solution to problems

To test the algorithm, the problems of integer and mixed-integer LP from
various fields of application were solved. All the problems were obtained on
the electronic media in the MPS-format (for the format see, e.g. [2]).
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Table 1
N Then;:zglem m e n ne . s
1 air01 23 23 771 771 771 4215
2 air02 50 50 6774 6774 6774 61555
3 air03 124 124 10757 10757 10757 91028
4 air05 310 310 6200 6200 6200 32740
5 boeingl 351 98 473 150 16 3574
6 boeing2 166 23 162 50 - 1215
7 cracpbl 143 90 573 572 572 4159
8 dsbmio 1182 343 1928 183 160 7417
9 gen 780 150 870 150 144 2592
10 modglob 291 95 422 98 98 968

In Table 1, a description of the problems is presented, where m is the
number of constraints of which m. is that on equalities; n is the number
of variables (columns) of which n; is that of integer, and ny is that of the
Boolean variables; nz is the total number of nonzero elements in the matrix
A. In all the problems it is necessary to determine the minimum of the
objective function. In addition to the data in the MPS-format, the electron
media contains the comments indicating to the field of application and the
authorship. In Problems 1-4, it is required to find an optimal time-table of
flights for the crews (G. Astfalk). Problems 5 and 6 are the engineering prob-
lems on aircraft construction (N. Gould); these two problems are included
in the library of NETLIB tests [5]. The application field of Problem 7 is
unknown (N. Growder, E.A. Boyd). Problem 8 optimizes the production,
processing, and distribution of gas (J.J.H. Forrest). Problem 9 consists in
determining the time—table of operation for technical devices (L.A. Wolsey,
M.W.P. Savelsbergh), and Problem 10 refers to designing heating systems
(L.A. Wolsey, M.W.P. Savelsbergh).

Table 2 presents the results of solutions to the problems. The problems
were solved in two variants which differ in the way of constructing the initial
basis in the original LP problems with no allowance for integers [6]. In
Table 2, the following denotations are used:

N is the problem number;
it is the total number of iterations;

ito is the number of the iterations at which the solution to the LP problem
was obtained with no allowance for integers;

ity is the number of the iterations at which an optimal integer solution
was obtained;

k is the maximum depth of the tree of variants (the maximum value of
the index k in the array h);
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Table 2
N it | it | i | k] & [ & | P1 [ P2 K
Initial basis B0
1 75 42 75 1 2| 1 1| - 0.84
2 798 | 262 564 | 5 71 1 4| - 26.2
3 1319 | 843 1319 1 21 1 1| - 95.7
4" | 1000000 | 10076 | 431822 | 69 | 102| 2 2| -|20412.0
5° | 1000000 | 879 | 664568 | 185 | 43879 | 36 | 22452 | 351 | 3237.0
6 | 180014 | 206 | 104713 | 48 | 11683 | 7| 4754 | 53| 3589
7 2520 | 766 | 2520 56 57 1 - -] 11.28
8 29107 | 1519 | 29107 | 46| 140| 11 321 -| 6163
9 | 113226 | 2152 | 55178 | 34| 670| 6 79| -1 1088.0
10° | 1000000 | 170 | 990149 | 96 | 30613 | 115 | 11169 | 145 | 1983.0
Initial basis B1

1 7 60 76 1 2] 1 1| - 0.68
2 51449 | 230 | 51262 | 42| 345| 2 28 1| 6988
3 1750 | 1076 1750 1 2 1 1 - 43.38
4® | 1000000 | 8176 | 386851 | 68 69| 1 -1 -122243.0
5° | 1000000 | 1069 | 707371 | 189 | 58126 | 14 | 29562 | 342 | 3534.0
6 | 285923 | 159 (208334 | 50 | 17836 | 6| 6951 | 62| 561.9
7 3854 | 678 | 3854 | 57 70 2 3| - 19.36
8 14097 | 2949 | 14097 | 48| 503 | 15 43| - | 4783.0
9 | 148803 | 1945 | 71621 | 38| 1009 | 11 92| -| 1390.0
10* | 1000000 | 168 | 170932 | 89 | 39656 | 65 | 16971 | 41| 2150.0

ks is the total number of formulated LP problems;

ki is the number of solutions obtained with the integer requirement ful-
filled;

P1 shows how many times the conditions f* — P; < rf or fi — P; < ré
were fulfilled during the solution to a problem (see P2);

P2 shows how many times the condition f* — Py, < r' was fulfilled;
t is the time of solution to a problem in seconds on Silicon Graphics

(the computer of capasity with a clock rate 75 MHz).

In Table 2, the problems in which no proof has been obtained for the
optimality of an integer solution are marked with the asterisk (*).

3. Analysis of peculiarities

In addition to the above-mentioned problems some standard small problems
were solved for testing the programs. The process of solving the latter prob-
lems does not strongly depend on the way of constructing the initial basis
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and on changing the values of controlling parameters in sufficiently large
ranges. The differences in Table 2 for various initial bases are essentially
due to the non-uniqueness of solutions of the original LP problems with no
allowance for integers. For instance, in Problem 7, the optimal solution with
no allowance for integers has relative estimations d; = 0 for 430 non-basic
variables.

When solving Problem 8 there are ill-posed basic matrices. A standard
set of values of controlling parameters which was used in the problems did
not permit obtaining any solution with allowance for integers. In order to
obtain the solution one had to make a special choice of controlling parame-
ters which gave a higher accuracy of solution of the LP estimation problems.

In addition to the above-mentioned problems, two other problems air04
and air06 with a higher dimensionality than that of air05 were available. One
could not nevertheless solve these problems with the reasonable expense of
time. The peculiarity of these problems consists in that the basic solutions
are strongly degenerate. In optimal solution with no allowance for integers
and in the intermediate iterations several hundreds basic variables have zero
values (in these problems all a; = 0).

4. Software

The software for solving large ILP problems with sparse matrices may be
used on computers IBM PC in the environment DOS and on Silicon Graph-
ics in the environment IRIX in the programming language Fortran-77. In
addition to procedures of numerical computation, the software contains aux-
iliary programs for data processing. These programs provide data input,
their logical control, composing dictionaries and reference tables, conversion
from the outer MPS-format [2] into the inner format (used in procedures of
numerical computations), and composing the output forms. The versions of
batches for IBM PC and Silicon Graphics differ in their auxiliary programs
which is due to the difference of their memory organization. Moreover, the
batches for IBM PC contain procedures for tracing the course of program
solution on the display, while Silicon Graphics has no such means.

A special file for determining controlling parameters is provided in pro-
grams. Using the corresponding values of controlling parameters one can
modify the scheme of program solution. The user may define an estimation
for the value of the object function thus diminishing the search. The relax-
ation problem being solved, fi is compared with f and the problem is not
applied any more as a parent one if f* < f.

For obtaining approximate solutions, an input parameter §; may be pro-
vided. The problem solution process is completed if for the current incum-
bent r¢ the inequality (f° — r')/|f°| < &; holds.
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For those problems, in which general constraints have only the form of

inequalities, one can apply a local algorithm, based on a coordinatewise
search.

The software is discussed in more details in [6].
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