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Modeling of barotropic fluid dynamics
on the sphere based on the contour
dynamics

L.V. Zinovieva

In this paper, a solution of equations of the barotropic fluid evolution in the
spherical geometry by the method of the contour dynamics is considered. Integro-
differential equations for velocity and some dynamic characteristics are obtained.
The motions and interactions of some vortex structures on the sphere are studied.

1. Introduction

The contour dynamics (CD) as a technique of solving nonlinear two-dimen-
sional Euler equations in classical hydrodynamics was first described by
Zabusky, Hughes and Roberts in 1979. This method is applied for model-
ing of the evolution of vortical structures and is based on an assumption
that the vorticity has piecewise-constant distribution. Its main advantage is
that the problem is reduced to the dynamics of contours. So, the dimension
of the field of states of the system decreases. In present, there are many
publications which are concerned with the method of contour dynamics in
various fields — from the physics of plasma to dynamics of the atmosphere
and ocean. One can find a detailed review of studies which presents the
contour dynamics in hydrodynamics problems in [1]. '

The present study describes a numerical scheme, which permits us to
apply the CD to the barotropic fluid evolution problem on the sphere.

2. The contour dynamics for the atmosphere
and ocean on the sphere

2.1. General principles of the CD. Sufficient conditions of using the
CD can be formulated as the following five principles:

1. The fluid motion is quasi-two-dimensional, and the velocity field can
be written as

u = up(z,y,t) - a(z,y,t)y, v=vwo(z,y,t)+ a(z,y, ). (1)
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The velocity is written as a total of a “background” value (uo, vo) and
a component connected with a stream function %. The coefficient a
depends on the geometry of a problem.

2. As the corollary of the dynamic equation, there exists some adiabatic
invariant II(z,y,t) which is constant for any material point:

dll
'EEH,:-FHH,;-I-UHQ.:O. (2)

3. The adiabatic invariant is connected with the stream function by an
elliptic operator L:

I = Ly. (3)

4. The operator L is reversed by the Green function G(z,y,§,n):
v = [[nE G dedn. @

5. At the initial moment
II= HOX(DO)! (5)

where IIp is a constant. When moving, Dy transfers into D with
a boundary C(t). The validity of the expression IT = Tlpx(D) at
any moment of time is evident from the condition of the invariant
conservation.

We determine the function
1
o &n= [ Glyis+E-2)ny+m-vzdz  ©

which satisfies the equality G = [(§ — =) F]¢ + [(n — y) Fl»-
Now, taking this property into account and applying the Stokes theorem,
we obtain the formula for the stream function

b =Tof FIE=a)dn = (1-1)d€). Y

Thus, the stream function and the velocity field (see (1)) are unambigu-
ously determined by the contour C(t), whose motion is described by the

equations
dr dy

a=" @
where 7, y are meant to denote the Lagrangian co-ordinates of the fluid
particles belonging to the contour.

=0, (8)
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In case of an arbitrary piecewise-constant distribution, the velocity field
is calculated by superposition of effects of all the contours in which adiabatic
invariant has a discontinuity.

A simple case, where conditions of applicability of the method are fulfilled
is a fluid motion described by the Euler equations.

2.2. Numerical solution of the Euler equations. Under the assump-
tion that fluid is incompressible, inviscid and its motion is plane-parallel,
two problems are considered: interaction of an initially round vortex of ra-
dius 0.3 and a point vortex with the same sign and with equal values of the
circulation —0.097 and interaction of two round vortices of radius 0.3 and
with the circulation —0.097.

The evolution of vortices is described by the Euler system of equations
which can be written down in terms of the stream function and the vorticity.

wt + wwy + vwy =0, T»bwz'}"/’yy:w’ u=_¢ya v = Py.

The expression for the stream function is obtained using the Poisson
equation

1
v= o [[wle,minRdgan,
and, respectively, :
- w
U= Q—chln R(e; d€ + e, dn). (9)

When solving problems, we made use of the numerical scheme proposed
in [2].

In Figure 1, there is shown an interaction between the round vortex and
the point vortex. The vortical domain and the point vortex spin around
the point in the centre of the flow. When moving, the shape of the domain
becomes oval. At t = 24, a quasireturn occurs — the shape of the domain
becomes nearly round.

Two round domains rotate around the centre of symmetry, in the time
interval from 4 to 12 they are stretching, becoming closer to each other, at
¢t = 15 their boundaries practically coincide. The motion of the domains is
displayed in Figure 2.

It is impossible to solve the problem of interaction of two vorticity do-
mains at £ > 15, because the shapes of the contours are becoming more
complicated and the approximation is not accurate enough.

In the case of interaction of the vortical domain and the point vortex, a
relative alteration of the circulation Al'/T" was calculated. In the table, At
is the number of nodes, At is a time step, all the values are taken at t = 12.

N 20 - 50 20 50 250

At 1 1 0.1 0.1 ' 1
AT/T | 1.46-10"1 | 1.51-10~* | 1.08-10~* | 4.30-107% [ 1.51-10!







